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Abstract: Factorial experiments with k-factors have varieties of applications in life testing and engineering 

reliability studies. In the last few decades, researchers became aware of the appropriateness of assuming an Inverse 

Gaussian Model instead of the Normal Model in order to analyze such experiments. However, previous researches 

provide no complete study for the case of two-factor, neither it provide any attempt to consider the more general 

case of K-factor experiments. In this article we reconsider the case of two-factor experiments and provide an explicit 

algebraically form of maximum likelihood estimators for all main effects and all sum of reciprocals. This new 

development enable us to provide a complete decomposition for the total sum of reciprocals and construct an ANOR 

table in a complete analogue to the ANOVA table under the Normal Model. This will provide a complete statistical 

analysis of such experiments. This work is extended to the case of three-factor experiment. First, we considered the 

additive model that containing all main effects and obtain explicit algebraically form of the maximum likelihood 

estimators for the main effects. This procedure can be generalized to any k-factor additive model. Then, we 

considered some sub models of the complete three factor model, in particular, sub models with one main effect and 

one interaction effect, and sub models with two interaction effects. For those sub models we were again able to 

obtain an explicit form of the maximum likelihood estimators for the main effect and for the interaction effects. 

These estimators allow us to provide a perfect decomposition for the total sum of reciprocals and again to construct 

an ANOR table in a complete analogue to the ANOVA table under the Normal Model for the case of three-factor 

experiment. Applications of the procedures are illustrated with data set of strength measurements of an insulating 

material and a data set on Effect of Humidity and Several Surface Coatings on the Fatigue Life of 2024-T351 

Aluminum Alloy.  
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1. Introduction 

For the case of balanced two-factor experiments, 

we derived an explicit form of maximum likelihood 

(ML) estimators and we were able to prove that they 

are indeed the ML estimators; the forms of those 

estimators have a great similarity with their analogues 

in the normal case. Regarding the analysis of 

reciprocals, we discovered that the reminder in the 

decomposition of the total sum of reciprocals founded 

by Fries and Bhattacharyya (1983) is irrelevant and 

we were able to establish a perfect decomposition of 

the total sum of reciprocals. This has a great impact on 

improving the approximate F tests for main effects 

and interaction. Factorial experiments are widely used 

in different fields of science to study main effects and 

interactions among several variables. The usual 

assumptions that such experiments relay on are three 

main assumptions: 1) each variable follow a normal 

distribution with specific mean, 2) all distributions has 

the same standard deviation (this is known in the 

literature as homoscedasticity assumption), 3) the 

observation selected from those normal distributions 

are independent. The assumptions of equal standard 

deviation and independency are realistic and crucial 

for analyzing data from any kinds of experiments; 

however the assumption of normality is not realistic in 

many cases, especially for the case of positively 

skewed data. Such data is often results from life 

testing and engineering reliability studies. Many 

authors studied the analysis of factorial experiments 

with two factors under the assumption of non-normal 

distributions such as the exponential, gamma and 

Weibull distributions (see for example, Zelen (1959, 

1960), Lawless and Singhal (1980)). However, those 

distributions as a basis for analyzing positively 

skewed data have their own drawbacks. The lack of 

memory in the case of the exponential model is 

debatable in many practical situations and its scope 

does not fit with all data. The Weibull and gamma 
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models offer wider scope but using them in analyzing 

factorial experiments confronts serious complexities. 

The Inverse Gaussian distribution has a history 

dating back to 1915; it is the result of driving the 

density functions of the first passage time of Brownian 

motion with positive drift. In the last 30 years or so, 

Inverse Gaussian distribution won the attention of 

many statistician as a useful model for developing 

statistical methods for data supposed to have arisen 

from this distribution (see for example, Chhikara and 

Folks (1989), Seshadri (1993 and 1999). 

Inverse Gaussian distribution is a family of 

distributions that share striking similarities with the 

Gaussian family. For examples: statistical inference 

for one- and two-sample under the normal model is 

developed under the Inverse Gaussian mode and the 

analysis of variance under the normal model 

developed under the Inverse Gaussian model and the 

result is the "hierarchical analysis of variance" which 

is known in the literature as "analysis of reciprocals". 

The pioneer work in this subject is given by Tweedie 

(1957). 

Regarding the factorial experiment, some 

attempts have been done but relay on some artificial 

assumptions and has some kind of drawback; see for 

example Shuster and Miura (1972). 

A remarkable development of the analysis of 

factorial experiments in case of balanced two factors 

has been accomplished by the work of Fries and 

Bhattacharyya (1983). Their assumptions entail a 

linear model for the reciprocal mean of the Inverse 

Gaussian distribution with constant precision 

parameter for all levels of the factors. The constancy 

of the precision parameter is parallel to the 

homoscedasticity assumption in the usual normal 

theory. They applied the maximum likelihood method 

to estimate the model’s parameters, and provide a 

closed form expression for their solution of the normal 

equations, and established the limiting normality of 

those solutions. They break down the total sum of 

reciprocal to several components representing the 

main effects, interaction and the errors or residuals 

and hence constructed the analysis of reciprocals 

table. However, their work has its own drawbacks 

which are summarizing in the following: their solution 

to the normal equation has no explicit form with 

unknown structure as the case of the normal model; it 

is not easy to calculate the solution of the normal 

equation and hence the sums of reciprocals; they were 

unable to prove that the solution is indeed the 

maximum likelihood estimators; their decomposition 

of the total sum of reciprocals has a remainder that 

they called a non-orthogonality component. Since 

their work in 1983, neither further works in attempts 

to overcome those drawbacks were accomplished; nor 

has a new development in the analysis of factorial 

experiments under the Inverse Gaussian model been 

developed. 

