
 Life Science Journal 2015;12(3) http://www.lifesciencesite.com

105

Temporal Database: An Approach for Modeling and Implementation in Relational Data Model

Ab Rahman Ahmad1, Nashwan AlRomema2, Mohd Shafry Mohd Rahim3, Ibrahim Albidewi4

1,4Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

2,3UTM-IRDA Digital Media Center, Faculty of Computing, Universiti Teknologi Malaysia, Malaysia.
1hayinsuh@yahoo.com, 2nashwan.alromema@gmail.com

Abstract: Conventional relational data models deals with current data and can only represent the knowledge in
static sense, while temporal data representations have a dynamic domain and resources on the database systems
which are well described in literature. This study introduces an approach for implementing temporal database
applications with interval-based timestamp in conventional Non-temporal Database Management Systems (DBMS).
The proposed approach can be easily implemented in relational framework as well as having the representational
power of the modeling and querying power of 1NF relational data model.
[Ahmad A, Alromema N, Rahim MS, Albidewi I. Temporal Database: An Approach for Modeling and
Implementation in Relational Data Model. Life Sci J 2015;12(3):105-109]. (ISSN:1097-8135).
http://www.lifesciencesite.com. 14

Keywords: Temporal Database, valid-time data model, transaction time data model.

1. Introduction

Temporal Database is considered as repositories
of time-dependent data. There has been a vast amount
of work regarding developing temporal database
applications starting from the 1970s (Findler, 1971).
Some of these works deal with storage structure, and
query processing as well as a dozen-odd temporal
DBMS prototype (Date et al., 2003), (Snodgrass,
2000), (Novikov and Gorshkova 2008), (Jensen et al.,
1994), (Tansel, 2004), (Elmasri and Navathe, 2000),
and (Jensen et al., 1994). Some of temporal database
applications have been used in spatiotemporal
database for managing movement data in GIS as in
(Rahim et al., 2007), (Rahim et al., 2008), and (Man et
al., 2011). Conventional relational database is used to
store and process the data that refer to the current time
(Date et al., 2003). There are two basic approaches in
developing temporal database application, the first one
is an integrated approach where the internal models of
DBMS are modified or extended to support time-
varying aspects of data, and the second approach
would be the stratum approach in which a layer over
DBMS converts temporal statements in to
conventional DBMS and converts the result from the
DBMS to be in the temporal form (Patel, 2003). While
the first approach ensures the maximum efficiency,
the second approach is more realistic and more
popular. The major contributions of this research
study can be formulated as follows:-

 To describe the meaning and use of temporal
features in the framework of relational data model.

 To incorporate temporal aspects need to
minor modifications without affecting the
performance of the parts of the system that do not use
temporal data.

 To represent the temporal database in a data
model that has expressive power and less storage
memory comparing to other works especially in
(Novikov and Gorshkova, 2008), and efficient query
processing.

 To provide an implementation technique that
is easy, does not cost much, and based on relational
database not on XML files as in (Wang et al., 2006).

The discrete time model is considered as the time
model for representing temporal database because of
the simplicity and relative ease of implementation
(Patel 2003). The time aspect used in temporal
database can be interpreted as User-defined time,
which is defined as the column that just happens to be
of a date/time data type (an example the Birth Date
column), and does not indicate anything related to the
validity of other columns, or Temporal time, in
which the column(s) that are of date/time data type are
used to indicate time aspects of the associated tuple.
Temporal time is categorized into Valid-time: in
which the associated time, is used to indicate when
certain fact occur or when it is considered true in the
real world (Bohlen et al, 1998). Transaction-time:
the associated time refers to the time when the
information was actually stored in the database.
bitemporal-time: Associated time refers to both
valid-time and transaction-time yield in bitemporal
data model. Rollback database views tuples as begin
valid at sometimes as of that time (Snodgrass, 2000),
(Jensen et al., 1994).

2. Material and Methods

The appropriate design of database schemas is
critical to the effective use of database technology,
and the construction of effective information systems
that exploit this technology. Designing database

 Life Science Journal 2015;12(3) http://www.lifesciencesite.com

106

systems is typically considered in three contexts (1)
Conceptual design using high-level conceptual data
model, (2) Logical design using implementation
(representational) data model like relational data
model, and finally (3) Physical design using the
appropriate Database Management System (DBMS) to
ensure the desired performance. The temporal aspects
of database schemas are often complex and thus
difficult and error-prone to design. In designing
temporal database, the same steps as the mentioned
above can be followed, in addition to that, defining
new features concerning the time aspects, because
both conventional conceptual model, and relational
data model do not fully support time-varying aspects.
The following steps summarize the proposed
methodology for designing temporal database in
relational database.

