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1. Introduction 

Extensive amount of work is being carried out in 
the analysis of various parameters associated with 
antennas on anisotropic substrates (Deschamps, 1953) 
(Gutton and Baissinot, 1955). Study has also been 
carried out using hertz vector potentials (Carver and 
Mink, 1981). A full wave analysis for antenna on a 
double dielectric anisotropic substrate has also been 
done (Byron, 1970). A recent study includes 
anisotropic substrate characterized by permittivity and 
permeability tensors (Munson, 1974). 

In our study the mixed boundary value problem 
of a microstrip dipole placed on the top of a uniaxially 
anisotropic substrate with the presence of a superstrate 
(cover) layer as shown in Figure. 2.1. The cover layer 
can be either isotropic or uniaxially anisotropic 
dielectric. The microstrip dipole is assumed to be 
excited by an idealized source. This idealized source 
provides the incident electric field, which excites 
current on the dipole surface. Explicit form of the 
spectral domain electric field integral equation (EFIE) 
for the surface current induced on the dipole is derived 
using the dyadic Green’s function for the layered 
uniaxially anisotropic medium. The EFIE is solved 
using the MM to find the unknown induced surface 
current on the microstrip dipole. Piecewise sinusoidal 
(PWS) expansion modes are used to represent the 
unknown surface current. Explicit expressions for the 
input impedance are obtained for different electrical 
and geometrical parameters. Antenna research was 
conducted to explore various methods of designing an 
antenna that operates both effectively and efficiently 
within the previously mentioned design constraints. 
After performing extensive research, the Yagi-Uda 
array and Microstrip Patch antenna array were deemed 
to be topologies that could effectively operate within 
the design constraints. Multiple designs, simulations, 
and analyses were conducted to provide insight on the 

advantages and disadvantages of both topographies. 
Ultimately the Microstrip Patch array was chosen due 
to its ease of impedance-matching with a 50-Ω SMA 
line input. The ideal outcome of the design is to 
produce a highly directive antenna. As such, it is 
necessary to implement an array of patch antenna 
elements to promote greater directivity and gain. 1- 
element antennas were designed, simulated, and 
analyzed. For simplicity and ease of mathematical 
calculations, patch antenna elements were separated 
by a constant distance of λ/2. 
 
2. Spectral Domain Integral Equation 

The microstrip dipole considered in Figure 2.1 is 
of length L and width W. 

 
Figure 2.1. Geometry of the Problem 

 
It is assumed that the width of the dipole is very 

small compared to the free-space wavelength (W << 
o), and therefore the current on the dipole can be 
assumed to have only one component in the x-

direction. That is ss JxJ  ˆ = 
. 

The dielectric layers are characterized by 
permittivity and permeability tensors of the form 
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and 

 j I 0  

where 
I

 is the unit dyadic. 
The electric field integral equation EFIE on the 

surface S of the microstrip dipole can be written as: 
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where j = 1,2. 
The sommerfeld condition at infinity determines 

the branch interpretation of  
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In the above Re ( ) k z0 and Im( ) k z0 stand for 
real and imaginary parts respectively. 

That is the positive branch of the square root has 
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where j = 1, 2. 
The expression for the transverse (surface) 

components of 
g k zs11 0(  ,  = )  

Is 
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Since the induced surface current density on the 
dipole is assumed to be in the x-direction, only the 

(x,x) component of G11  will be required. Thus, 
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Substituting Eq. 2.3 in Eq. 2.2 with z = 0, 
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Using the 2-D Fourier Transform, Eq 2.19 
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where J ks s( )  is the Fourier Transform of the 

surface current density J rs s( ) .using electric field 
integral equation (EFIE) for the unknown surface 
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Eqs. 2.21 are the coupled set vector integral 

equations in the spectral domain. Eq. 2.21a is the 
spectral domain electric field integral equation 
(SDEFEI). 
 
2.1. Application of the Moment Method 
(MM)Solution 

To apply the MM to solve Eq. 2.21, the surface 
current density on the dipole is expanded in terms of 

appropriate expansion modes f x yn ( , )  with 
unknown coefficients In: 
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where xn = nd, and d is the half length of each 

expansion mode given by d = L / N. 
The wavenumber k for the PWS mode can be 

chosen arbitrary, however, a judicious choice will 
improve the convergence. For single isotropic 
substrate, it was found that setting k equal to the 
“effective” wave number for the substrate is a good 
choice (Pozar, 1983) 
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where E rn s ( )  is the scattered electric field due 
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where Sm is the surface of the mth test mode and 

E x ym
s( )  ( , )  is the scattered field in layer (1) by the mth test mode f m  at the position of the nth expansion mode. 

For the case of impressed current source (probe 
excitation), by using the reciprocity theorem, Eq. 2.33 
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The system of equations given in Eq. 2.35 can be 
written in matrix form as 
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where [ I ] is the generalized current column 

vector whose N components contain the In of Eq. 2.22, 
[ Zmn ] is the NxN generalized impedance matrix, and 
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 is the generalized voltage column vector. The 

dimensions of the elements Zmn and Vm
P

 are volt-
amperes (VA), while the elements In are 
dimensionless. 
 
2.2 Calculation of the Generalized Voltage Matrix 
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where Ezm is the z-component of Em . 
Using the dyadic Green’s function formulation, 

we have 
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  
 

 
 

 
 

   
( )  i r

k k
X k R e

z

TM
TM

x
TM ik hz

e






0

2

2

2

1

1 2

2 1 1

2

8
1 1 1

 ,

   (2.48)   +    2

2

 )(
22

)(
2

)(
2 zikhikTMzik e

z
e
z

e
z eeRe 



 
where the TE- components do not contribute. 
From Eq. 2.43, Eq. 2.47 and Eq. 2.48, the 

expression for 
Ezm  reduces to: 

E x y zzm p p( , , )
 = 

i dx y dk e
S

s

i k x k y

m

x p y p d    
-

  



( )

 

g k z e f rz x
s

ik r
m s

s

21
( , ) ( , ) ( )     (2.49) 

Since 

dx dy e f r F k
S

ik r
m s m s

m

s s  
    ( ) =  ( )

~

  (2.50) 
thus 

E x y zzm p p( , , )
=

i dk dk ex y

i k x k y
x p y p   

-





( )

g k z F kz x
s m s21

( , ) ( , ) ( )
~

  (2.51) 
Substituting Eq. 2.51 in Eq. 2.41, we arrive at 

Vm
P

 = 

i dk dk ex y

i k x k y
x p y p  

-





( )

 
~
F k km x y( , ) 

 
g k kI

z x
x y21( )

( , ) ( , ,z)
, 

m=1,2,....,N 
where 
 

g I
z x

21( )
( , )

 = 

  ( , , ) ( , )

-

g k k z dzz x
x y

h

21

0

2


 

=  
    

 
 

 
 

 
   

( )
 ( )

   








0

2

2

2

1

1
2

1

2

2 1 1
2

8
1 1 1 1

z

TM
z
e

z
e

x
TM TM ik hr

k

k

k
k R R e z

e

( )

 (2.52) 

The Zmn and Vm
P

 appearing in Eq. 2.38 and Eq. 
2.51, respectively have to be computed using 
numerical integration techniques and properly 
accounting for the residue contribution of the surface 
wave poles. The unknown complex coefficients In are 
determined after solving Eq. 2.39. 
 