The objective of this article is to overcome and 

solve the drawbacks in the analysis of factorial 

experiments with the Inverse Gaussian model. 

In this article we consider the same model of 

Fries and Bhattacharyya (1983). We provide explicit 

algebraic formulas for all MLE's of model’s 

parameters. Then; explicit algebraic forms of all sums 

of squares are obtained. 

We organized the work as follows. In section 2, 

the case of one factor experiment under an inverse 

Gaussian model assuming a reciprocal linear model is 

considered for the purpose of comparison with models 

having more than one factor. Section 3 gives a full 

description of the models with two factors and the 

normal equations that need to be solved, while section 

4 describes the method of estimation of the model’s 

parameters as given in the literature.  The new 

contributions of this research regarding the case of 

two factors are given in sections 5 and 6 where we 

introduce explicit algebraic formulas for the ML 

estimators, perfect decomposition for the total sum of 

reciprocals and a construction of ANOR table as well 

as numerical application for illustration. Further 

contributions are given in the reminder sections (7 to 

10), where a generalization to the case of three factors 

is given companion with numerical application. This 

work is applicable to any k-factor experiments. In all 

cases, the ML estimator for the effect of certain level 

of any factor can be seen to have the same form as in 

the case of one factor experiments added to it a term 

that can be interpreted as an adjustment or as a non-

orthogonality component. 

The Inverse family of distributions, denoted 

as   ,IG  has probability density function given by 

   

    
.0,0,0;

12exp

2,;

211

2/32/1
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y
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yyf

(1) 

This probability function belongs to the 

exponential family. The mean and variance of this 

distribution are  and  3
respectively. 

2. The Case of One Factor Experiment 

Consider a one factor life test with a  levels of 

the factor. At each level, n items are tested and their 

failure times aiyij ,...,1,  , and nj ,...,1  

recorded. The observations are assumed to be 

independent with ijy distributed as   ,iIG . Since 

the mean is inversely proportional to the drift, the 

usual parameterization suggests the model 

         


 
a

i
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1

1 0,                        (2) 
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where  and 'i s represents the grand mean and the 

main factor effects respectively. For the IG 

distribution we must have 0i for all 

i and 0 . Thus the parameters  , 

 a ,...,1 and   lie in the set 

 








  0;,...,1,0;0:,,   aii

i

i

  

 (3)

 We introduced the basic notation for the totals 

and the means that will be used throughout the paper: 

.. i

j

iji ynyy  , .... ynayy
i j

ij  ,

 
i j

ijySR 1
                                             (4) 

Referring to (1) and (2), the log-likelihood 

function has the form 

 

     



 211
12

log2/1.

iijij yy

anconstl




                 (5) 

Expanding the squared term, we find that the set 

 SRyy a ,,..., ..1
 represent a set of  1a -dimensional 

sufficient statistics, with the parameter space   of 

dimension (a +1) as well. 

Equating to zero the first partial derivatives of 

(5) with respect to  and i , we obtain 

1,ˆˆ

ˆˆ
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..




ianyy

anyy

iii

i

iii





    (6)

 

The derivative with respect to   leads to 

     21 1ˆˆ
1

ˆ
ijiji yy

an
       (7) 

The system (6) of equations has the following 

unique solution 
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while 












 
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To test the hypothesis of no main effects, i.e. to 

test 0...: 210  aH  , 

against
aH   ...: 211
, the LR test statistic is 

given by 

     







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0
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
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The last expression in (10) obtains from the 

general result that the maximized log-likelihood, 

under each model 1,0,  ii
, has the 

value    1ˆlog
2
1  ina  , ignoring the constant term. 

Expression for 1̂ is given by (9) while 
0̂ is given by 
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The rejection region consists of the large values 

of the statistic in (10). 

We note that; 
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
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

1

10

ˆ

ˆˆ
1log




an                           (12) 

which is strictly increasing function of 

1

10

01
ˆ

ˆˆ



 
R . Consequently, the LR test can 

equivalently be based on 01R  with large values in the 

rejection region. 
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Hence, 

*
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The statistic 













i j iji YY
Q

.

*

1

11  divided by 

  has 
2  distribution with  1na . While, under 

the assumption of no main effects, the statistics 


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








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i i Y

n

Y

n
Q

...

*

2
 divided by   has 

2  

distribution with 1a  degrees of freedom. The two 

statistics are independent (see Seshadri (1983) and 

Datta (2005) for properties of inverse Gaussian 

distribution); hence   one can use the F test based on 

the statistic 

    
 
  *

1

*

2
01

1

1

Qa

Qna
T




                                     (15) 

with  1a and  1na   degrees of freedom. 

3. The Model: Balanced Two-factor Experiment 

With no Interaction  

In this section, we consider the same model as 

Fries and Bhattacharyya (1983).  A full description of 
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the models having two factors is given along with the 

normal equations that need to be solved.   