 Designing the conceptual model for the
business logic of the system and map it into
conventional relational data model using the mapping
methodology described in (Snodgrass, 2000) and
(Elmasri and Navathe, 2000), where all temporal
aspects that need to be modeled are ignored at this
step. All conventional methods which are used to
construct good relational database schema by
analyzing the design and applying different forms of
normalization should take place in this step.

 Adding the temporal aspect for all the
database objects that need to keep the historical
changes of the entities' data.

3. Results

To make the process of our methodology clear,
an example of the conceptual model shown in Figure
1 for STUDENT and COURSE relations are mapped to
relational data model shown in Figure 2. Our
methodology for representing temporal database is
accomplished by, firstly, defining the database object
(entity/relation) for which we want to track the
historical of changes of the stored data, then we add
for each such relations two additional columns
Lifespan Start Time (LSST) and Lifespan End Time
(LSET), which indicate the beginning and the end of
the time interval within which the database object
exists in the modeled reality (Jensen et al., 1994).
Secondly, for each such entity/relation, we create an
additional relation with the same name as in the basic
schema with the suffix VT. We use VT to indicate the
valid time data model.

As an example, the relational database table
STUDENT in Figure 2 is represented into temporal
database (Figure 3) by adding two additional columns
LSST and LSET, after that we create a new table
Table_VT, for example STUDENT_VT as

),,_,,_(_ VETVSTAUpdateindexnoStVTSTUDENT .

Figure 1: An example of non-temporal conceptual
schema.

The conventional mapping of conceptual data

model in Figure 1 to logical data model is shown
below.

STUDENT
St_no Name DOB Status GPA Major

COURSE

C_no Name C_ hours Status

STUDY
St_no C_no

Figure 2: Relational Schemas for Student and course

Adding the temporal aspects to these two

relations is shown below as in Figure 3.

STUDENT 3 4 5

St_no Name DOB Status GPA Major LSST LSET
8090 Jon 1/1/90 Active 3.4 CS 201302 300001
8091 Alex 2/1/89 Graduate 3.90 IS 201001 201403

STUDENT_VT
St_no Index Updated_V VST VET
8090 4 3.56 201001 201003
8090 4 3.80 201101 201401
8090 3 Active 201001 201403

COURSE 1 2 3

C_no Name Cr_hour Status LSST LSET

CS201
Programming

I
3 Active 201001 300001

CT222 Database 4 Active 200901 300001

STUDENT_VT
C_no Index Updated_V VST VET
CS201 1 C++ prog. 201001 201201
CT222 2 3 200901 201101
CS201 2 4 201001 201201

Figure 3: Relational Schemas for Student and Course.

student

course

St_no Name

DOB

GPA
Major

Status

C_no
Name

Cr_hr
Status

Study

 Life Science Journal 2015;12(3) http://www.lifesciencesite.com

107

The columns are identified as follows: St_no is
the key attributes in the basic schema, index attributes
is used to identify the updated attributes, upadated_v
is used to store the old value of the updated attributes
in the basic table, and VST, VET is used to represent
the beginning and the end of the time interval within
which the values in the specific updated attribute were
valid.

As shown in Figure 3, Table_VT has primary key
consists of the primary key of the basic table, index
column, and the VST column. For STUDENT_VT
table, the primary key is (St_no, index,VST). The
primary key of the basic table in Table_VT serves as
the foreign key in the Table_VT, Foreign
key(St_no)references STUDENT(St_no). The data in
the basic table keeps the latest updated data (current
data), whereas Table_VT stores the historical changes
of the validity of the updated attributes in basic table.

4. Discussions

Modification operations are considered as
challenges when applied to time-varying data because
of the time dimension attached to this data (Tansel,
2006). In our representational data model we consider
the insertion, deletion, and update of records in the
table of the basic schema, the data in the Table_VT are
updated automatically using database triggers or
application’s function. The following are the rules of
data modification operations:

 Insertion Operation: inserting a new record
into a table of the basic schema is accomplished as in
conventional database, in addition to that the value of
LSST field is set to the current date, and the value of
the LSST field is set to a very far future time, for
example, 300001. This date is always greater than the
current date for the lifespan of the application.
Inserting data into Table_VT is accomplished as
consequences of updating any attribute in the table of
the basic schema as it will be explained in updating
operation. Thus, the data in the table of the basic
schema always represents the latest current valid data.