2.3 Calculation of Input Impedance 
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For the case when the dipole is excited by delta-
gap generator, the input impedance may be found 

from 

Z
V

I
in

in

in


. So, if 

Vin  1
, the input 

impedance is simply 
Z

I
in

i n


1

. 
For a dipole excited by a probe, the input 

impedance can be calculated as: 

Zin  = 
   

=

I Vn n
P

n

N

1   (2.53) 
where In are the expansion mode current 

amplitudes and I is the probe current. 
2.4 Computational Efficiency 

Because of the computational complexity of Eq. 
instead of performing the doubly infinite integrals in 
the (kx,ky) space, it is common to change to polar 
coordinates (k) in the spectral domain, where 

kx = k cos  (2.54) 
ky = k sin  (2.55) 
In this case, the integrations in Eq. 2.38 and Eq. 

2.52 undergo a transformation which can be 
symbolically shown as 

 ,  
-

U k k dk dkx y x y( )





= 

   (  ,d dk k U k
p

   

00

2 

 )

  (2.56) 
Thus, the doubly infinite integrals are reduced to 

a finite integration and a semi-infinite integration. 
Also, the even and odd properties of the integrands 

can be used to reduce the  = 0 2  integration 

range to 



= 0

2 . Eq 2.38 and Eq. 2.52 can then 
be written as 

 Z i d dk k g kmn
x x=    ,( , )



4
00

2

11   





/

 

     Re
~ ~

Re
~ ~

   n m n m  
 

 = , ,...,

   = , ,...,

m N

n N

1 2

1 2
 (2.57) 

and 

 V d dk k g km
z x=    ,( , )



4
00

2

21   





/

 

Im
~

Re
~{ } { } m

ik x

n

ik y
e ex p y p  

, 
m=1,2,..., N                (2.58) 

The integrals in Eq. 2.57 and Eq. 2.58 are to be 
evaluated numerically. Thus, the expressions for Zmn 
and Vm constitute the bulk of the computational effort 
for the microstrip dipole solution, and so it is critical 
that these terms be calculated as efficiently as 
possible. The singularities of the integrand correspond 
to TM and TE surface waves. If the dielectric layers 
are lossless, then the surface wave poles are on the 

Re{k} axis between k0 and kj, where kj=
 j k0 is 

the wave number in the dielectric layer with higher 
dielectric constant. As illustrated in Figure 2.2, if the 
dielectrics are lossy, then the poles move in the third 
quadrant. However, for low-loss dielectrics, the poles 
are very close to the Re{k} axis. These poles must be 
avoided in performing the numerical integration from 
k=0 to. The conventional method of avoiding the poles 
is to deform the contour from the Re{k} axis to the 
contour C1 which makes a small half-circle around 
each pole. 

The integrals around the half-circle can be done 
in closed form by computing the residues at the poles. 
This method works well for one layer structure and 
when the substrate is electrically thin, there is only 
one surface wave pole (TM surface wave pole). 
However, for multilayered structure (or if the substrate 
is not electrically thin), there can be several surface 
wave poles. Also, analytically performing the 
integrations around the half-circles will be 
complicated if two or more poles are extremely close 
to each other. These problems can be entirely avoided 
by deforming the contour C1 into the contour C2. 

The contour C2 goes down from the origin at 45 
angle until it is at height -jH below the Re{k} axis. It 
is then proceeded parallel to the Re{k} axis until it is 
past kj. Finally, it moves back up to the Re{k} axis 
and then out to .  The advantage of the contour C2 is 
that numerical integration near the poles is avoided. 
Further, no knowledge of the pole locations or their 
number is required. This method works well for H on 
the order of 0.1k0 (Derneryd, 1977, Carver, 1979). If 
the dipole is divided into equal-length segments, all 
the values of the N2 matrix elements are contained in 
any one row of [ Zmn], say the first one. 

 
Figure 2.2. Two paths of integration in the complex 
k-plane 
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All other rows are morally a rearranged version 
of the first. The remaining elements can be obtained 
by the rearrangement algorithm (Lo et al., 1977) 

Zmn = Z1,m-n+1, m 2, n 1, (2.59) 
Such a matrix is said to be a toeplitz matrix. In 

this case execution time is considerably reduced from: 
t  A N2 + BN3  (2.60) 
to 
t  A N + BN5/3  (2.61) 
where A is the time required to compute a typical 

impedance matrix element, B N3 is the time required 
to solve [ Zmn] [ In] = [ Vm] for [ In] by matrix inversion 
for a system of order N, where [ Zmn] is a non-teoplitz 
matrix. This time is reduced to BN5/3 by using a 
computer program for solving the teoplitz matrix. 
2.5 Radiation Field Evaluation 

The current distribution is radiating in the 
presence of the layered anisotropic medium. To find 
the field patterns, the expression for electric and 
magnetic field is obtained in the upper half-space. 
Using the dyadic Green's function in the upper half-
space due to the current distribution on the dipole. 
These fields are represented in terms of Sommerfeld-
Weyl-type integrals. These integrals are calculated in 
the radiation zone or far-field region. Such integrals 
can be evaluated with numerical integration routines, 
but it becomes very tedious when observation point is 
in the far field of the source, because the integrand is 
rapidly oscillating. However, in the far-field region, 
we can use the stationery phase method or the saddle 
point method to evaluate the integral to obtain far-
field expressions. Here a method that captures the 
essence of the stationary phase method is presented 
and the far field approximations of the Sommerfeld-
weyl type integrals are derived. The result of this 
calculation is correct asymptotically to the leading-
order which we are interested in. 
2.6 The Electric and Magnetic Fields in the Upper-
Half-space 

In the upper-half space (region 0), the far-field 
satisfies the following relations: 

E 0 = 


E z0

sin   (2.62) 

H0 =

1
0 

0

E
  (2.63) 

for TM waves, and 

H0 =


H0z

sin   (2.64) 
E 0 =

 0 H0   (2.65) 
for TE waves, and 

0 =




0

0   (2.66) 

Thus, to calculate the far-field expressions we 
need to calculate E0z and H0z in the upper half space 

(layer(0)) due to the current distribution J rs ( ) =

),(ˆ yxJx x


 on the microstrip dipole in layer (1). 
The electric field E0z can be obtained as 

E0z= 0 ˆ Ez 
= ẑ i 

dr G r r J r
S

s      
'

01( , ) ( )

 

=i

),( ),(  
'

),(
01 yxJrrGydxd x

S

xz 
  (2.67) 

where 

G r rz x
01
( , ) ( , ) = 

xrrGz ˆ ),( ˆ 01 
  (2.68) 

G r r01( , ) can be obtained as (See Figure. 2.3). 

and r in region (1) where 
  z h1 

G r rz x
01
( , ) ( , )  = 

dk dk e g k z zx y
ik r r z x

s
s s s   ( , )

-

  






( ) ( , , )01

  (2.69) 

 
Figure 2.3, Geometry of problem with sources in 
region(1) and observation point in region (0). 

