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Abstract: The aim of this paper is to illustrate a new method that is suggested in order to validate the diagnosis of 

pulmonary diseases, in infants and children, within high accuracy. A very large database is constructed containing 

500 adventitious respiratory sounds of 3 different categories, namely wheezes, stridor and rattle, in addition to 100 

normal breath sounds. Sounds were collected from infants and young children till the age of 12 years old. All 

samples were acquired from AUCH-Egypt. Dynamic Time Warping using Short Time Fourier Transform is 

employed in the proposed technique, and the validation results were found to be over 85%. 
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1. Introduction 
Respiratory noises are audible sounds associated 

with breathing that can provide important diagnostic 

information on the site and nature of respiratory 

diseases.  As the parents of infants and young children 

will attest, ‘‘noisy breathing’’ is extremely common in 

this age group [1]. 

Whereas a multitude of different noises have 

been described in the literature, the most frequently 

used terms are “wheeze”, “rattle”, “stridor”, “snore”  

and “nasal snuffle/sniffle” [2]. 

Wheeze is a high-pitched, continuous and 

prolonged musical noise, often associated with 

prolonged expiration. While predominantly heard in 

the expiratory phase, wheeze can occur throughout the 

respiratory cycle. Wheeze originates from the 

intrathoracic airways, and can be produced by 

pathology either in the large, central airways, or the 

small peripheral airways [3]. 

When a structural lesion obstructs airflow in the 

large airways (intrathoracic trachea and major 

bronchi), the resultant noise is a result of turbulent 

airflow at the point of narrowing. Thus, the wheeze 

may be quite localized on auscultation, and is termed 

“monophonic” [4] when it contains a single frequency 

[1]. 

In the presence of extensive small airway 

narrowing, the resultant high pleural pressure can 

cause compression of the large airways during 

expiration, producing generalized expiratory 

wheezing. The very young are particularly prone to 

this, because their large airways are relatively soft and 

more prone to collapse. Because the specific site of 

the large airway obstruction is variable, the noise then 

contains several frequencies and is termed 

“polyphonic” [4]. 

Rattle is a coarse irregular sound as a result of 

excessive secretions in the large airways, which are 

presumably moving with normal respiration. Rattles 

may be heard in either, or both, inspiration and 

expiration [5]. 

Stridor is a harsh vibratory sound of variable 

pitch predominantly inspiratory, and indicates 

obstruction to airflow in the upper airways down to 

the level of the thoracic inlet and mainly in the larynx. 

However stridor can occur in both phases of 

respiration, particularly when the obstruction is severe 

[6, 7]. 

Snoring is an inspiratory noise of irregular 

quality produced by increase in the resistance to 

airflow through the upper airways, predominantly in 

the region of the nasopharynx and oropharynx. 

Although snoring is generally more obvious in 

inspiration, the noise is frequently audible throughout 

the respiratory cycle [8]. 

The terms ‘‘snuffles’’ and ‘‘sniffles’’ are used to 

describe respiratory noises emanating from the nasal 

passages. Snuffle has also been used to describe any 

discharge from the nasal passages, and is sometimes 

used to describe a minor viral upper respiratory tract 

infection.  These nasal noises are frequently audible in 

both inspiration and expiration, and often associated 

with visible secretions from the nares [9]. 

Grunt is an expiratory sound that is classically 

heard in the presence of extensive alveolar pathology 

and is considered a sign of serious disease [10]. 
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These noises originate from specific anatomic 

sites within the respiratory system. Thus, correctly 

identifying these noises is of major clinical relevance, 

in terms of localizing both the site of obstruction, and 

the most likely underlying cause [11]. However 

distinguishing these noises from each other may be 

very difficult, even when heard by different clinicians 

[12]. 

Many studies were done for getting clinical 

benefit of respiratory noises like validation of 

respiratory questionnaire [13, 14] or use of videos 

[15], and also acoustic analysis [16]. Adult studies 

have highlighted problems with both accuracy and 

reliability of respiratory signs using a stethoscope 

[16]. 