For the balanced two-factor life test, assume a 

levels of factor A and b levels of factor B. At each 

cell  ji, , n items are tested and failure times 

nkY kji ,...,2,1,  are recorded. The observations 

are assumed to be independent with 

 ;,~
1




jiijk IGY ,,...,2,1,,...,2,1 bjai   

and nk ,...,1 . We focus on the additive or no-

interaction model; hence the means have the structure  

 
 

 
 






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1
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



    (16) 

where  , 'i s , and sj '  represent the grand mean, 

the main effects of factor A, and the main effects of 

factor B, respectively. We must have 0ji for all 

ji, and 0 . Thus the parameters 

   aa  ,...,,,,...,,, 2121   and 

 lie in the set 
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The basic notation for the totals and the means are 

extended to the two-factors experiments as follows 
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The log-likelihood function has the form 

 

     
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As it is previously done by Fries and 

Bhattacharyya, equating to zero the first partial 

derivatives of (19) with respect to ,, i and
j , to 

obtain the following normal equations: 

bjanyyy

aibnyyy
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and the derivative with respect to   leads to 

   


i j

jikji

k

jki yy
abn

21
1ˆˆˆ

1
ˆ         (21) 

4. Estimation of the Model’s parameters 

This section demonstrates the method given by 

Fries and Bhattacharyya (1983) to solve the normal 

equations given by (20). While they provided an 

excellent way to solve those equations, they had not 

been able to prove that their solution is the maximum 

likelihood estimator generally. In the following 

sections, we will provide alternative way to solve 

those normal equations, and then express the solution 

in an explicit algebraic form of the reciprocals of level 

means. Moreover, we have been able to prove that this 

solution is the maximum likelihood estimator 

generally.   

The system of linear equation given by (20) is 

linear in the parameters, however, the summation of 

the a  equations associated with the si '  yields the 

first equation; also, the summation of the b  equations 

associated with the sj '  yields the first equation.  

Fries and Bhattacharyya (1983) used the 

conditions    0ji   to delete the last 

components of the vectors   and  , and define the 

new parameter 

 121121 ,,,,,,,,  ba                (22) 

Then they observed that, for every  ji,  there 

exists an  1 ba  vector jix consisting of -1’s, 0’s 

and I’s such that 

.1,1 bjaix jiji        (23) 

They define the  1 baba  and 

   11  baba matrices X and M as  

 ,,,, 1211 abxxxX   

,XDXM                                                (24) 

where  .,21.11 ,,, bayyydiagD  . 

Then they used the aforementioned notation to 

rewrite the log-likelihood function and obtain a new 

set of normal equations, and showed that these normal 

equations has the following unique solutions, that 

maximize the likelihood 

,ˆ 1 JXM    

   JXXMJnSRnba   11
̂

 
          (25) 

where J is the vector of one’s. 

No proof is provided by Fries and Bhattacharyya 

that the above solution to be the maximum likelihood 

estimators, however, they provided a theorem stated 

that ̂ and ̂ serve the primary goal of maximum 
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likelihood estimation, by proving that they are 

asymptotically independent, strongly consistent, and 

the limiting distributions of   ˆ2/1n and 

  ˆ2/1n are normal. 

From the above demonstration, we cannot call 

these solutions explicit; since they do not show the 

structures of these solutions as are the likelihood 

estimators under the usual normal model. It may better 

to define them as a closed form solutions. 

In the next section, we will provide alternative 

way to solve the set of normal equation (20) that give 

an explicit algebraic form for  and all si '  

and sj ' . Moreover, we proved that these estimators 

are indeed the maximum likelihood estimators. The 

proposed method looks deeply into the details 

structure of the ML estimators. 

5. Explicit Algebraic Solutions of the Model’s ML 

Estimators 

In this subsection we will obtain an explicit form 

for the maximum likelihood estimators. The form of 

these estimators contains two parts; the first part can 

be viewed as a natural generalization for the solution 

obtained before in the case of one factor experiment, 

and the second part can be described as a 

nonorthogonality component. To obtain these 

solutions we proceed as follows. 

First, we rewrite the normal equations (20) in the 

new form 
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Second, we get rid of ̂ that appears in (27) and 

(28) this can be accomplished by applying the 

constraint 0
i

i on the si '̂  equations and solve 

for ̂ , to obtain another form of it, denoted it as ̂  

(referring to that it is obtained from the si '̂  

equations).  This ̂ is given by 
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Substitute this value of ̂  as given by (29) back 

into equation (27) to obtain a new form of the si '̂  

equations that free of ̂ as: 
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Similarly, applying the constraint 0
j

j on 

the sj '̂  equations and solve for ̂ to obtain 

 
i

i

j j

ji

j j y

y

bayb

ˆ

111
ˆ

..

.

..

,       (31) 

and hence obtain 

bj

y

y

bay

y

a

yby

i

i

j j

ji

i

i j

ji

j jj

j

,...,2,1,

ˆ
1

ˆ
1

111ˆ

..

.

..

.

....









































    (32) 

Our goal now is to solve equations (30) & (32) 

simultaneously for si '̂  and sj '̂  , then to use the 

result to find ̂ that satisfies the three forms of 

̂ namely equation (26), (29), and (31). 

Interestingly, Equations (30) & (32) show that 

both si '̂  and sj '̂  consist of two terms. The first 

term is analogue to that of the one-factor case 

discussed in section 2. The second part is a linear 

function of the other factor’s main effects. The sum of 

each part is zero. 

We use an algebraic iteration method to solve 

these equations. The initial values for 

si '̂ are aii ,...,2,1,0ˆ )0(   while, the initial 

values for sj '̂ are bjj ,...,2,1,0ˆ )0(  . 

Substitute these values into equations (30) and 

(32) yield the values of the first iteration as 

ai
yay i ii

i ,...,2,1,
111

ˆ
....

)1(   ,         (33) 

bj
yby j jj

j ,...,2,1,
111ˆ

....

)1(             (34) 

Substitute these new values into equations (30) 

and (32) yield the values of the second iteration as 
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     iw
a

w
yay i

ii

i ii

i 






















  ,

1111
ˆ 1

.

1

.

....

)2(  (35) 

    jw
b

w
yby j

jj

j jj

j 



























  ,

1111ˆ 1

,

1

.

....

)2(    (36) 

where 

   
j

jji

i

i wy
by

w 0

..

..

1

.

11
 

   
i

iji

j

j wy
ay

w 0

..

..

1

.