 
For the case of uniaxially anisotropic medium, 

G r rz x
01
( , ) ( , )  = 

dk dk e g k z zx y
ik r r z x

s
s s s   ( , )

-

  






( ) ( , , )01

 
where 

g k z zz x
s01

( , ) ( , , )  = 

i


0
28
   ˆ  1,0)(

1

1 zX
k

r TM

e
z

TM

 zik
z

zekv 0)(ˆ 0  

     xekveRekv zike
z

hikTMzke
z

e
z

e
z

e
z ˆ ˆ +  ˆ

)(
11

)(
1

)(
1 )(

1

2

1
)(

1 






 
(2.70) 
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where in our case z  = 
h1  since the dipole is 

on the boundary between layers (1) and (2), and 

r TM
1  = 

1

1 1 1
2 1 1  R R eTM TM ik hz

e( )

  (2.71) 

R TM
1  = R TM

10   (2.72) 

X TM
0 1,  = 

 k

k

k

k
R

z

z
e

TM0

0

1

1

11  
( )

 

  (2.73) 
performing the dot product in Eq. 2.70, we get 

g k zz x
s01

( , ) ( , ) =

 i


0

28

r

k
X

TM
TM1

0

0 1   ,

 e e
k

k
R eik z ik h x TM ik hz z

e
z
e

0 1 1 1 1

1

11    
( ) ( )

 

  (2.74) 

where z  is substituted by (
h1). 

Thus, the z-component of the electric field in 
region (0) is given by 

E0z( r ) = 




0

28
dx dy J x y

S

x       
'

( , )

 

( )




i
x

dks




 

-  
 e e g k

i k x x k y y ik z
E s

x y z
( ) + ( )

   ( )
   

0

(2.75) 
where 

g kE s( ) =

r

k k
X

TM
TM1

0 1

0 1   ,

 e R eik h TM ik hz
e

z
e

1 1 1 11 1

( ) ( )

   
  (2.76) 

and kx is taken outside the integral as 
( ) i

x



 . 
Thus, E0z is obtained and expressed in Eq. 2.75 in 
terms of Weyl-type integral. E0z can also be expressed 
in terms of a Sommerfeld-type integral as 

E0z = 
( )i




0

4
 dx dy J x y

S

x   


    ( , )

 

 cos   ( )         


 dk k g k e J kE
ik zz2

0

1
0

  (2.77) 
where we used the relation 

  



    0 kJ

x  

  (2.78)          -     os 1    kJkc
 

The magnetic field in the upper half-space can be 
obtained from Maxwell's equations 

H0  = 

1

0i
E


 0

  (2.79) 
That is 

H0  r
 = 

1

0
 

dx dy G r r J x y
S

s       


    01( , ) ( , )

(2.80) 
where 

G01( , )r r 
 = 

i


0

28
dk e es

ik r r ik zs s s z  
-

  






( ) 0

 

)(ˆ  01,0)(
1

1 1
)(

1{ z
hikTE

h
z

TE

kheX
k

r h
z



    })(
11

)(
1

ˆ +ˆ 1
)(

1 h
z

hikTEh
z kheRkh

h
z  +

)(ˆ  01,0)(
1

1 1
)(

1

z

hikTM

e
z

TM

kveX
k

r e
z



    )(
11

)(
1 ˆ +ˆ 1

)(
1 h

z
hikTMe

z kveRkv
e
z    (2.81) 

Performing the curl operation, so: 

 G r r01( , )
 = 

i


0

28

dk e es
ik r r ik zs s s z  

-

   






( ) 0

 

)(ˆ)(  001,0)(
1

1 1
)(

1{ z

hikTE

h
z

TE

kvikeX
k

r h
z 

    })(
11

)(
1

ˆ +ˆ 1
)(

1 h
z

hikTEh
z kheRkh

h
z   

+

)(ˆ)(  001,0)(
1

1 1
)(

1

z

hikTM

e
z

TM

khikeX
k

r e
z



    })(
11

)(
1 ˆ +ˆ 1

)(
1 e

z
hikTMe

z kveRkv
e
z    (2.82) 

Hence, the magnetic field 
H z0  can be obtained 

as 

H0z= 0 ˆ Hz 
 = 

1

0

  ),(ˆ ˆ  01 yxJxGzydxd x

S


  (5.22) 

H0z = 

i

8 2
dx dy J x y

S

x      
'

( , )
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( )




i
y

dks




-

 e e g k
i k x x k y y ik z

H s
z z z

( )+ ( )
   ( )

   
0

  (2.83) 
where 

g kH s( ) = 

r

k
X

TE

z
h

TE1

1

0 1( )
   ,

 e R eik h TE ik hz
h

z
h

1 1 1 11 1

( ) ( )

 + 
 

(2.84) 
where 

rTE
1  = 

1

1 1 1
2 1 1  R R eTE TE ik hz

h( )

  (2.85) 

R TE
1  = RTE

10   (2.86) 

X TE
0 1,  = 

 1 1+ R TE
   (2.87) 

Thus, H0z is obtained and expressed in terms of 
Weyl-type integral. In a similar way, H0z can be 
expressed in terms of a Sommerfeld type integral as 

H0z = 

1

4
dx dy J x y

S

x   


    ( , )

 

 sin   ( )  2        


 dk k g k e J kH
ik zZ

0

1
0

 
(2.88) 
where the relation 

    0




 

y
J k  

 = 

        in 1 kJs
 

(2.89) 
Can be written. 
 

2.7 Leading-Order Approximations to 
Sommerfeld-Weyl-Type Integrals 

Let us consider an integral of the type 

I d g




  ( , )

  (2.90) 
where  is a large parameter. If the integrand 

becomes rapidly oscillating when  is large, and it 
there exists a simple stationary phase point in the 
integrand, we can evaluate a leading order 
approximation of Eq. 5.30 using the method of 
stationary phase (Lo et al., 1979). 

The first step in the procedure is to factorize the 
integrand g( , )  into two parts, a slowly varying 
part and a rapidly varying part. So, we let 

I = 

d




  

f( )  h( , )   (2.91) 
where f() is the slowly varying part, while 

h( , )  is the rapidly varying part when . 
Assuming here that h( , )  is of the form 

h( , )  = ei s(   (2.92) 
Next, finding the stationary phase point of 

h( , )  which is given by the value of  where 

 

 
 

S( )

( )
 

 0  = 0  (2.93) 
Most of the contributions to the integral in Eq. 

5.31 will be from the vicinity of the stationary phase 
point. Hence, replacing the slowly varying part of the 
integrand f( )  by its value at the stationary phase 
point. By so doing, Eq. 2.91 becomes 

I ~ f() 

d




  

 h( , ) ,   (2.94) 
If the integral has a closed-form expression, Eq. 

2.94 is an analytic expression for the leading-order 
approximation of Eq.2.90. An illustration of how the 
foregoing method is applied to find the far-field 
approximations of Sommerfeld-Weyl-type integrals. 