Given the increased difficulty of examining 

young, uncooperative children, the assumption is that 

errors will be substantially greater in pediatric practice 

[17]. 

In an attempt to improve the utility of respiratory 

noises, computerized acoustic analysis has been 

evaluated.  Most studies have been in adults and the 

published data in children are limited [16]. A small 

study of infants suggested a potential role for acoustic 

analysis. In particular, the ability of acoustic analysis 

to clearly distinguish wheeze from rattle [16]. 

Unfortunately, in a more recent study acoustic 

analysis proved to be disappointing. This study 

assessed the validity and reliability of acoustic 

analysis of respiratory noises in infants younger than 

18 months [18]. 

All above studies were performed on a very 

limited number of infants. In this paper, a database of 

500 adventitious lung sounds and 100 normal breath 

sounds were recorded and studied. All sounds were 

collected from Alexandria University Children 

Hospital (AUCH), Egypt. A modern stethoscope 

having the capability to pair with computers 

employing Bluetooth technology was utilized. The 

aim of the study was to acoustically analyze the 

recorded signals in order to achieve the following. 

 Evaluate the clinical significance of different 

respiratory noises. 

 Objectively characterize the acoustic 

properties of the most common audible respiratory 

noises of early childhood namely stridor, wheeze, and 

rattles. 

 Establish a reliable categorized database of 

different respiratory noises used for future validation 

of diagnosed noises, and training on sounds. 

The remaining part of the paper is organized as 

follows. Materials and Methods are discussed in 

section 2. Results and discussions are detailed in 

section 3. The paper is concluded in section 4, along 

with suggestions for some future extensions of the 

work. 

2. Material and Methods 

Study Design 
The purpose of this study is to test a new 

proposed technique, that is used to validate the 

primary diagnosis of pulmonary diseases by 

pediatricians, within high range of accuracy for infants 

and children of ages from 0 to12 years old. This 

technique depends on Dynamic Time Warping using 

Short Time Fourier Transform. 

In this paper, the term infant will point to the 

group of subjects whose ages range from zero to 11 

months, while the term children will point to those 

whose ages range from 1 year to 12 years. 

All subjects were recruited from the Emergency 

Department, outpatient clinics, and inpatient wards of 

El-Shatby Alexandria University Children’s Hospital 

(AUCH), Egypt. All selected subjects were recorded 

after obtaining their consent. 

The study emphasizes on wheezes, stridor and 

rattle subjects. Only infants and children with clear 

auscultatory characteristics of wheeze, stridor or 

coarse rattling sounds will be selected. Infants and 

children with any other lung sounds, or a combination 

of sounds will be excluded from the study. 

One hundred apparently normal infants and 

children of matched age and sex with normal quiet 

breath were recruited as a control group. They could 

be used as a reference for offline validation of non-

normal sounds and for training purposes as mentioned 

below. 

Ethical approval for the study was obtained from 

Ethical Committee of Alexandria Faculty of Medicine. 

Study Dataset 
A large dataset of adventitious respiratory 

noises was acquired from 500 patients whose ages 

range from zero to 12 years old and 100 sound signals 

of normal breath sound, all obtained from AUCH, as 

mentioned above. The overall statistics of the acquired 

sound signals are illustrated in Table 1. 

A large library was established using those 

acquired sounds, and it was uploaded to a server that 

could be used for training purposes, and also could be 

used for future work in this field of computerized 

respiratory sound analysis. 

The main advantage of this dataset is that it’s 

collected from real data at the AUCH, and it studies 

the environment of infants and children in Alexandria, 

Egypt. 