 Updating Operation: updating a record in a
table of the basic schema results into the following
actions: 1- If the updated data is an indexed
attribute(s) as shown in Figure 3, then the old value of
this attribute and its index with the same value of the
primary key and VST and VET fields are inserted into
Table_VT, the values of VST and VST can be
calculated as follows: (a) if this is the first time to
update this attribute (this attribute has not been
updated before or no record for this attribute is found
in Table_VT), then VST value will have the same
value as LSST in the table of the basic schema, and
VET will be having the value of the current time. (b) If
this attribute has been updated before, then VST will
be having the value of VET plus one time granule of

the latest update of this attribute. An example of this
case is shown in Figure 3, when the value of the GPA
attribute indexed by 4 has been updated (at time point
201003) for Jon, and then we look at Table_VT at that
time point, since no record has been found for this
attribute and for this object, thus a new record for the
updated value of this attribute and corresponding
database object has been inserted into Table_VT table
with these
values

)'201003:,

201001:,56.3:_,4:,8090:_(

VET

VSTAUpdateindexnoSt

2-
If the updated data is LSET attribute with instance
time not equal to 300001, then this action is
considered as logical delete of this record and this
record stops to be a life or valid, as if one student has
finished/graduated or terminated from the university.

 Delete Operation: delete a record form the
basic schema is accomplished by setting the value of
LSET to current time as explained in update operation.

In our proposed schema representation Table_VT
tables keep the historical changes of the validity of the
updated attributes in the basic table. Each record in
Table_VT represents the validity of the changed
attributes in the basic table during the time interval
[VST, VET]. The historical changes of the validity is
continuous, the timestamp in VST field coincides with
the value of VET field of the preceding record with the
same primary key. Figure 3 shows the schema
representation and the update operations on the basic
schema tables (STUDENT and COURSE) and the
temporal tables (STUDENT_VT, COURSE_VT).

Although the historical changes of data are in
temporal schema and the latest current valid data
available from the basic schema, our approach is
useful for the following reasons:

 Integrity constraints in the basic schema as
well as temporal schema can be defined and
implemented in DBMS easily without any major
update to the existing applications. The purpose of this
implementation is to ensure the creation of highly
reliable databases.

 The proposed implementation removes data
redundancy and satisfied high level of memory
storage saving comparing to other implementation
techniques discussed by Halawani and Alromema
(2010), reducing the redundant data will help to
facilitate efficient query execution.

 The tables in the temporal schema is updated
only by insert operation when specific attribute in the
basic schema table updated, thus the growth of this
table depends on the frequency of attributes updates.

 The current valid data in basic schema table
helps in efficient query execution because some
queries do not need to have temporal data and

 Life Science Journal 2015;12(3) http://www.lifesciencesite.com

108

temporal-joins involving data from the temporal
schema are less efficient than joins of the tables in the
basic schema.
4.2 Querying Temporal Data Model

Querying temporal databases can be classified
according to the provided time slice into current
query, sequenced query, and non-sequenced. Current
query provide the current valid data which is located
in the basic schema, while temporal sequenced query
provide the data that were valid during a certain
interval of time, where this data can be obtained from
basic schema, temporal schema, or both, depends on
the complexity of the query. Non-sequenced queries
provide the historical changes of an entities' data
regardless of the time constraints.

Current query is an ordinary query which
provides current values of the data regardless of the
time dimension. We project current queries on the
basic table schema where the latest current values are
stored for example the query that selects the current
GPA and Status of a Student is

SELECT S.GPA, S.Status
FROM STUDENT S
WHERE S.St_no = 8090;

Sequenced query provide the data that were valid

during a certain interval of time, and the result of the
query is valid-time table unlike current query which
returns snapshot state. For example the query that
returns the GPA of a Student in a certain
point/semester of time or in a certain interval of time
is

Q1 for point of time t
SELECT SV.St_no, SV.upadated_v
FROM STUDENT_VT SV
WHERE SV.index = 4 and
SV.VST <= t and
SV.VET > t and
SV.St_no = 8090;

non-sequenced query provide the historical

changes of an entities' data during their lifespan time.
The complexity of non-sequenced queries depends on
number of tables involved because the intervals in
which the selected records were valid must be overlap
for different tables. Above queries can be applied for
any other temporal information in Student or Course
tables. With time, the tracking log query that retains a
data for a certain time interval might have a different
data in other time interval.