The following two identities are used in this 
approximation: 

1) The Weyl Identity (Richards and Lom 1981): 
so 

e

r

ikr

 = 

i
dk dkx y

2
 

-




 

 e

k

i k x k y k z

z

z y z+ +

 
  (2.95) 

2) The Sommerfeld Identity (Richards and Lom 
1981): thus 

e

r

ikr

 = 

 i
dk

k

k
H k e

z

ik zz

2
0

1




   
-

( )






  (2.96) 

In Eq.2.95, 
kz  = 

k k kx y
2 2 2      

, and in 

Eq. 2.96 
kz  = 

k k2    2   
Let as consider first a Weyl-type integral in the 

form we encountered for the fields in the upper half-
space as 

I1 = 

 dk dk g k kx y x y  ,
-




 

 e
i k x k y k zz y z+ +

   (2.97) 
where kz is defined in Eq. 2.95. When x, y, or z 

are large, the integrand in Eq. 2.97 is rapidly 
oscillating, and the integral is amenable to the 
stationary phase approximation. With the Weyl 
identity in mind, factorizing the integrand into slowly 
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varying part and a rapidly varying part which can be 
integrated in closed form; that is, writing 

I1 = 

  dk dk g k k kx y x y z  ,  
-




 

 e

k

i k x k y k z

z

z y z+ +

 










   (2.98) 
By virtue of the stationary phase method 

argument, contributions to the integral will come from 
around the point where the phase of the exponential 
function is stationary. Hence, looking for the 
stationary phase point in the two-dimensional kx-ky 
space which is given by 





 

k x  i k x k y k zx y z+ +
=0, 





 

k y  i k x k y k zx y z+ +
=0  (2.99) 

This is easily solvable to give the stationary 
phase point at 

kx0 = k 

x

r

 

, ky0 = k 

y

r

 

  (2.100) 

where r =
x y z2 2 2+ +  

. Eq. 2.97 or Eq. 
2.98 can be physically interpreted as expansions in a 
spectrum of plane waves. The physical interpretation 
of the stationary phase point, as expressed by Eq. 

2.100, is that only the plane wave whose k -vector 

 zyx kzkykxk ˆ+ˆ+ˆ=
 points from the source 

point to the observation point is important in 
evaluating the field at the observation point. By 
replacing the slowly varying part of the integrand in 
Eq. 2.98 with its value at the stationary phase point, 
getting: 

I1 ~ g(kx0,ky0) kz0 

dk dkx y 





e

k

i k x k y k z

z

x y z( + + )

, r 
 (2.101) 

Using Weyl identity, Eq. 2.101 can be evaluated 
in closed form to obtain the leading-order 
approximation to the integral as 

I1 ~ 2 i g(kx0, ky0) kz0 

e

r

ikr

,r  (2.102) 
where 

k k k k k z rz x y0
2

0
2

0
2    /

. 

Let us next consider a Sommerfeld-type integral 
of the form 

I2=

 dk k g kn    




 J kn (  ) eik zz
  (2.103) 

 
Where kz is defined following Eq. 2.96. When 

, using the large argument approximation for 
the Bessel function, notice that the integrand does not 
have a well-defined stationary phase point. To obtain 
an integrand with the form of Eq. 2.96, it is most 
appropriate to convert the above integral from a semi-
infinite integral to an infinite integral and replace the 
Bessel function with a Hankel function. This will lead 
to the use of the Sommerfeld identity given in Eq. 
2.96. 

Before proceeding any further, notice that Eq. 
2.103 is also obtained when writing Eq. 2.97 in terms 
of cylindrical coordinates by letting 

kx = k cos, ky = k sin, x = cos, y = sin  (2.104) 
Then Eq. 2.97 becomes 

I1=

  



 ,ˆ  
2

00

kgdkdk 


  e
ik ik zz  cos( ) 

  (2.105) 

where 
g

(k) = g(k cos k sin). 

Next, 
g

(k) can be expanded in Fourier series in 
the -variable as: 

g
(k)= 

 
 kge n

n

in ˆ
-=



   (2.106) 
Substituting back Eq. 2.106 into Eq. 2.105 and 

making use of the following integral identity for the 
Bessel function 

Jn(k)=

1

2
d  



0

2


 

/2
e

ik in in    cos  
 (2.107) 

Obtaining 

I1 = 

2  + /2

=-

  ein in

n 



   kgkdk n
ˆ 

0



 Jn(k) 

eik zz
             (2.108) 

Now identity each term in the series to be similar 
to Eq. 2.103. From Eq. 2.106, if we denote (kx,ky) by 
(k) in cylindrical coordinates, then the point (

 k kx y,
) can be denoted by (k) or (

k ). Because 
of this, deduce that 

ĝ
n(
k )= ein 

ĝ
n(k)  (2.109) 
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Hence the function gn(k) in Eq. 2.103 which is 

similar to 
ĝ

n(k) in general has the above property. 
Next, by using the identity for Bessel functions in 
terms of Hankel functions, 

i.e. Jn(x) = 
 1

2
1 2H x H xn n

( ) ( )( ) ( )
 

(Abramowitz and Stegun, 1986), writing Eq. 2.103 as 

I2 = 

 1
2

0

dk k g kn   



 

 H kn
( )1

  eik zz
 

+ 

 1
2

0

dk k g kn   



 

 H kn
( )2

  eik zz
(2.110) 

With the change of variables from k to 
k   for 

the second integral, the use of the property of the 
Hankel function that 

H n
(2)  x e i 

=  e  ( )( )in
nH x 1

[13], and the 
property for gn(k) given by Eq. 2.109, combining the 
two integrals in Eq. 2.110 into one integral as 

I2 = 

 1
2 dk k g kn   





 

 H kn
( )1

  eik zz

(2.111) 
The integrand in Eq. 2.111 is rapidly oscillating 

when  or z tends to  because 

 H n
(1) x  ~ 

2
x   e  /2- /4i x n  

  (2.112) 
when x   (Newman and Tulyathan, 1981). 

Next factorizing the integrand in Eq. 2.111 into two 
parts so that Sommerfeld identity can be used in Eq. 
2.96. Consequently, 

I2=

 1
2

1

0
1

dk g k
H k

H k
kn

n

z 









( )

( )
  

( )

( )
















 

 
k

k
H k k e

z
z

ik zz
0

1( )





   (2.113) 

In view of Eq. 2.112, the first factor in Eq. 2.113 
is slowly varying while the second factor is rapidly 
varying when r  (i.e. when the observation point 
is far from the field point). Since the rapidly varying 
part of the integrand is asymptotic to the phase factor 

  e
ik ik zz 

, the location the stationary phase point is 
given by 

 









k
i k k zz

k

 

0 = 0  (2.114) 
The solution of Eq. 2.114 is 

k0 =k sin, kz0 = k cos  (2.115) 
With  =  sin-1(r ,  as the angle of the 

observation point with respect to source point. Now 
evaluating the slowly varying part of the integrand at 
the stationary point and use Sommerfeld identity to 
evaluate the rapidly varying part in closed form. 