11
,                        (37) 

 

..

0

.

1

i

i
y

w  and  

..

0

.

1

j

j
y

w   

At the R
th

 iteration, the formulas of )(ˆ R

i and 

)(ˆ R

j are 

 
       

ai

w
a

w
R

r i

r

i

r

i

rR

i

,...,2,1,

1
1ˆ

1

1

.

1

.

1











 






    

(38) 

and 

        

bj

w
b

w
R

r j

r

j

r

j

rR

j

,...,2,1,

1
1ˆ

1

1

.

1

.

1
















 




      (39) 

with ...,3,2,1R Since both si '̂ and sj '̂ are exist, 

then each of the infinite series in the second terms of 

(38) and (39) converge to some limit. However, being 

these series having alternate signs, then each of them 

must converge to zero. Hence, there exist some odd 

integer R such that 

    iw
a

w
i

R

i

R

i   ,0
1

.

              

(40)

 
and 

             

    jw
b

w
j

R

j

R

j   ,0
1

.
              (41) 

Together with the relations 

     
j

r

jji

i

r

i wy
by

w 1

.

..

11
 ,           (42) 

and 

    
i

r

iji

j

r

j wy
ay

w 1

.

..

11
,            (43) 

we come to the conclusion that the integer 

R satisfies 

   
    Mww R

j

R

i  (say).   

To find the value M , we investigate the 

following general formulas of  R̂ ,  R

̂ and  R

̂  

at the R
th

 iteration 

      

      
..1

1

.

1

1

1

.

1

1
11

1

1
1

ˆ

y
w

b

w
a

r

j

R

r

r

j

r

i

R

r

r

i

rR


















   (44) 

      

    

   




















i

R

i

R

j

R

r

r

j

r

i

R

r

r

i

rR

w
a

w
b

w
a

.

1

1

.

1

1

1

.

1

1
1

1
1

1
1

ˆ
                     (45) 

and 

  

      

    

   



















j

R

j

R

j

R

r

r

j

r

i

R

r

r

i

rR

w
b

w
b

w
a

.

1

1

.

1

1

1

.

1

1
1

1
1

1
1

ˆ


                 (46) 

The necessary and sufficient condition for the 

above three equations to be equal is 

 
   

.... /1
11

yw
b

w
a j

R

j

i

R

i                 (47) 

Hence, the constant M  is equal to ../1 y .  

The integer R  must be an odd number, for the 

iteration producer completes a full cycle of changing 

signs at 1R .  Hence, we introduce the following 

theorem. 

Theorem 1 

For the model described in section 2, the 

maximum likelihood estimators for the model 

parameters are: 

          

   

..1

1

.

1

1

1

.

1

1
1

1

1
1

ˆ

y
w

b

w
a

j

R

r

r

j

r

i

R

r

r

i

r
















                   (48) 

        

ai

w
a

w
R

r i

r

i

r

i

r

i

,...,2,1,

1
1ˆ

1

1

.

1

.

1











 




         (49) 

and 

     

bj

w
b

w
R

r j

r

j

r

j

r

j

,...,2,1,

1
1ˆ

1

1

.

1

.

1
















 




              (50) 

where

    1,...,3,1,
11 1

.

.

.    Rrwy
by

w
j

r

jji

i

r

i

    1,...,3,1,
11 1

.

.

.    Rrwy
ay

w
i

r

iji

j

r

j  

 

.

0

.

1

i

i
y

w  and 
 

j

j
y

w
.

0

.

1
 , finally R  is an (odd) 

integer that satisfies 
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    ji
y

ww R

j

R

i &
1

..

..                         (51) 

 The ML estimate of  is 

   ˆ
1

ˆ nabR
abn

                                        (52)  

Proof 

The equations (48) - (50) are the solution of the 

normal equation outlined above, those solution also 

satisfy the constrained imposed on the model, i. e. 

0ˆ'1   and 0ˆ'1  . It remains to show that 0ˆ 1




ij  . 

for this we observe that 

 

       

..

1

1

.

1

1

1

.

1

1

1

11

ˆˆˆˆ

y

ww
R

r

r

j

r
R

r

r

i

r

jiji



















        (53)  

Investigating the relationship between 

,/1 .

)0(

. ii yw   and  
... /1 yw R

i  , we observe two 

cases: 

Case 1:  
       

...

1

.

1

.

0

.. /1/1 ywwwwy R

i

R

iiii    

In this case we replace 
 r

iw . by 
 1

.

r

iw  for all 

odds r this leads to show that 

   

.1

1

.

1 1
1

i

R

r

r

i

r

y
w 



                           (54) 

Case 2: 
       

...

1

.

1

.

0

.. /1/1 ywwwwy R

i

R

iiii    

In this case we replace 
 r

iw . by 
 1

.

r

iw  for all 

evens r this leads to show that 

    

..1

1

.

1 1
1

y
w

R

r

r

i

r




                           (55) 

A similar procedure is used for the 

quantity    





R

r

r

j

r
w

1

1

.

1
1 . Hence, for all possible four 

cases we end up by showing that .0ˆ 1 

ij  

Hence
ij̂ are obtained within the parameter 

space  and the estimators si̂ and sj̂ are the 

ML estimators. 

The expression of ̂  is obtained in a 

straightforward way. 

We illustrate the above result with the following 

application which used before by Fries and 

Bhattacharyya (1983).  

An Application for the case of two Factors: 

Shuster and Miura (1972) analyzed a data set 

from Ostel (1963), which is in the form of a 

randomized 2×5 layout with 10 replicates per cell. 