In this work, monophonic wheezes sounds, in 

addition to some signals that were found to be very 

noisy, were excluded from the study. The monophonic 

sounds were excluded because their number was very 

few. Similar sounds were grouped together to form a 

reliable categorized database of sounds. Thus, the 

Database was divided into 4 diagnosed clusters; 

polyphonic wheezes, stridor, rattle and normal sounds. 

http://www.lifesciencesite.com/


 Life Science Journal 2015;12(3s)          http://www.lifesciencesite.com 

 

14 

Table 1 : Overall Statistics of Acquired Sound Signals 

 
Total No. of 

Signals 

Percentage of Total 

Sounds (%) 

Infants/Disease 

Type (%) 

Children/Disease 

Type (%) 

Wheezes 
Polyphonic 321 64.20% 59.81% 40.19% 

Monophonic 4 0.80% 50.00% 50.00% 

Stridor 98 19.60% 86.73% 13.27% 

Rattle 73 14.60% 87.67% 12.33% 

Noisy Signals 4 0.80% 

Total Sounds 500 100% 

 

Clinical Assessment 

All selected cases were subjected to the 

following. 

1. Thorough history taking stressing on onset, 

character, timing of respiratory noises. 

2. Clinical examination by 2 consultant 

clinicians stressing on. 

 Auscultation of the chest. 

 Detection of respiratory noises. 

3. Recording of respiratory noises using 

electronic stethoscope with Bluetooth technology. 

4. Final clinical diagnosis of the cases with 

respiratory noises is confirmed using various imaging 

procedures, flexible fiber-optic bronchoscopy, and/or 

other investigations according to the history and 

clinical findings, if required. 

To evaluate clinical significance of different 

respiratory noises, patients with each studied 

respiratory noise is categorized according to the 

underlying cause. 

Signal Acquisition 

 

 
Figure 1: 3M™ Littmann® M3200 paired to a 

Laptop (running Zargis StethAssist software) using 

Bluetooth technology 

 

Using the advanced technology available 

nowadays, the 3M™ LITTMANN
®
 Electronic 

Stethoscope M3200 [19] was used to record all the 

sounds and then paired to a PC (running Windows 7, 

Intel processor of Core i7 vPro/2.57 GHz, 8 GB of 

RAM) via Bluetooth® technology. Zargis 

StethAssist™ software [20] was used for pairing, and 

to export the sound signals to (.wav) files for the ease 

of use in processing. The environment is illustrated in 

Figure above. 

The LITTMANN® M3200 generates sound files 

having a sampling frequency of 4 KHz (4,000 

samples/sec.). 

Using MATLAB
®
 R2014a (from The 

Mathworks™), all the collected sounds were analyzed 

using Dynamic Time Warping algorithm by using 

their Short-time Fourier Transform (STFT) as features 

to calculate the similarity between all the sounds,  and 

that will be illustrated in the next section. 

Although this stethoscope features a technology 

of Ambient Noise Reduction, which cancels 85% of 

the background noise [19], yet the manual of the 

accompanied software (Zargis StethAssist™) stated 

clearly that the environment shouldn't be noisy, and 

should be as quiet as possible [21]. This was 

impractical with infants and children, in particular at 

the AUCH. The noises were evident in the 

LITTMANN® recordings, as depicted in the figures 

of the results section. Also heart beats sounds are 

heard sometimes. Thus de-noising, of the acquired 

sounds, was a must. This was done by employing 

filtering techniques which will be illustrated in the 

next section. 

The Proposed Sound Analysis Technique 

The proposed technique depends on Dynamic 

Time Warping (DTW) and Short-time Fourier 

Transform (STFT). This is in view of the below 

discussion. 

The function of the Dynamic Time Warping is to 

compare similarity between 2 signals depending on a 

quantity (a metric) which is calculated. Ideally, the 

quantity may tend to zero if the 2 signals are identical 

and large if the 2 signals are dissimilar. The 

comparison is conducted according to some features. 

Those features are defined as the characteristic and 

distinctive attributes that could identify the signal. 

Dynamic Time Warping is based on dynamic 

programming. It is a pattern matching algorithm with 

non-linear time normalization effect. It is found to be 

very useful in aligning two time sequences in order to 

measure the similarity between them using non-linear 

temporal alignment [22]. It has been used widely in 

the field of speech recognition. Respiratory noises are 

similar to speech patterns in having non-stationary 

characteristics and having inconsistency of frame 

length. In DTW algorithm, the fluctuation in time is 

http://www.lifesciencesite.com/


 Life Science Journal 2015;12(3s)          http://www.lifesciencesite.com 

 

15 

modeled approximately by a non-linear warping 

function with some carefully specified properties. 