As a result 

I2~

 i g k
H k

H k
kn

n

z 
( )

( )







0

0

0

1

0
1 0

( )

( )
e

r

ikr

 
, 

r    
 (2.116) 

When r   , using the large argument 
approximation of the Hankel function to simplify 

 
 







kH

kH n

)1(
0

)1(

 ~ e
in /2

, 
k  

  (2.117) 
Hence Eq. 2.116 is simplified to 

I2 ~ 
 ( ) i g k kn

n z
1

00
   

e

r

ikr

 
, r  

(2.118) 
 

2.8 Far-Field Expressions 
The results obtained in section Eq.2.63 are 

applied to find the far-field expressions. 
The z- component of the electric field in the 

upper half-space given by Eq. 2.77, can be written as 

E0z( r ) = 

i


0

4

dx dy J x y I
S

x E   


   ( , )   cos

 
(2.119) 
where 

IE = 

 dk k g kE   2

0




eik zz0  J k1    

(2.120) 
which can be put in the form 

IE=

 1
2 dk k g kE   2






eik zz0

 H k1
1( )

   
         (2.121) 

Using the large argument approximation for the 
Hankel function, the rapidly varying part of the 
integrand in Eq. 2.121 is asymptotic to the phase 

factor e
ik ik zz     0

. Thus, the location of the 
stationary phase point is given by 
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 


 






k
i k k zz

k

    0

0 = 0  (2.122) 
The solution is given by 

k0  = k0 sin, 
k0z0 = k0 

cos

(2.123) 

with  =  sin-1

 



 

 r
, (see Figure2.4). 

 

Figure 2.4, Relation between 


 and   
 
This leads to the following expression for IE 

IE ~ 
  i g k kE    0 0

e k
e

r
i

z

ik r


 

 





/2    

0

0 0

, 
r         (2.124) 

But 

  rrr ˆ~
, 

thus 

IE ~ k0
2 sin cos gE(

k0 ) e
ik  0 

e

r

ik r0

, r    
(2.125) 
Thus, 

E0z( r )~

i


0

4  k0
2 sin cos cos gE(

k0 ) 

e

r

ik r0

 

       ( , )dx dy J x yx

e ik  0 
  (2.126) 

Following similar procedure, getting the 
magnetic field in the upper half-space as r  
the following expression 

H0z( r ) ~ 

i

4  k0
2 sin cos sin gH(

k0 ) 

e

r

ik r0

 

       ( , )dx dy J x yx

e ik  0 
  (2.127) 

Thus, using Eq. 2.62 - Eq.2.65, the field patterns 
are readily obtained. 

 
3. Results 

Numerical results of the problem of a microstrip 
dipole embedded in a substrate-superstrate structure 
are presented. Numerical computations investigating 
the effects of the thickness and the anisotropy of the 
layers on the dipole current distribution and input 
impedance are performed. Also, the radiation patterns 
of the microstrip dipole printed in the considered 
substrate-superstrate structures are calculated. 

The numerical computations for the problem 
under consideration using the dyadic Green’s function 
(DGF) formulation where the moment method (MM) 
is applied in spectral domain (SD). A microstrip 

dipole of length L = 0.5 
 0  and width W = 0.0001

 0

, on the top of an isotropic substrate of permittivity 

 1 0325 .
 and thickness 

h1 001016 . 
. 

 
3.1 Printed Dipole on a Single Layer 

 
Figure 3.1. Magnitude of current distribution of a 
printed microstrip dipole on a single layer using delta 
gap generator with W/2 = 0.0001l0 , L= 0.5 l0, h =0.08l0. 

 
Figures 3.1show, the magnitude of the current 

distribution of a printed microstrip dipole on a single 
layer. The figures indicate that the current distribution 
undergoes significant changes if the isotropic substrate 

with 
  6 0I

 is substituted by an anisotropic 

substrate of 
    6 10 20 0, .z , The magnitude 

of the current distribution of the dipole on the 
anisotropic substrate exhibits a rise at the feeding 
point. Figures 3.2(a) and 3.2(b) show, respectively, the 
real and imaginary parts of the input impedance. It is 
clear that the effect of the positive anisotropy 
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( )



z  1

 of the substrate is to decrease the resonant 
length relative to the isotropic substrate. Also, the 
impedance level of the printed dipole on the 
anisotropic substrate is lower than the dipole on an 
isotropic substrate. Finally, Figures 3.3(a) and 3.3(b) 

show, respectively, the E - and H - radiation patterns 
of the printed dipole. For this considered case, there is 
no significant differences between the isotropic and 

anisotropic substrates. However, the H - plane 
radiation plot shows a slightly lower directivity for the 
printed dipole on the anisotropic substrate. 

 
Figure 3.2(a), Real part of the input impedance of a 
printed microstrip dipole on a single layer using delta 
gap generator with W/2 = 0.0001l0, h =0.08l0 

 
Figure 3.2(b), Imaginary part of the input impedance 
of a printed microstrip dipole on a single layer using 
delta gap generator with W/2 = 0.0001l0, h =0.08l0. 

 
Figure 3.3(a), E-plane radiation plot of a printed 
microstrip dipole on a single layer using delta gap 
generator with W/2 = 0.0001l0, h =0.08l0. 

 
Figure 3.3(b), H-plane radiation plot of a printed 
microstrip dipole on a single layer using delta gap 
generator with W/2 = 0.0001l0, h =0.08l0. 

 
3.2 Effect of the superstrate thickness 

The effect of the superstrate (cover-layer) 
thickness is investigated for a printed dipole in a 
substrate-superstrate configuration. The cover-layer is 
assumed to be isotropic with permittivity

 1 0325 . I
,
 1 0 I

 
while the substrate is assumed to be uniaxially 

anisotropic with 

 2 0

6 0 0

0 6 0

0 0 10 2

















.

 

 1 0 I
 

The substrate thickness 
h2 0008 . 

. The 

dipole of length L =0.5
 0  and width W = 0.0001

 0  
is fed at the center. The effects of the dielectric cover 
thickness on the dipole current distribution, input 
impedance, and radiation patterns are determined. The 
results are shown in Figures 3.4-3.6, and the following 
comments are pertinent: 1). The real part of the 
current distribution, shown in Fig. 3.4(a) is more 
influenced by the dielectric cover thickness near the 
center of the dipole. The effect of the thickness of the 
dielectric cover is negligible when it is increased from 

h1 00 05 . 
 to 

h1 0011 . 
. 2). The imaginary 

part of the current distribution, given in Fig. 3.4(b), 
also shows some what larger influence of the 
dielectric cover thickness near the center of the dipole. 
In addition, it is noted that increasing h1, the current 
level is decreased at the center of the dipole. 3). The 
magnitude of the current distribution, given in Fig. 
3.4(c), also shows that the current level is decreased at 
the center as the thickness of the cover layer increases, 
however this increase is small in the range of h1 values 
considered. The above mentioned effects of the cover 
dielectric layer were also observed for printed dipoles 
on isotropic substrates (Newman, 1978). Figures 
3.5(a) and 3.5(b) show curves for the real and 
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imaginary parts of the input impedance at the center of 
the dipole, respectively, for various values of the 
dielectric cover thickness h1. The decrease of the 
dipole’s resonant length for any structure with cover-
layer relative to the case with the cover layer thickness 
h1 = 0 is evident from an inspection of the imaginary 
part of the input impedance given in Fig. 3.5(b). Also 
the resonant frequency decreases as the cover 

thickness increases from h1 = 0 to h1 = 0.05
 0 , 

however it increases for values of h1 larger than 0.05

 0 . This effect has also been observed for microstrip 
dipoles printed in isotropic structures (Uzunoglu et al., 
1979). Figures 3.6 show the E- plane radiation 
patterns for different values of the cover layer 
thickness. 