The data consist of the impact strength, in foot-

pounds, from tests on 5 lots of the same type of 

insulating material that are cut either lengthwise or 

crosswise. The use of an IG distribution is plausible 

since the impact strength is determined by building up 

stresses until failure occurs. The assumption of 

constant diffusion parameter is also appropriate since 

the same type of insulating material is being tested 

under a fixed specification of the failure criterion. 

The cell means of this experiment are shown in 

table 1 where the rows represent the levels of factor A 

(Type of cut) and the columns represent the levels of 

factor B (Type of material) 

 

Table 1: The cell means ijy s 

 1j 2j 3j 4j 5j 

1i .919 .997 .690 .870 .551 

2i .743 1.022 .624 .899 .526 

The reciprocal of the grand mean is 

21.27534753/1 .. y  

Tables 2 and 3 show the values of   r

iw . ,
 r

jw. , 

 
i

r

iw
a

.

1
and  

j

r

jw
b

.

1 for  Rr  7,...,1,0 . 

 

Table 2. The values of 
 r

iw . and ̂  

 1i  2i  Average 

w(0)
i. 1.241619071 1.310959622 1.276289347 

w(1)
i. 1.279007112 1.271483577 1.275245344 

w(2)
i. 1.275272062 1.275427218 1.27534964 

w(3)
i. 1.275355721 1.275338886 1.275347304 

w(4)
i. 1.275347363 1.275347711 1.275347537 

w(5)
i. 1.275347551 1.275347513 1.275347532 

w(6)
i. 1.275347532 1.275347533 1.275347532 

w(7)
i. 1.275347532 1.275347532 1.275347532 

i̂  -0.038518231 0.038518231  

 

Table 3: The values of 
 r

jw.
and 

j̂  for j =1 to 3 
 

 1j  2j  3j  

w(0)
.j 1.203369434 0.990589401 1.522070015 

w(1)
.j 1.272617886 1.276718647 1.274547917 

w(2)
.j 1.275643702 1.275198765 1.275434291 

w(3)
.j 1.275341424 1.2753506 1.275345743 

w(4)
.j 1.275348195 1.275347199 1.275347726 

w(5)
.j 1.275347519 1.275347539 1.275347528 

w(6)
.j 1.275347534 1.275347531 1.275347533 

w(7)
.j 1.275347532 1.275347532 1.275347532 

j̂  -0.13443577 -0.3517717 0.18212057 
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Table 3 (Continue): the values of 
 r

jw.
and 

j̂  for j = 

4 to 5  

 4j  5j  Average 

w(0)
.j 1.13058225 1.857010214 1.340724263 

w(1)
.j 1.276857712 1.275484559 1.275245344 

w(2)
.j 1.275183676 1.275332665 1.27535862 

w(3)
.j 1.275350911 1.275347839 1.275347304 

w(4)
.j 1.275347166 1.275347499 1.275347572 

w(5)
.j 1.27534754 1.275347533 1.275347532 

w(6)
.j 1.275347531 1.275347532 1.275347532 

w(7)
.j 1.275347532 1.275347532 1.275347532 

j̂  -0.21193335 0.516020172 
 

 

Finally the value of ̂  is 1.341884136 the 

above estimates are identical to those previously 

obtained by Fries and Bhattacharyya (1983). 

6. Statistical Inference and Analysis of Reciprocals 

Being the estimators obtained in section 5 the 

ML estimators, enabling statistician to use the large 

sampling properties of the likelihood ratio tests for 

testing different hypotheses; such as additively or 

absence of factor effects and to construct confidence 

intervals for contrasts. 

Fries and Bhattacharyya (1983) considered some 

variants of these testes by mixing the asymptotic and 

exact sampling distribution of the component 

statistics, and summarized the results in an analysis of 

reciprocals (ANOR) table. However, being the 

solution they provide for the normal equations not 

truly explicit, the structures of those estimators were 

hidden. This had a reflection on the analysis of the 

total sum of reciprocals by the appearance of a 

nonexistent component they had to call it a remainder 

and interpreted it as a nonorthogonality component. 

In the following, using our explicit form of the 

maximum likelihood estimators given above, we 

provide an adjustment for the sums of reciprocals of 

the main effects. This adjustment results in a perfect 

break down of the total sum of reciprocals. This 

adjustment leads to a complete analogue between the 

ANOVA and ANOR Tables. Moreover, we were able 

to show that all different sums of reciprocals are 

positive. This adjustment is outlined in the ensuing 

discussion. 

For testing the hypotheses of additively or 

absence of main factor effects, the relevant models 

(hypotheses) are 

  1

4 :  ji     Unrestricted                    (general model) 

  
jiji   1

3 :  ;  

           0'1'1                             (additive model) 

 
iji   1

2 :   0'1                   (no B effects) 

 ;: 1

1 jji         0'1           (no A effects) 

 
1

0 : ij
                               (no factor effects) 

It each of the above model is unknown nuisance 

parameter, and sij '  are constrained to be positive. 

Let s̂  denote the ML estimator of   and 

 sl max  denote the maximized log-likelihood 

under s , 4...,,1,0s . Expressions for ss '̂  are 

given by 

 
i j

jiySRabn 1

4̂  

 
i j

jiSRabn 1

3
ˆˆ   

 
i

iySRabn 1

.2̂                                  (56) 

 
j

jySRabn 1

.1̂  

1

..0
ˆ  ySRabn    

where SR is given in (18). 

Then, the LR statistic, for testing a null 

hypothesis s , nested within the full model 4 , is 

given by 

    
 ss

s

abn

ll
s

 ˆ/ˆlog

2 maxmax4 4



 
           (57) 

According to this general form of LR statistics, Fries 

and Bhattacharyya (1983) introduced the following 

quantities to be known as the sums of reciprocals: 

      
i j

jjiA ynabnR 1

.