Thus, DTW algorithm perfectly fits the problem of 

concern in processing and analyzing the respiratory 

noises signals. 

The concept of DTW was used in 2005 to 

recognize ECG changes in heart rhythm disturbances 

and it revealed very good results [23]. However, it 

was not used to date in computerized respiratory 

sound analysis. 

Short-time Fourier Transform (STFT) reflects 

the power distribution of the frequencies along 

different time slots. Thus, STFT coefficients of each 

respiratory noise sound signal were calculated to 

represent the features of each signal in the Dynamic 

Time Warping algorithm. Short-time Fourier 

Transform produce the spectrogram of the signal, 

which is a graph having two geometric dimensions: 

the horizontal axis represents time, the vertical axis is 

frequency; a third dimension indicating the amplitude 

of a particular frequency at a particular time .This can 

be illustrated as in Figure 2 below. 

The proposed technique is simplified in the 

following steps. 

 Signal acquisition using the Littmann M3200 

where the recorded sound signal is transferred to the 

processing computer via Bluetooth using Zargis 

StethAssist software. 

 The Zargis StethAssist software was then 

used to playback the signal in order to check the 

quality of the signal, and also to export the recorded 

sound signal into Wave (.wav) file. 

 

 
Figure 2: Spectrogram of a Sound Signal acquired 

Using the Littmann Stethoscope 

 

 The previous 2 steps were repeated through 

the whole experiment for all the subjects. 

 Using MATLAB, filtering was applied to all 

sounds in order to eliminate heart beats. Heart sounds 

range from 20 Hz to 100 Hz [1], but the lung sounds 

spectrum falls within 100 Hz. Therefore, high pass 

butterworth filters of 6
th

 order with cutoff frequency at 

80 Hz were employed [24].If the recorded sound was 

diagnosed either as stridor or rattle, it is passed 

through another low pass 6
th

 order butterworth filter 

with cutoff frequency 1000 Hz [25], or 600 Hz [16], 

respectively. Since wheezes spectrum range from 80 

Hz to 1600Hz [11] and sometimes up to 2500 Hz 

[1][26], no low pass filters were applied to wheezes 

sound samples. This is in view of the fact that the 

stethoscope maximum output frequency is 2,000 Hz. 

 Short-time Fourier Transform on each signal 

𝑠(𝑡)can be calculated using equation 1, as follows: 

𝐹𝑆𝑇𝐹𝑇(𝜏, 𝑓) = ∫ 𝑠(𝑡). ℎ∗(𝑡 − 𝜏) 𝑒−𝑗2𝜋𝑓𝑡  𝑑𝑡
∞

−∞
… 

(1), 

where 𝐹𝑆𝑇𝐹𝑇(𝜏, 𝑓)  and ℎ∗(𝑡 − 𝜏)  present the 

complex distribution function, and the conjugate of 

the spectral window used as a Time-Frequency kernel. 

The STFT was estimated [27], using 512-point 

Hamming windowed signal with 50% overlap and a 

discrete Fourier transform length of 2048 points. 

 The difference (distance), between the 

calculated features of each 2 signals, is measured 

using the cosine distance between these two signals 

given by equation 2, 

𝑐𝑜𝑠(𝜃) =  
𝐴.𝐵

‖𝐴‖‖𝐵‖
… (2). 

𝐴  ,  𝐵   are the two Spectrogram matrices of 

Signal 1 and Signal 2, respectively.  𝐶𝑜𝑠𝜃  is the 

measure of similarity (measured metric) between the 2 

signals and it is a matrix which is called the Distance 

matrix. 

 Next, DTW is applied using the dynamic 

programming to calculate the best path (minimal 

distance) between each two signals. 

 The total cost/distance between each 2 

sounds is calculated depending on the best path 

chosen by the DTW algorithm. 

