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Introduction 

Many bearing structural elements used in 
significant thermal fields in presence of axial forces 
are made of the AHB-300 heat-resistant alloy. The 
main property of this alloy is that the coefficient of 
thermal expansion is strongly dependent on 
temperature field along the length of the rod member 
under consideration [1]. Therefore, study of the 
thermomechanical state of rod-shaped bearing 
structural elements under simultaneous axial forces, 
with local insulation, heat exchange and temperature 
that may be constant, may vary along the local length 
of the rod linearly and quadrically, is of particular 
interest in many processes of ensuring thermal 
resistance of structural elements working in complex 
thermal and force fields [2]. Existing methods of 
studying stabilized thermomechanical state of rods of 
limited length does not make it possible to take into 
account the relationship between the coefficient of 
thermal expansion and the temperature field, 
operating conditions and fixation, and until now no 
mathematical model has been developed of rods 
stabilized thermomechanical state for the above 
mentioned operating conditions of a structural 
element. Naturally, relevant computing algorithms 
are also lacking, as well as methods and a suite of 
applications that enable comprehensive digital study 
of the above complex processes [3]. On this basis, the 
goal of this work is to develop a mathematical model 
of thermomechanical state of the rod with 
consideration of its operation, basing on energy 
principle in combination with the Finite Elements 
Method. 

Let us describe the problem. Let there be a 
vertical rod of AHB-300 heat-resistant alloy with 
limited length L [cm]. Its area of cross section is 

constant along its length and is equal to S [cm2]. The 
top end of the rod is rigidly clamped. Axial tensile 
force P [kg] is applied to the bottom end. Through the 
cross-section areas of the top and the bottom ends of 
the rod heat is exchanged with the environment. 
Schematically, the rod consists of three parts. The 

first part is 
3

0
L

x  . Its lateral surface is completely 

heat insulated. Through the cross-section area, with 

the coordinate 0x , heat is exchanged with the 
environment. Thus the heat transfer coefficient h0 
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, and the ambient temperature is  CTenv 0
. The 

next part of the rod is 
3
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L
x

L
 . For this local part, 

temperature is given that varies along the coordinate 
according to the parabolic law. i.e., 
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 - The length of the portion where the temperature is 
set is  xT . In this case,  
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Next comes the last, third part 

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
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
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L

3

2 . Its lateral 

surface is completely heat insulated, as well. Through 
the cross-section area of the bottom end of the rod 
with coordinate Lx  , heat is also exchanged with the 
environment. Here heat transfer coefficient is 










 Сcm

W
hL 2

 and temperature of the environment is 

 CTenvL   (Fig. 1 (a-b)). 

It is necessary to determine the following: 
а) temperature field along the length of the rod with 
regard to real operating conditions; 
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b) rod elongation from the temperature field and 
applied axial tensile force P. 

 
Figure 1. Calculation model of the problem in 
question. 
a) problem definition scheme; b) scheme of discrete 

model. 
 

Due to problem definition, temperature field 
in the second part 
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L
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L  of the rod is defined as 

(1). Since the process in question is steady, the 
temperature field in the 1-st and the 3-rd parts will be 
a smooth curve. This curve in these parts we will 
approximate by a quadric curve passing through the 
three points. For example, for the1-st part we have 
that 
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where )(),(),( 321 xxx   are form functions for 
quadratic finite element with three nodes [4], in this 
case, for the 1-st part of the rod: 321, TиTT  are the 
values of temperature in nodes 1, 2, and 3. 
Similarly, for the 3-rd part we have 
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In the 2-nd expression 




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
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3
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L
xTT .Besides, from (1) 

we have that   CTT  80003 . Also, in the expression 
(3) value 5T  is determined from (1) as 

  CxTT  8005  . It will be necessary to 
determine 621 ,, TTT and 7T . 
To do so for the 1st part 

3
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Using (2), after integration from (4) we have  
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Similarly, for the 3-rd part 
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where  is the length of parts 1 and 3 in question. In 
both parts, SSS

L
L  0;

3
 . [5] 

Now for the first part, given that 

CT  8003 , by minimizing 1I  by 1T and 2T , 
we obtain the following resolving system of linear 
algebraic equations  
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In this system it should be noted that the sum of 
coefficients in square brackets is equal to zero. For 
example, for the 1-st equation of system (7) 

0
3

2

3

16

3

14






 . Similarly, for the second equation of 

this system, we have that 0
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can proceed to the third part 

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2  of the rod. 

From problem definition we know that here we have 
CT  8005 . Then by minimizing 2I  by 6T and 7T , we 

will obtain the following resolving system of linear 
equations 
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In this system the sum of coefficients in square 
brackets is also equal to zero. Now let us take the 
following for the input data:  

;100
Сcm

W
К хх


 cmL 30 . 

22;1 cmrScmr   ;

СTТ
Сcm

W
hh envLenvOL 


 40;10

20
. 

With these initial data and taking into account 
existing boundary conditions from (7) and (8) we can 
find the following 
 
Table 1. 

 
Temperature field along the length of parts 1 and 3 is 
determined by relations (2) and (3). 

 
Now we have to find rod elongation taking 

into account the relationship between the coefficient 
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of thermal expansion α and the temperature field 
T(x). Such a full-scale dependence   xT   for 
material AHB-300 we will take from [6]. In this 

paper, full-scale dependence  T   is given in the 
form of a graph. Using these data we can build the 
following table 2 of dependence  T  . 

 
Table 2. 

 
Now, using this table, let us build the 

distribution field   xT   for the 1st part 
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Next, using relations (9), the temperature 

field  x   in the range 
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Then elongation of first part 
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=0.12593386 cm. 
For comparison, let us calculate elongation of the 
same part without dependence between the 
coefficient of thermal expansion and temperature [7]. 
Thus, let us calculate the elongation of part 
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These calculations show that when the 
relationship is considered between the coefficient of 
thermal expansion and temperature field, the value of 
elongation of the part 
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more 2.04 times more than when  T   is not taken 
into account. Now let us calculate elongation of the 
2-nd, i.e., the middle part
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field is shown as (1). Therefore, using Table 2, we 
can find elongation of this part [8]. 
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This shows that when the dependence  T   is taken 
into account, elongation of the second part 
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3T will be, and  will be CT  3,5431 , CT  66,6712  and 
CT  8003 . Then the temperature field in the first part 
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









3
0

L
x

. 

In this case, elongation of first part of the 
rod from temperature field (2) is defines as follows:  

   

             

.1435596.0

024746.001039.00042.001136.00763.00077.0005.00085.00137636.0

80066.6713.543102.23103.211019
10

0

666

3

0

1

cm

dxxxxxxx

dxxTx

kjikji

L

T













 

l

 This shows that with СТ
Сcm

W
h env 


 30;5 020

, 

elongation of the first part 










3
0

L
x

of the rod is 

greater by ≈14% than with 

СТ
Сcm

W
h env 


 40;10 020

. This phenomenon is 

motivated by the fact that with 

СТ
Сcm

W
h env 


 30;5 020

 heat losses will be less than 

with СТ
Ссм

Вт
h ос 


 40;10 020

. Elongation of other 

parts will be the same as those in case of 

СТ
Сcm

W
h env 


 40;10 020

 [10]. 

 
Conclusion 

Thus, the developed computing algorithm 
and the method make it possible to determine 
regularities of thermomechanical processes in rods 
with limited length in complex thermal and stress 
fields. 
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