 
Figure 3.4(a), Real part of current distribution of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0, L= 0.5 l0, h2 =0.08l0, e1 =3.25 e0, 

I, e2= 6 e0, ez2 = 10.2 e0 

 
Figure 3.4(b), Imaginary part of current distribution of 
a printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0, L= 0.5 l0, h2 =0.08l0, e1 =3.25, e0 

I, e2= 6 e0, ez2 = 10.2 e0 

 
Figure 3.3(c), Magnitude of the current distribution of 
a printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0,, L= 0.5 l0, h2 = 0.08l0, e1 =3.25 e0 

I, e2= 6 e0, ez2 = 10.2 e0 

 
Figure 3.5(a), Real part of the input impedance of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0  , h2 = 0.08 l0,  e1 =3.25 
e0  I, e2 = 6 e0, ez2 = 10.2 e0 

 
Figure 3.5(b), Imaginary part of the input impedance 
of a printed microstrip dipole using delta gap 
generator with W/2 = 0.0001l0, h2 = 0.08l0,  e1 =3.25 
e0  I, e2 = 6 e0, ez2 = 10.2 e0 

 
Figure 3.6, E-plane radiation plot of a printed 
microstrip dipole using delta gap generator with W/2 = 
0.0001l0  , h2 = 0.08 l0,  e1 =3.25 e0 

 I, e2 = 6 e0, ez2 = 10.2 e0 
 

3.3  Effect of substrate anisotropy 
The effect of substrate anisotropy on the 

performance of a printed microstrip in substrate-
superstrate structure is presented her. The analysis 
presented in this research is general enough to treat 

both positive uniaxial (
 z x

) and negative 
uniaxial. 

(
 z x

) cases, as well as wide range of 
anisotropy ratio 

(AR = 




z

x ), most substrates in common use are 
negative uniaxial. As a practical example, is the 
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Epsilam-10 material having 

   x z 130 1020 0. , .
. 

Figure. 3.7(a) shows the real part of the dipole’s 
current distribution for a printed dipole on an 
anisotropic substrate and having isotropic superstrate. 
Three different substrates are considered; where 








z

x

z

x

  
10 2

6
17 1

.
. ,

 (isotropic case), and 




z

x

 
10 2

13
0 7846

.
.

. The figure shows that the 
anisotropy ratio has great influence on the real part of 
the current distribution. Substrates with negative 
uniaxial material has the largest variation of the real 
part of the current distribution, while substrates with 
positive uniaxial material has the smallest variation. 
Figure 3.7(b) shows that the imaginary part of the 
dipole’s current distribution does not depend too much 
on the anisotropy ratio. However, the current level is 
decreased for the case of positive uniaxial material. 

Fig. 3.7(c) shows that the magnitude of the 
dipole’s current distribution is the highest for 
substrates with negative uniaxial material. Figures 
3.8(a) and 3.8(b) show the real and imaginary parts, 
respectively, of the input impedance of the printed 
microstrip dipole, as function of the electrical length 
of the dipole for different values of the anisotropy 
ratios. It is observed that as the anisotropy ratio (AR) 
decreases, the resonant length of the dipole decreases. 
Also, the magnitude of the real part of the input 
impedance decreases with the decrease of the AR. The 
figures also show that the shift in resonant frequency 
is about equal to the bandwidth of the microstrip 
dipole. This implies that a dipole designed for a 
specific operating frequency may actually resonant 
outside the dipole bandwidth if the substrate 
anisotropy is neglected (not considered). Similar 
conclusion was obtained (Mosig and Gardiol, 1979), 
for microstrip antennas on single anisotropic substrate. 
Figures 3.11(a) and 3.11(b) show, respectively, the E- 
and H- plane radiation patterns for three cases: 

isotropic substrate with 
  2 2 0102 z .

, 
positive uniaxial substrate with 

   2 0 2 06 102 , .z , and negative uniaxial 

substrate with 
   2 0 2 013 102 , .z . In these 

three cases the superstrate is assumed to be isotropic. 
The figures show that for the positive uniaxial 
substrate, the E-plane radiation pattern has higher 
directivity than the isotropic case while the H- plane 
radiation pattern has lower directivity. The radiation 
patterns of the printed circuit dipole on a negative 
uniaxial substrate exhibits opposite property (E-plane 

is less directive while the H- plane is more directive 
than the isotropic case). 

 
Figure 3.7(a), Real part of current distribution of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0 , L= 0.5 l0, h1 = h2 =
 0.08 l0,e1 =3.25 e0 I,ez2 = 10.2 e0 

 
Figure 3.7(b), Imaginary part of current distribution of 
a printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0, L= 0.5 l0, h1 = h2 = 0.08 l0, e1 
=3.25 e0  I, ez2 = 10.2 e0 

 
Figure 3.7(c), Magnitude of the current distribution of 
a printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0  , L= 0.5 l0, h1 = h2 =
 008 l0,  e1 =3.25 e0  I, ez2 = 10.2 e0 

 
3.4  Effect of cover-layer anisotropy 

Figures. 3.10(a)- 3.10(c) show, respectively, 
the real part, imaginary part, and the magnitude of the 
current distribution of a printed dipole in a two-layer 
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microstrip structure having isotropic substrate and 
anisotropic superstrate. It is observed that the behavior 
of the current distribution is almost the same as the 
previous case where the substrate is anisotropic with 
isotropic cover-layer. However, the variation of the 
imaginary part of the current distribution is more 
pronounced (Figures 3.11(a) and3.11(b) show, 
respectively, the real and imaginary parts of the 
dipole’s input impedance. The data show similar 
behavior to that observed in the previous case. Here, it 
is also observed that the resonant length of the dipole 
decreases with decrease of the anisotropy ratio. 
Figures 3.12(a) and 3.12(b) show, respectively, the E- 
and H- plane radiation patterns as function of the AR 
of the superstrate where the substrate is isotropic 
dipole. Observe the singularly in the dipole current at 
the probe location. Figure 3.14 shows the real and 
imaginary parts of the input impedance. Since the 
problem is formulated using an idealized probe feed 
which does not account to the probe self reactance, a 
self inductive reactance term 

X k h k Rp
e 60 0 2 2ln( )

 is added to the result as a 
correction factor (Dernerydm, 1977). Finally, Figure 
3.15 shows the radiation pattern for this case. 