The above steps are represented by the simplified 

flow chart depicted in Figure 3. 

Similarity Matrices Generation 

In this work, 4 clusters have been constructed, as 

mentioned above, from the previously acquired data. 

Those 4 clusters are polyphonic wheezes, stridor, 

rattle and normal sounds. 

For each cluster, a Similarity Matrix (SM) is 

generated [28], where both the rows and columns 

correspond to the same objects (sound signals), i.e. the 

first row and the first column corresponds to the first 

sound signal, and the second row and second column 

corresponds to the second sound signal, and so on…, 

thus, 4 Similarity Matrices are constructed. 

The data stored in a SM represent a collection of 

elements 𝑑(𝑖, 𝑗) . Each 𝑑(𝑖, 𝑗)  represents the total 

cost/distance between the 2 sound signals  𝑖 𝑎𝑛𝑑 𝑗  , 

http://www.lifesciencesite.com/
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respectively. The Similarity Matrix is an (n x n) 

symmetric matrix with zero diagonal elements as 

shown in equation 3. This is in view of the fact that 

the rows and columns correspond to the same objects, 

and the element(𝑖, 𝑖) represents the same sound signal. 

 
Figure 3: Flow Chart of the Proposed Technique 

 

[
 
 
 
 

0  d(2,1) d(1,3) … d(1, n)

d(2,1)  0 d(2,3) … ⋮
d(3,1)  d(3,2) 0 … ⋮

⋮  ⋮ ⋮ ⋮ ⋮
d(n, 1)  d(n, 2) … … 0 ]

 
 
 
 

 (3). 

 

For each SM, the following parameters were 

evaluated: 

1. parameter for each sound in the cluster which 

reflects the average similarity between this sound and 

all the other sounds within the cluster (P1); 

2. parameter for each sound in the cluster which 

reflects the difference between the average similarity 

between this sound and all the other sounds within the 

cluster (P2); 

3. parameter for the cluster which reflects the 

average similarity of all the sounds in the cluster (𝑃3); 

4. parameter for the cluster which reflects the 

difference between the average similarity of all the 

sounds in the cluster (3 above) and the average 

similarity of each specific sound within the cluster 

(𝑃4); 

5. parameter for each cluster which reflects the 

average of differences between the average 

similarities between each specific sound and all the 

other sounds within the cluster (𝑃5); 

6. finally, a parameter for each cluster, which 

reflects the difference between the average of 

differences between the average similarities between 

each specific sound and all the other sounds within the 

cluster (𝑃6). 

The Similarity Matrices, for the four clusters 

under study (wheeze, stridor, rattle and normal) along 

with the 6 evaluated parameters, are presented in 

appendix A. 

Any newly diagnosed sound is validated to fall 

within the pertinent cluster by calculating its 𝑃1 and 

showing that it falls within ( 𝑃3 ±  𝑃5 ) of the 

concerned cluster. This condition is presented by 

equation 4 

(𝑃3 − 𝑃5)𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≤ (𝑃1) ≤ (𝑃3 + 𝑃5)𝑐𝑙𝑢𝑠𝑡𝑒𝑟   … 

(4). 

However, if equation 4 is not satisfied for 

validating the diagnosed sound, an expert opinion is 

needed. 

 

3. Results and Discussion 

Observed Statistics 

It could be derived from Table 1, that in the 

environment of Alexandria, Egypt, infants represent 

68.20% of subjects exposed to pulmonary diseases. 

Also, it may be observed from Table 1, that 

polyphonic wheezes are the most spread amongst 

infants and children, and presented 64.2% of the 

collected samples. 

Results of de-noising the recorded sounds 

De-noising was a very important step due to the 

presence of excessive noise, and some heart beats 

traces in most of the recorded sounds. The effect of 

the de-noising process using high pass and low pass 

butterworth filters is evident by studying Figures 4 

through 7. 