1

31
ˆˆˆ   

     
i j

ijiB ynabnR 1

.

1

32
ˆˆˆ   

     
i j

jiijAB ynabnR 11

43
ˆˆˆ   

 
i j

ijE ynSRabnR 1

4̂                         (58) 

All of the above statistics in (57) are 

nonnegative. 

Now, recall the explicit formula of
1ˆ
ji  given by 

(53), namely 

   

   

..1

1

.

1

1

1

.

11

1
1

1ˆ

y
w

w

R

r

r

j

r

R

r

r

i

r

ji


















  

We can see that AR in (58) contains an irrelevant 

term, namely    1

.

2

1
1 





  r

j

r

r
w and it should be 
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discarded from this sum of reciprocals. Similarly, BR  

in (58) contains the irrelevant term    1

.
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i

r

r
w , 

which should be discarded from it. The appearance of 

those irrelevant terms is caused by the unawareness of 

the explicit structures of the estimators. A justification 

of disregarding those two components is given by 

noting that, if the model “s” is nested within model 

“t”, then we can obtain the partial differentiation of 

model “s” from the partial differentiation of model “t” 

by dropping off the components which represent the 

missing variable in model “t”. 

Hence we introduce the following complete 

decomposition of the reciprocal ijky/1  
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(59) 

As usual, the first term is the reciprocal of 

general mean, the second term represents factor A 

effect, the third term represents factor B effect, while 

the fourth term can be ascribed to the interaction 

effect, and finally, the last term is interpreted as a 

residual. 

Hence, our adjusted sums of reciprocals are: 
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All of the above statistics in (60) are 

nonnegative. 

We can easily verify that 

EABBA SRSRSRSRyabnSR  1

...     
(61) 

The distribution of the adjusted sums of 

reciprocals given above do not affected by this 

adjustment, hence we can perform the approximate F 

tests that demonstrate previously. 

Fries and Bhattacharyya (1983) shows that each 

of the above sums of reciprocals divided by  has a 

chi-square distribution; the first three approximately 

with (a -1), (b -1) and (a -1)(b -1) degrees of freedom 

respectively, while the fourth exactly with ab(n-1) 

degrees of freedom. Hence, an approximate F tests are 

used to test the usual hypotheses about the main 

effects and interaction. This is demonstrated in the 

analysis of reciprocals (ANOR) table given below. 

 

Table 5. Analysis of Reciprocals (ANOR) Table 

Source SR .. fd  MSR 

A  ASR  a -1  AMSR  

B  BSR  b -1  BMSR  

AB  ABSR  (a-1)(b-1)  ABMSR  

Error  ESR  ab(n-1)  EMSR  

Then, an approximate F test can be used for 

testing the significant of each effect by dividing the 

mean sum of reciprocal of that effect by the mean sum 

of reciprocal of the error. For example, to test the 

hypotheses kjiH jiji ,,,: 1

0   , (i. e. 

the additivity of the model), we use the test statistic 

 
 

     1,11~  nbabaF
EMSR

ABMSR
  

An Application:  

The following table demonstrates the result of 

applying the above producers to the data given in the 

previous application. 

 

Table 6: Application of ANOR Table 

Source SR .. fd
 MSR F Approx. p-value 

A 0.10463 1 0.10463 4.71 0.033 

B 6.54903 4 1.63726 73.64 0.0000 

AB 0.26310 4 0.06578 2.96 0.024 

Error 2.00094 90 0.02223   

7. Estimation for the Balanced Three Factors 

Experiments: the Additive Model.  

The three-factor life test consists of a  levels of 

factor A, b levels of factor B and c levels of factor C. 

At each factor setting or cell  kji ,, , n items are tested 

and their failure times lkjiy recorded lkji ,,, . The 

observations are independent with ijkly  distributed 

as IG . The usual parameterization of the model with 

main effects and two factors interaction is 

kjki

jikjikji








1

                  (62) 

with the usual constrains 



 Life Science Journal 2015;12(3)       http://www.lifesciencesite.com 

 

29 


i

i ,
j

j , 0
k

k
, 0

,

 
ji

ji

j

ji

i

ji  , 

0
,

 
ki

ki

k

ki

i

ki  , and we must also 

have 0
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

kji . 

In this section, we consider the additive model, 

i.e. we will assume that all two factors interactions are 

zero. The next sections deal with some sub models. 

The additive model is parameterized as 

,1

kjijki  

 0  kji         (63) 

The log-likelihood function has the form 
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log2/1.
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
   (64) 

The basic notation for the totals and the means 

are extended to the three-factor experiments in a 

straightforward way. 

Equating to zero the first partial derivatives of 

(64) with respect to
ji  ,,  and 

k to obtain the 

following normal equations: 
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and the derivative with respect to   leads to 

   


lkji

kjilkjilkji yy
abcn ,,,

21
1ˆˆˆˆ

1
ˆ    (66) 

Handling the above set of normal equations in 

the exact same way as we done before for the case of 

two-factor experiments, we obtain the following set of 

equations for the main effects and the grand mean 
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and  
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while, the equations related to the grand mean are 
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The main objective now is to find the values of 

 ˆ,ˆ and ̂  that satisfy the condition 

  ˆˆˆˆ   

This can be done by using the algebraic iteration 

method starting by the initial 

values     kjikji ,,,0ˆˆˆ 00)0(    . At the 
thR  

iteration we obtain 
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while 
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Similarly, the equations related to the grand mean are 
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Investigating equations (76)–(79), we can see 

that the necessary and sufficient condition 

for   ˆˆˆˆ  is 
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Now, investigating equation (72), we find that a 

necessary and sufficient for the existence of si '̂ is 

the existence of an odd integer R that satisfies 
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The requirement of R to be odd integer is 

obvious. 