 
Figure 3.8(a), Real part of the input impedance of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0,  h1 = h2 = 0.08 l0, e1 =3.25 
e0  I, ez2 = 10.2 e0 

 
Figure 3.8(b), Imaginary part of the input impedance 
of a printed microstrip dipole using delta gap 
generator with W/2 = 0.0001l0,  h1 = h2 = 0.08 l0, 
e1 =3.25 e0  I, ez2 = 10.2 e0 

 
Figure 3.9(a), E-Plane radiation plot of a printed 
microstrip dipole using delta gap generator with W/2 = 
0.0001l0  , h1 = h2 = 0.08l0,  e1 =3.25 
e0  I, ez2 = 10.2 e0 

 
Figure 3.9(b), H-Plane radiation plot of a printed 
microstrip dipole using delta gap generator with W/2 = 
0.0001l0  , h1 = h2 = 0.08l0,  e1 =3.25 
e0  I, ez2 = 10.2 e0 

 
Figure 3.10(a), Real part of current distribution of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0  , L= 0.5 l0, h1 = h2 =
 0.08l0,  e2 =3.25 e0  I, ez1 = 10.2 e0 

 
Figure 3.10(b), Imaginary part of current distribution 
of a printed microstrip dipole using delta gap 
generator with W/2 = 0.0001l0, L= 0.5 l0, h1 = h2 =
 0.08l0,  e2 =3.25 e0  I, ez1 = 10.2 e0 
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Figure 3.10(c), Magnitude of the current distribution 
of a printed microstrip dipole using delta gap 
generator with W/2 = 0.0001l0, L= 0.5 l0, h1 = h2 =
 0.08l0,  e2 =3.25 e0  I, ez1 = 10.2 e0 

 
Figure 3.11(a), Real part of input impedance of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0  , h1 = h2 = 0.08 l0, 
 e2 =3.25 e0  I, ez1 = 10.2 e0 

 
Figure 3.11(b), Imaginary part of input impedance of a 
printed microstrip dipole using delta gap generator 
with W/2 = 0.0001l0  , h1 = h2 = 0.08 l0, 
 e2 =3.25 e0  I, ez1 = 10.2 e0 

 

 
Figure 6.12(a), E-Plane radiation plot of a printed 
microstrip dipole using delta gap model with W/2 = 
0.0001l0  , h1 = h2 = 0.08 l0,  e2 =3.25 
e0  I, ez1 = 10.2 e0 

 
Figure 6.12(b), H-Plane radiation plot of a printed 
microstrip dipole using delta gap model with W/2 = 
0.0001l0  , h1 = h2 = 0.08 l0,  e2 =3.25 
e0  I, ez1 = 10.2 e0 

 
3.5 Probe-fed printed circuit dipole 

Figure 3.13 shows the real and imaginary part of 
the current distribution of a probe-fed microstrip  

 
Figure 3.13. Current distribution of a printed 
microstrip dipole for probe excitation with radius 
R=0.0004l0, W/2 = 0.0008l0, L=0.25 l0, h 1 = h2 

=0.08l0, e1 =3.25 e0, I, e2 = 13 e0, ez1 = 10.2 e0, x0 

=0.239833l0 

 
Figure 3.14, Input impedance of a printed microstrip 
dipole for probe excitation with radius R=0.0004l0, 

W/2 = 0.0008l0  , h 1 = h2 =
 0.08l0, e1 =3.25 e0  I, e2 = 13 e0, ez1 = 
10.2 e0, x0 =0.239833l0 

 

 
Figure 3.15, E and H Planes radiation plot of a 
printed microstrip dipole for probe excitation with 
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R=0.0004l0 W/2 = 0.0008l0, h1 = h2 = 0.08 l0, Lr 
= 0.175 l0, e1 =3.25 e0  I, e2 =13e0, e z2 = 
10.2 e0, x0 = 0.239833l0 

 
3.6  Farfield Directivities of one Printed Dipole 
on Two-Layer Substrates 

A two-layer Substrates for a printed dipole with 
an anisotropic substrate was considered now. The 
printed dipole was placed two in layers substrates, 
with thickness were set ℎ� = 01016 ��  and ℎ� =
0.08 ��.(See Table 1). 

 
Table 1. Farfield Directivities of Printed microstrip 
patches placed in different Layers. 

 
Phi Gain 
dBi 

Phi in 
degree 

Theta Gain 
dBi 

Theta in 
degree 

1 Layer 1 dipole (2.3) 2.3 90 4.9 81 
2 Layer 1 dipole (2.3) 0.6 30 1.8 102 
2 Layer 1 dipole (6,6,10.2) 4.7 0 4.3 294 
2 Layer 1 dipole 
(10.2,10.2,10.2) 

4.8 0 1.4 196.7 

2 Layer 1 dipole 
(13,13,10.2) 

4.7 40 6.9 233 

2 Layer 2 dipole (2.3) 0.8 4 5.1 252 
2 Layer 2 dipole (6,6,10.2) 5.7 0 4.1 250 
2 Layer 2 dipole 
(10.2,10.2,10.2) 

5.2 0 1 259 

2 Layer 2 dipole 
(13,13,10.2) 

4.7 37 6.6 306 

3.6.1 For isotropic case 
Where �� = �� =  �� =  2.3 ��.  The main lobe 

magnitude for Phi =90 was 0.6 dB with 30 degree 
main lobe direction. But the main lobe magnitude for 
Theta =90 was 1.8 dB with 102 degree in main lobe 
direction. 

 
Figure 3.16, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 
Figure 3.17, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 
Figure 3.18, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 1 Patch) with patch 
Length L = 0.6 λ0, Width W=0.0004 λ0, Substrate 
Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 
3.6.2 For anisotropic case 

Where �� = ��� =  6 �� ��� �� = 10.2 �� . The 
main lobe magnitude for Phi =90 was 4.7 dB with 0 
degree main lobe direction. But the main lobe 
magnitude for Theta =90 was 4.3 dB with 294 degree 
in main lobe direction. 

 
Figure 3.19, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of an anisotropic substrate (2 Layers 
– One Patch) with Length L = 0.6 λ0, Width 
W=0.0004 λ0, Substrate Thickness h10.1016 λ0 and ε1 
=3.25 ε0, εx = εy = 6 ε0, εz= 10.2 ε0 

 

 
Figure 3.20, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a anisotropic substrate (2 Layers – 
1 Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 6 ε0, εz= 10.2 ε0 
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Figure 3.21, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 1 Patch) with patch 
Length L = 0.6 λ0, Width W=0.0004 λ0, Substrate 
Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = εy = 6 ε0, 
εz= 10.2 ε0 

 
3.6.3 For isotropic case 

Where �� = ��� =  �� =  10.2 ��. The main lobe 
magnitude for Phi =90 was 4.8 dB with 0 degree main 
lobe direction. But the main lobe magnitude for Theta 
=90 was 1.4 dB with 196.7 degree in main lobe 
direction. 