Validation of diagnosed sounds 

The Similarity Matrices for all the 4 clusters 

wheezes, stridor, rattle and normal sounds were 

constructed for all the acquired signals. The 

Validation Parameters 𝑃3  and 𝑃5  for each cluster 

were calculated and are summarized as in Tables 2.1 

to 2.4. The accuracy of validation entry, in each table, 

represents the percentage of signals of sounds 

satisfying the condition of equation 4 for each cluster. 

It is worthwhile mentioning that the accuracy of 

validation for all cases should have been 100%. This 

is in view of the fact that the clusters are reliably 

diagnosed as mentioned above. This confirms the 

above statement that “if equation 4 is not satisfied for 

validating the diagnosed sound, an expert opinion is 

needed”.

http://www.lifesciencesite.com/
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Figure 4.1: Time Domain Plot of Polyphonic Wheeze 9 

(Un-filtered) 

 
Figure 4.2: Time Domain Plot of Polyphonic Wheeze 

9 (Filtered) 

 

 
Figure 4.3: Frequency Domain Plot of Polyphonic 

Wheeze 9 (Un-filtered) 

 
Figure 4.4: Frequency Domain Plot of Polyphonic 

Wheeze 9 (Filtered) 

 

 
Figure 5.1: Time Domain Plot of Stridor 25 (Un-

filtered) 

 
Figure 5.2: Time Domain Plot of Stridor 25 

(Filtered) 
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Figure 5.3: Frequency Domain Plot of Stridor 25 

(Un-filtered) 

 
Figure 5.4: Frequency Domain Plot of Stridor 25 

(Filtered) 

 

 
Figure 6.1: Time Domain Plot of Rattle 8 (Un-filtered) 

 
Figure 6.2: Time Domain Plot of Rattle 8 (Filtered) 

 

 
Figure 6.3: Frequency Domain Plot of Rattle 8 (Un-

filtered) 

 
Figure 6.4: Frequency Domain Plot of Rattle 8 

(Filtered) 

http://www.lifesciencesite.com/
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Figure 7.1: Time Domain Plot of Normal 27 (Un-

filtered) 

 
Figure 7.2: Time Domain Plot of Normal 27 

(Filtered) 

 
Figure 7.3: Frequency Domain Plot of Normal 27 

(Un-filtered) 

 
Figure 7.4: Frequency Domain Plot of Normal 27 

(Filtered) 

 

Close study of Tables 2.1 – 2.4 reveals, that 

categorization of the database by constructing two 

Similarity Matrices, one for infants and the other for 

children for each disease type, results in more accurate 

validation. 

Overall discussion of results 

It should be observed that the results reported in 

this paper are based on a large infants and children 

database acquired from a specific university hospital. 

This compares very favorably to all reported work 

which is based on much smaller sample of sounds 

[25,26,29,30] and most of them not acquired from a 

specific particular environment [31][32]. 

Therefore, this research lends itself very useful to 

the pediatric department at Alexandria University 

Children Hospital (AUCH), as it reflects real situation 

in Alexandria, Egypt. It may be used as an e-learning 

and e-diagnosis aid. 

 

Table 2.1: Accuracy of Validation Attributes for Wheezes (M=Months) 

Wheezes All Wheezes (321 Sounds) < 12 M  (192 Sounds) ≥ 12 M  (129 Sounds) 

𝑃3 42.12 41.95 41.03 

𝑃5 9.01 9.27 8.98 

𝑃3 −  𝑃5 33.11 32.68 32.05 

𝑃3 +  𝑃5 51.13 51.22 50.01 

Accuracy of 

Validation 
81.93% 82.81% 89.15% 
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Table 2.2: Accuracy of Validation Attributes for Stridor (M=Months) 

Stridor All Stridor (98 Sounds) < 12 M  (85 Sounds) ≥ 12 M  (13 Sounds) 

𝑃3 53.56 53.46 50.19 

𝑃5 11.45 11.59 18.61 

 𝑃3 −  𝑃5 42.12 41.88 31.58 

𝑃3 +  𝑃5 65.01 65.05 68.80 

Accuracy of 

Validation 
86.73% 88.24% 92.31% 

 

Table 2.3: Accuracy of Validation Attributes for Rattle (M=Months) 