Acknowledgements:

This distinct research was funded by the
Deanship of Scientific Research (DSR), King
Abdulaziz University, Jeddah under grant no 830-016-

D1434. The authors, therefore, acknowledge with
thanks DSR technical and financial support.

Corresponding Author:
Dr. Ab Rahman Ahmad
Department of Information Technology, Faculty of
Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia
E-mail: hayinsuh@yahoo.com

References
1. Findler N, Chen D. On the Problems of Time

Retrieval, Temporal Relations, Causality, and
Coexistence, 1971, Proc. Second Int. Joint Conf.
on Artificial Intelligence, London.

2. Date C, Darwen H, Lorentzos N. Temporal data
and the relational data model. 2003, San
Francisco: Morgan Kaufmann.

3. Wang F, Zhou X, Zaniolo C. Using XML to
Build Efficient Transaction-Time Temporal
Database Systems on Relational Databases,
2006, Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06) 8-
7695-2570-9/06, IEEE.

4. Snodgrass R. Developing Time-Oriented
Database Applications in SQL, 2000, 1st edition,
Morgan Kaufmann Publishers, Inc., San
Francisco.

5. Patel J. Temporal Database System Individual
Project. 2003, Department of Computing,
Imperial College, University of London,
Individual Project, 18-June-2003,
http://www.doc.ic.ac.uk/~pjm/teaching/student_p
rojects/ jaymin_patel.pdf.

6. Novikov B, Gorshkova E. Temporal Databases:
From Theory to Applications, Programming and
Computer Software, 2008, Vol. 34, No. 1, pp. 1–
6. © Pleiades Publishing, Ltd., 2008.

7. Halawani S, Alromema N. Memory Storage
Issues of Temporal Database Applications on
Relational Database Management Systems, 2010,
Journal of Computer Science 6, (3): 296-304.

8. Tansel A. On handling time-varying data in the
relational model. 2004, Journal of Information
and Software Technology, Elsevier, 46(2), 119-
126.

9. Jensen C, Snodgrass R, Soo M. The TSQL2 Data
Model. 1994, Chapter 12: 361-395.

10. Elmasri R, Navathe . Fundamentals of Database
Systems. 2000, 3rd edition. Addison Wesley.

11. Jensen C, Clifford J, Elmasri R, Gadia S, Hayes
P, Jajodia S. A Glossary of Temporal Database
Concepts. March 1994, SIGMOD Record, 23(1).

12. Tansel A. Modeling and Querying Temporal
Data, Copyright © 2006, Idea Group Inc.

 Life Science Journal 2015;12(3) http://www.lifesciencesite.com

109

13. B¨ohlen M, Busatto R, Jensen C, Point- Versus
Interval-based Temporal Data Models, ©1998
IEEE.

14. Jensen C, Clifford J, Elmasri R, Gadia S, Hayes
P, Snodgrass R, Soo M. A Consensus Glossary
of Temporal Database Concepts. March 1994,
SIGMOD RECORD, Vol. 23, No.1.

15. Rahim MS, Shariff A, Mansor S, Mahmud A,
Daman D. A spatiotemporal database prototype
for managing volumetric surface movement data
in virtual GIS Lecture Notes in Computer
Science. 2007, including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics, 4707.

16. Rahim MS, Othman N, Daman D. Visualization
of surface movement data using tin-based

temporal modeling approach, 2008, Proceedings
of the 4th IASTED International Conference on
Advances in Computer Science and Technology,
ACST.2008:339-343.

17. Man M, Jusuh J, Rahim MS, Zakaria M. Formal
specification for spatial information databases,
2011, integration framework (SIDIF)
Telkomnika, 9(1):81-88.

18. Man M, Rahim MS, Zakaria M, Aezwani W,
Bakar. Integration model for multiple types of
spatial and non spatial databases. 2012, Lecture
Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering. 62 LNICST:95-101. 0.

3/4/2015