 
Figure 3.22, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =10.2 ε0 

 

 
Figure 3.23, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =10.2 ε0 

 
Figure 3.24, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 1 Patch) with patch 
Length L = 0.6 λ0,Width W=0.0004 λ0, Substrate 
Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0 

 
Figure 3.25, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 13 ε0, εz= 10.2 ε0 

 
Figure 3.26, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 1 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 13 ε0, εz= 10.2 ε0 

 
Figure 3.27, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 1 Patch) with patch 
Length L = 0.6 λ0,Width W=0.0004 λ0, Substrate 
Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0 
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3.6.4 For anisotropic case 
Where �� = ��� =  13 �� ��� �� = 10.2 �� . The 

main lobe magnitude for Phi =90 was 4.7 dB with 40 
degree main lobe direction. But the main lobe 
magnitude for Theta =90 was 6.9 dB with 233 degree 
in main lobe direction. 

 
3.7 Farfield Directivities of Two Printed 
Dipoles on Two-Layer Substrates 

A two-layer Substrats for Two printed dipoles 
with an anisotropic superstrate was considered nest. 
The printed dipole in Fig. 1 was placed two layers 
substrats, with thickness were set ℎ� = 01016 �� and 
ℎ� = 0.08 ��. See Table 1. 

 
3.7.1  For isotropic case 

Where �� = �� =  2.3 ��.  The main lobe 
magnitude for Phi =90 was 0.8 dB with 4 degree main 
lobe direction. But the main lobe magnitude for Theta 
=90 was 5.1 dB with 252 degree in main lobe 
direction. 

 
Figure 3.28, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 

 
Figure 3.29, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 
Figure 3.30, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 2 Patches) with 
patch Length L = 0.6 λ0,Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =2.3 ε0 

 
Figure 3.31, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 6 ε0, εz= 10.2 ε0 

 
Figure 3.32, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx 
= εy = 6 ε0, εz= 10.2 ε0 

 
3.7.2 For anisotropic case 

Where �� = ��� =  6 �� ��� �� = 10.2 �� . The 
main lobe magnitude for Phi =90 was 5.7 dB with 0 
degree main lobe direction. But the main lobe 
magnitude for Theta =90 was 4.1 dB with 250 degree 
in main lobe direction. 
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Figure 3.33, Printed microstrip patch placed on the top 
of a anisotropic substrate (2 Layers – 2 Patches) with 
patch Length L = 0.6 λ0,Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 6 ε0, εz= 10.2 ε0 

 

 
Figure 3.34, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =10.2 ε0 

 

 
Figure 3.35, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =10.2 ε0 

 

 
Figure 3.36, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 2 Patches) with 
patch Length L = 0.6 λ0,Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =10.2 ε0 

 
3.7.3 For anisotropic case 

Where �� = ��� =  �� =  10.2 ��. The main lobe 
magnitude for Phi =90 was 5.2 dB with 0 degree main 
lobe direction. But the main lobe magnitude for Theta 
=90 was 1 dB with 259 degree in main lobe direction. 

 
3.7.4 For anisotropic case 

Where �� = ��� =  13 �� ��� �� = 10.2 �� . The 
main lobe magnitude for Phi =90 was 4.7 dB with 37 
degree main lobe direction. But the main lobe 
magnitude for Theta =90 was 6.6 dB with 306 degree 
in main lobe direction 

 
Figure 3.37, Farfield Directivity (φ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patch) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 13 ε0, εz= 10.2 ε0 

 

3.8 Single-Element Antenna Design and 
Improved Single-Element Antenna Design by using 
anisotropic layer 

The design parameters for the antenna are 
detailed below: 

 L= 10.40 mm(Antenna length) 
 W= 25.4 mm (Antenna Width) 
 H= 1.48 mm (Substrate Height) 
 ∈�= 4.3 (Permittivity of FR4) 
 Mt=.038 mm (Metal Thickness) 
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Figure 3.38, Farfield Directivity (ɵ = 90o) of Patch 
placed on the top of a isotropic substrate (2 Layers – 2 
Patches) with Length L = 0.6 λ0, Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 13 ε0, εz= 10.2 ε0 

 
Figure 3.38, Printed microstrip patch placed on the top 
of a isotropic substrate (2 Layers – 2 Patches) with 
patch Length L = 0.6 λ0,Width W=0.0004 λ0, 
Substrate Thickness h1= 0.1016 λ0 and ε1 =3.25 ε0, εx = 
εy = 13 ε0, εz= 10.2 ε0 

 
Figure 3.39 The patch antenna 

 
The farfield realized gain plots is within 

acceptable range to deem the antenna an effective and 
efficient radiator in the ISM band. 

 
Figure 3.40. Farfield realized gain plot for patch 
antenna 

 
The Improved design (1) parameters for the 

antenna are detailed below: 
For layer 1 
 L1= 10.40 mm(Antenna length) 
 W1= 25.4 mm (Antenna Width) 
 H1= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (6,6,10.2) 

 Mt=.038 mm (Metal Thickness) 
For layer 2 
 L2= 10.40 mm(Antenna length) 
 W2= 25.4 mm (Antenna Width) 
 H2= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (6,6,10.2) 

 Mt=.038 mm (Metal Thickness) 

 
Figure 3.41 Farfield realized gain plot for patch 
antenna (∈�(�,�,�)= (6,6,10.2)) 
 

The Improved design (2) parameters for the 
antenna are detailed below: 

For layer 1 
 L1= 10.40 mm(Antenna length) 
 W1= 25.4 mm (Antenna Width) 
 H1= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (10.2,10.2,10.2) 

 Mt=.038 mm (Metal Thickness) 
For layer 2 
 L2= 10.40 mm(Antenna length) 
 W2= 25.4 mm (Antenna Width) 
 H2= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (10.2,10.2,10.2) 

 Mt=.038 mm (Metal Thickness) 

 
Figure 3.42 Farfield realized gain plot for patch 
antenna (∈�(�,�,�)= (10.2,10.2,10.2)) 

 
The Improved design (3) parameters for the 

antenna are detailed below: 
For layer 1 
 L1= 10.40 mm(Antenna length) 
 W1= 25.4 mm (Antenna Width) 
 H1= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (13,13,10.2) 

 Mt=.038 mm (Metal Thickness) 
For layer 2 
 L2= 10.40 mm(Antenna length) 
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 W2= 25.4 mm (Antenna Width) 
 H2= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (13,13,10.2) 

 Mt=.038 mm (Metal Thickness) 

 
Figure 3.43 Farfield realized gain plot for patch 
antenna (∈�(�,�,�)= (13,13,10.2)) 

 
The Improved design (4) parameters for the 

antenna are detailed below: 
For layer 1 
 L1= 10.40 mm(Antenna length) 
 W1= 25.4 mm (Antenna Width) 
 H1= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (13,13,10.2) 

 Mt=.038 mm (Metal Thickness) 
For layer 2 
 L2= 10.40 mm(Antenna length) 
 W2= 25.4 mm (Antenna Width) 
 H2= 1.48 mm (Substrate Height) 
 ∈�(�,�,�)= (18,18,10.2) 

 Mt=.038 mm (Metal Thickness) 

 
Figure 4.28 Farfield realized gain plot for patch 
antenna (∈�(�,�,�)= (18,18,10.2)) 
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