Rattle All Rattle (73 Sounds) < 12 M (64 Sounds) ≥ 12 M (9 Sounds) 

𝑃3 43.80 42.68 44.34 

𝑃5 11.19 11.07 18.95 

 𝑃3 −  𝑃5 32.61 31.61 25.39 

 𝑃3 +  𝑃5 54.99 53.75 63.29 

Accuracy of 

Validation 
87.67% 89.06% 100% 

 

Table 2.4: Accuracy of Validation Attributes for Normal (M=Months) 

Normal All Normal (100 Sounds) < 12 M (26 Sounds) ≥ 12 M (74 Sounds) 

𝑃3 30.00 28.34 29.88 

𝑃5 6.70 7.78 6.92 

 𝑃3 −  𝑃5 23.30 20.56 22.96 

 𝑃3 +  𝑃5 36.70 36.12 36.80 

Accuracy of 

Validation 
89.00% 96.15% 90.54% 

 

 

4. Conclusions and Future Extensions 

A reliable categorized database of different 

respiratory noises was established and uploaded to a 

server. The Database contains 500 adventitious 

respiratory sounds and 100 normal sounds, all 

acquired from El-Shatby AUCH, Egypt. The studied 

age group was from 0 to 12 years. These were 

recorded using Littmann M3200, employing the 

techniques discussed in section 2 above. 

This database may be used as an e-learning and 

e-diagnosis tool as follows. 

 Offline training of junior residents/interns/5
th

 

year students on infants’ chest sounds. Also validate 

their diagnosis when in practice as explained above. 

 Used for future validation of diagnosed chest 

sounds. This is towards an attempt to spare 

infants/children from suffering from the procedures 

that are used to further diagnose the pulmonary 

diseases besides the stethoscope that is used as a 

primarily tool. It was found that the validation was 

over 85% accurate. However, a false validation 

doesn’t mean false diagnosis. A second expert’s 

opinion must be considered. 

Also, the techniques used allow the recording of 

sounds, filtered signals and complete data of patients. 

Thus, allowing a second offline opinion for the 

diagnosed sound i.e. without the need of the re-

auscultation process of the patient. This is equivalent 

to writing radiography reports using only the images, 

without the need for the presence of patients. 

The presented work suggests the following future 

extensions. 

 Apply the proposed technique on more 

samples of stridor and rattle sounds for children. 

 Extract other metric features (other than the 

range given by eq.4) from respiratory sound samples 

which may result in better accuracy. 

 Study the sensitivity of accuracy to the cutoff 

frequencies used in the low pass filters. 

 The sounds library database may be 

published on the Internet with security measures to be 

accessed remotely and used according to a preset 

policy. 

 Repeat the previous work using other signal 

analysis techniques, to mention Wavelet transform, 

and compare to the current results. 

 Use the reliable categorized database (600 

sounds) to train classifiers to be used in automatic 

diagnosis of sounds. 

 Pediatricians may use the acquired realistic, 

reliable, categorized database (Time/Frequency 

domain signals plots and Audio sounds) in extracting 
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visual/acoustic characteristics of different pulmonary 

diseases. These characteristics may be used employing 

image/sound recognition techniques to automatically 

identify/diagnose different diseases. This seems to be 

a very interesting point for team work research. 
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Appendix A 

Similarity Matrices 

In this appendix, the similarity matrices of only uncategorized sounds are presented. This is in view of lack of 

space. 