According to (80), a necessary and sufficient for 

the existence of si '̂ is 

                
 

i
y

w
R

R

i  0
2

...

..
                          (87) 

where R is and odd integer. 

In a similar way, we can see that a necessary and 

sufficient conditions for the existence of sj '̂  and 

sk '̂  are 
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Hence we have the following theorem. 

 

Theorem 2: 

For a balanced three-factor factorial experiment 

under the inverse Gaussian model that described 

above with positive means 

kjikji  
1

, the maximum likelihood 

estimators for the grand mean and main effects are 

given by: 
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where 
 r

iw ,, ,    
 r

jw ,, and   
 r

kw ,,  are given by 

(76) – (79),   and  R is an odd integer that satisfies 
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Moreover, using a similar argument as in 

Theorem 1, we can show that 
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The ML estimate of  (as usual) is 

   ˆ
1

ˆ nabcR
abcn

                            (95) 

8. Estimation for the Balanced Three Factors 

Experiments: A sub Models with one main effect 

and one interaction effect. 

This section deals with estimation for the 

following sub model of the model (61) 

kjikji  
1

                        (96) 

Our method of finding the maximum likelihood 

estimators is continuing used for the sub model (87). 

In this case, we obtain the following theorem. 

 

Theorem 3: 

For the sub model (95), the maximum likelihood 

estimators of the parameters ,, i and jk are 

given as 
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and 
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Furthermore,  
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(102) 

while the ML estimator of  is 

  ˆ
1

ˆ nabcR
abcn

  

as usual.            

In a similar way, the maximum likelihood 

estimators can be obtained for the sub models 

kijkji  
1  

and 

jikkji  
1  

9. Estimation for the Balanced Three Factors 

Experiments: A sub Models with two Interaction 

Effects. 

This section deals with estimation for the 

following sub model of the model (61) 

kjjikji  
1

              (103) 

Following the same procedure as previously 

done, we obtain the following ML estimators for 

model (103) 
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10. Balanced Three Factors Experiments: Analysis 

of Reciprocals  

In this section we provide a complete 

decomposition for the reciprocals 

observation lkjiy/1 ; and then an ANOR table that is 

in a complete analogous to the ANOV table. 

As a beginning, we define the effects as: 

The effect of the 
thi  level of factor A: 
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The effect of the 
thj  level of factor B: 
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The effect of the 
thk  level of factor C: 
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where
 r

iv ..  & 
 0

. kjv are as defined by (100), while 

R is an odd integer satisfies (101), the quantities and  
 r

jv .. ;
 r

kiv . ;
 r

kv ..  & 
 r

jiv . are defined in a 

similar way with similar R’s values.  

The sum of each of the above effects is 

nonnegative; this can be seen by two different ways; 

first, each sum is obtained via the 

form  tsabcn  ˆ/ˆlog . Secondly, by using the 

same argument that used to show that 0kji . The 

same argument is to show that all coming sums of 

reciprocals are nonnegative. 

The interaction effect between the 
thi level of 

factor A and the 
thj level of factor B is introduced as 
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The interaction effect between the 
thi level of 

factor A and the 
thk level of factor C 
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The interaction effect between the 
thj level of 

factor B and the 
thk level of factor C 
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The interaction effect between the 
thi level of 

factor A, the 
thj level of factor B, and the 

thk level of 

factor C 
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Finally, the error effect is defined as 
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Hence, the following identity is fulfilled 
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The sum of reciprocal for a certain effect is 

obtained by taking the sum of its component over 

,,, kji and l , for example: 

   
i

i ARbcnASR , 

   
ji

ji ABRcnABSR
,
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kji

kji ABCRnABCSR
,,

                    (118) 

  

   
lkji

lkji ERESR
,,,

 

Hence, a complete analogue of the ANOVA 

table is provided by Table 7. 

 

Table 7. Analysis of Reciprocals (ANOR) Table 
Source SR .. fd  MSR 

A SR(A) a -1 MSR(A) 

B SR(B) b -1 MSR(B) 

C SR(C) b -1 MSR(C) 

AB SR(AB) (a-1)(b-1) MSR(AB) 

AC SR(AC) (a-1)(c-1) MSR(AC) 

BC SR(BC) (b-1)(c-1) MSR(BC) 

ABC SR(ABC) (a-1)(b-1)(c-1) MSR(ABC) 

Error SR(E) abc(n-1) MSR(E) 

Then, an approximate F test can be used for 

testing the significant of each effect by dividing the 

mean sum of reciprocal of the effect by the mean sum 

of reciprocal of the error. For example, to test the 
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hypotheses   kjiH kji ,,0:0  , we use the 

test statistic 

 
 

      1,111~  nabccbaF
EMSR

ABCMSR
     (119) 

An Application: 

Corrosion fatigue in metals has been defined as 

the simultaneous action of cyclic stress and chemical 

attack on a metal structure. In the study Effect of 

Humidity and Several Surface Coatings on the 

Fatigue Life of 2024-T351 Aluminum Alloy conducted 

by the Department of mechanical Engineering at the 

Virginia Polytechnic Institute and State University, a 

technique involving the application of a protective 

chromate coating was used to minimize corrosion 

fatigue damage in aluminum. Three factors were used 

in the investigation with 5 replicates for each 

treatment combination: coating, at 2 levels, and 

humidity and shear stress, both with 3 levels, Walpole 

(2007). 

Assuming the Normal model, the ANOVA table 

is given in Table 7 below 

 

Table 7. The ANOVA Table for the Fatigue Life data 

of 2024-T351 Aluminum Alloy assuming normal 

model 
Source Sum of Squares d. f. 