 

 
Table A.1: Similarity Matrix of All Sounds of Wheezes 
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1
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Average 

(𝑷𝟏) 

Standard 

Deviation (𝑷𝟐) 

'poly1.wav' 0.00 67.32 34.28 64.70 35.54 … 29.37 35.63 8.96 

'poly2.wav' 67.32 0.00 74.55 80.17 66.29 … 67.03 74.91 8.28 

'poly3.wav' 34.28 74.55 0.00 76.33 43.57 … 35.57 45.61 9.81 

'poly4.wav' 64.70 80.17 76.33 0.00 61.18 … 65.40 69.24 9.16 

'poly5.wav' 35.54 66.29 43.57 61.18 0.00 … 36.40 43.74 7.70 

⁞ … … … … … … ⁞ ⁞ ⁞ 

‘poly321.wav’ 29.37 67.03 35.57 65.40 36.40 … 0.00 34.60 8.66 

      Average 42.12 (𝑷𝟑) 9.01 (𝑷𝟓) 

      (𝑷𝟑 −  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 33.11 

      (𝑷𝟑 +  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 51.13 

      
Accuracy of 

Validation 
81.93 % 
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Table A.2: Similarity Matrix of All Sounds of Stridor 
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Average 

(𝑷𝟏) 

Standard 

Deviation (𝑷𝟐) 

'stridor1.wav' 0.00 52.13 57.36 57.51 66.69 … 54.69 63.10 9.99 

'stridor2.wav' 52.13 0.00 41.08 37.54 47.58 … 32.19 42.18 11.02 

'stridor3.wav' 57.36 41.08 0.00 41.99 62.42 … 35.45 49.68 11.35 

'stridor4.wav' 57.51 37.54 41.99 0.00 58.11 … 35.49 47.57 10.31 

'stridor5.wav' 66.69 47.58 62.42 58.11 0.00 … 57.84 61.51 10.95 

⁞ … … … … … … ⁞ ⁞ ⁞ 

‘stridor98.wav’ 54.69 32.19 35.45 35.49 57.84 … 0.00   

      Average 53.56 (𝑷𝟑) 11.45 (𝑷𝟓) 

      (𝑷𝟑 −  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 42.12 

      (𝑷𝟑 +  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 65.01 

      
Accuracy of 

Validation 
86.73 % 

Table A.3: Similarity Matrix of All Sounds of Rattle 
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Deviation (𝑷𝟐) 

'rattle1.wav' 0.00 61.15 78.25 76.39 66.81 … 62.83 67.32 10.48 

'rattle2.wav' 61.15 0.00 52.25 51.29 37.51 … 32.78 41.97 10.03 

'rattle3.wav' 78.25 52.25 0.00 71.67 39.46 … 40.97 48.61 11.17 

'rattle4.wav' 76.39 51.29 71.67 0.00 50.99 … 47.43 55.53 14.26 

'rattle5.wav' 66.81 37.51 39.46 50.99 0.00 … 30.31 39.01 10.06 

⁞ … … … … … … ⁞ ⁞ ⁞ 

‘rattle73.wav’ 62.83 32.78 40.97 47.43 30.31 … 0.00 35.07 11.03 

      Average 43.80 (𝑷𝟑) 11.19 (𝑷𝟓) 

      (𝑷𝟑 −  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 32.61 

      (𝑷𝟑 +  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 54.99 

      
Accuracy of 

Validation 
87.67 % 

Table A.4: Similarity Matrix of All Sounds of Normal 
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Deviation (𝑷𝟐) 

'normal1.wav' 0.00 47.04 54.55 47.48 47.08 … 54.77 49.51 6.76 

'normal2.wav' 47.04 0.00 20.24 31.65 21.40 … 29.06 27.00 6.19 

'normal3.wav' 54.55 20.24 0.00 36.94 21.97 … 31.79 29.03 7.64 

'normal4.wav' 47.48 31.65 36.94 0.00 29.36 … 28.65 31.55 6.80 

'normal5.wav' 47.08 21.40 21.97 29.36 0.00 … 31.31 28.25 6.28 

⁞ … … … … … … ⁞ ⁞ ⁞ 

‘normal100.wav’ 54.77 29.06 31.79 28.65 31.31 … 0.00 28.10 7.81 

      Average 30.00 (𝑷𝟑) 6.70 (𝑷𝟓) 

      (𝑷𝟑 −  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 23.30 

      (𝑷𝟑 +  𝑷𝟓)𝒄𝒍𝒖𝒔𝒕𝒆𝒓 36.70 

      
Accuracy of 

Validation 
89.00 % 
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