A (Stress) 4.280E8 2 

B (Coating) 216776.544 1 

C (Humidity) 19873750.400 2 

A × B 700826.422 2 

A × C 58614763.400 4 

B × C 31734677.956 2 

A × B × C 36028716.778 4 

Error 3.352E8 72 

 

Table 7. Continue 
Mean Square F p-value 

2.140E8 45.967 .000* 

216776.544 0.047 .830  

9936875.200 2.134 .126 

350413.211 0.075 .928 

14653690.850 3.147 .019* 

15867338.978 3.408 .039* 

9007179.194 1.935 .114 

4655745.389   

 

At the 5% level of significance, we declare that 

the main effect of factor A (stress), the interaction 

effect of factor A (stress) × C (Humidity); and the 

interaction effect of B (Coating) × C (Humidity), are 

all significant. 

Now, assuming the inverse Gaussian model, we 

drive Table 8 below. 

 

Table 8. The ANOR for the Fatigue Life data of 2024-

T351 Aluminum Alloy assuming Inverse Gaussian 

model 
Source Sum of Reciprocal Degrees of Freedom 

A (Stress) 0.029798622 2 

B (Coating) 8.4463E-06 1 

C (Humidity) 6.2869E-05 2 

A × B 0.000704776 2 

A × C 0.003677721 4 

B × C 0.000976524 2 

A × B × C 0.000731863 4 

Error 0.025407367 72 

 

Table 8. Continue 
MSR Approximate F Approximate p-value 

0.014899311 42.22202164 .000* 

8.4463E-06 0.02393534 0.877 

3.14345E-05 0.089079897 0.915 

0.000352388 0.9986057 0.373 

0.00091943 2.605503303 0.043* 

0.000488262 1.383647951 0.257 

0.000182966 0.518492885 0.72 
0.00035288 

  
 

At the 5% level of significance, we declare that 

only the main effect of factor A (stress) and the 

interaction effect of factor A (stress) × C (Humidity) 

are significant. 

At the 1% level of significance, we declare that 

only the main effect of factor A (stress) is significant. 

It may be reasonable at this stage to look at the 

additive model that we previously discussed in section 

7, namely 

,1
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The Error is as usual given as 

   
lkji

lkji ERESR
,,,

                           (123) 

Hence, we propose the table 9, that shows the 

Analysis of Reciprocals (ANOR) Table for the above 

additive model. 

 

Table 9. ANOR table for the additive Model 

Source SR .. fd  MSR 

A SR(A) a -1 MSR(A) 

B SR(B) b -1 MSR(B) 

C SR(C) b -1 MSR(C) 

Reminder By subtraction MSR(R) 

Error SR(E) abc(n-1) MSR(E) 

The Reminder and its degree of freedom is 

obtain by subtraction. given by the difference between 

the total sum of reciprocals and all other sums of 

reciprocals. 

Hence, for the data at hand, the ANOR table for the 

additive model is given by Table 10 below. 

 

Table 10. The ANOR for the Fatigue Life data of 

2024-T351 Aluminum Alloy assuming Inverse 

Gaussian and additive model 
Source Sum of Reciprocal Degrees of Freedom 

A (Stress) 0.0304971 2 

B (Coating) 3.83193E-07 1 

C (Humidity) 6.94481E-05 2 

Reminder 0.00539389 12 

Error 0.025407367 72 

Total 0.092324745 89 

 

Table 10. Continue. 
MSR Approximate F Approximate p-value 

0.01524855 43.212 .000* 

3.83193E-07 0.001 0.974 

3.47241E-05 0.098 0.906 

0.000449491 1.274 0.253 

0.00035288 

  At any reasonable level of significance, we might 

declare that only the main effect of factor A (stress) is 

significant. 

According to the above additive model, the 

estimated cell means are shown in Table 11 below. 

 

Table 11. The Estimated Cell Means 
kji̂  for the 

Fatigue Life data of 2024-T351 Aluminum Alloy 

assuming Inverse Gaussian and additive model 
  1j  2j  3j  

1i  

1k  5372.476 2127.175 712.329 

2k  5668.284 2172.056 717.292 

3k  5339.023 2121.911 711.737 

2i  

1k  5387.076 2129.460 712.585 

2k  5684.538 2174.438 717.552 

3k  5353.441 2124.185 711.993 

 

11. Results  

The main objectives of this article are focus on 

the statistical analysis of factorial experiments 

assuming the Inverse Gaussian model. Heading to 

these objectives, we provide an explicit forms for the 

MLE’s in each of two factor and three factor 

experiments. The generalization to k-factor factorial 

experiments is straightforward. This achievement 

allows the researchers to perform many types of 

statistical inference, for example construction 

approximate confidence intervals and testing 

Hypotheses via the likelihood ratio test. Another 

accomplished is given by the construction of the 

“Analysis of Reciprocal Table”, analogue to the 

“Analysis of Variance Table” in the normal Theory. 

Several applications are provided to illustrate our 

procedures. 

 

12. Discussions  

This work covered and illuminates a great gap in 

the statistical analysis of factorial experiments under 

an inverse Gaussian model. Since the work of Fries 

and Bhattacharyya (1983), there is no known new 

work accomplished in this area of research. 

Many investigations still needed in this area. For 

example: a simulation study is required to look deeply 

inside the properties of the ML estimators and their 

behavior with the variation of the main and interaction 

effects. Another subject that needs deep study is the 

ANOR tables and the performance of the approximate 

F tests and comparing it with the ANOVA tables. 

Above all, there is the problem of estimation for the 

full model containing all main effects and all types of 

interactions caused by confounding effects.. 
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