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Abstract. Mathematical modeling of an electrochemical device is performed as a result of system research of 
concentration and electric fields in a two-electrode electrochemical system. The object of the study is considered to 
be linear with constant parameters. Object dimensions are considered negligible, therefore density of electric current 
on the surface of electrodes is considered to be evenly distributed. The limiting stage of electrode processes in the 
system is diffusion in electrolyte with finite mass transfer rate. Analytical formulas have been obtained for 
calculating separate discrete parameters of these branches. For the purpose of engineering calculations, the number 
of branches in electric substitution scheme may be limited by a finite number, depending on desired accuracy of the 
calculations. 
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Introduction 

For the purpose of rigorous calculation and 
study of electrochemical devices' dynamics, their 
advanced mathematical models are required. The 
latter may only be obtained as a result of dynamical 
system study of electric and mass transfer in them. 
An important aspect of this study is the closed 
relation between concentration and electric fields 
with the help of the processes occurring at the 
electrode - electrolyte interface of electrode 
processes. The ultimate goal of an electrochemical 
device system research is to obtain its mathematical 
model as an element of an electrical circuit. 

An electrochemical device that consisted of 
two identical plane-parallel electrodes was studied. 
Current I(t) flows through this device, while current 
density is uniformly distributed on the surface of 
electrodes. The electrodes area is s, and the distance 
between the electrodes is ℓ. The limiting stage of 
electrode process kinetics is molecular-hyperbolic 
diffusion in electrolyte that occurs with constant rate 

DV  , where D is diffusion coefficient and 

[tau] is relaxation constant. Let us consider 
spatiotemporal concentration field of electrolyte C (x; 
t) as monadic, with the x coordinate normal to 
electrodes surfaces. Coordinates x = 0 and x = ℓ 
correspond to the electrodes (fig. 1).  

 
Fig1. Geometry of an electrochemical device 

 
In relation to concentration field of the 

electrolyte C (x; t) the following initial boundary value 
problem [3, 4] is set [1, 2] in the interval [0; ℓ]: 
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where N>0 is the kinetic constant [5, 6] of 
the electrode reaction; С0 is the initial concentration 
of electrolyte. 

 
Main part 

The problem (1) — (5) can be easily solved 
using the Laplace operational method [7]. Let there 

be correspondences    pxCtxC ;;

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In relation to the image  pxC ;
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, we get the 

following boundary problem:  
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General solution of a differential equation 
(6) has the following structure: 
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Where  pxC ;
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 is the general solution of a 

homogeneous differential equation 
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 pxC н ;
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 is some partial solution of the 

initial inhomogeneous equation (9). 
In order to solve (10) let us compose a 

secular equation 
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of (10) as: 
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where A(p) and B(p) are arbitrary constants 

of integrating that are to be defined. 

Partial solution  pxC н ;


 of equation (6) 

can be written as:  
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Insertion of (12) and (13) into (9) leads to 
the following result: 
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Coefficients A(p) and B(p) can be found 

from boundary conditions (7) and (8). 
To do so, let us differentiate (14) by x: 
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From (15) with x=0, we have: 
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Collating (12) and (13) into (9) leads to the 
following result: 

   
 

D

pp
s

pI
NpA

1






 .   (17) 

Insertion of (17) and x=l into (15) results in: 
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Collating (8) and (18), we define coefficient 

B(p). 
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General solution  pxC ;


 set by expression 

(14) with regard to (17) and (19) gets the following 
form:  
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In any electrochemical system at the 
electrode-electrolyte interface there is a surge [8,9] of 
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electric potential that is uniquely defined with 
accepted allowances by the value of electrolyte 
concentration on the interface surface. This 
dependence is set by Nernst equations that are 
defined in the case studied by the following linear 
relations [1]: 

   tCggt ;010  ,    (21) 

   tlCggt ;10  ,    (22) 

where [delta] − (t) is the potential surge on 
the cathode;  [delta] + (t) − s the potential surge on 
the anode; g0>0, g1>0 are parameters of linear 
approximation of the Nernst equation. 

Applying the Laplace transformation to 
relations (21) and (22), we obtain [10, 11] the 
following operator dependencies: 
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Voltage  tU  at the electro-chemical 

device is calculated using the 2-d Kirchhoff's Law 
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electrolyte column between the plates. Here [gamma] 
is specific conductivity of the electrode.  

From the 2-d Kirchhoff's Law we get: 
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Let us insert (23) and (24) into (26). 
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From (27), using (28), (29), we obtain: 
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Synthesis of an electrical equivalent circuit. 

The obtained correlation (30) is the basis for 
synthesis [12, 13, 14] of an electrical equivalent 
circuit. 

Coefficient  pI


 of the first summand in 

(30) is the diffusion-hyperbolical impedance:  
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The value inverse to it, i.e., conductivity, is 
expressed as: 
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Let us decompose [2] the hyperbolic 

function included into (31) into the following 
sequence: 
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. 
Inserting the last decomposition into (31) 

and omitting intermediate calculations, we obtain: 
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Conductivity Y(p) defined by formula (32) 

meets requirements [8, 15] of physical feasibility 
using passive electric elements. 

Let us show that each member of the series 
in formula (32) can be modeled using the electrical 
circuit (Fig.2). 

 
Fig. 2. Substitution branch electric drawing 

 



Life Science Journal 2014;11(12s)      http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  268

Impedance of the circuit shown in fig.2 has 
the form: 
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Accordingly, conductivity of the branch is 

given by expression: 
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Let us reduce expression (33) to (32): 
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Comparing the corresponding coefficients in 

(32) and (34), we obtain the system of equations for 
determining parameters of an electrical equivalent 
circuit branch: 
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Solving the latter system of equations leads 

to the following results: 
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Taking into account the structure of 
expressions (32) and (30), we obtain a complete 
electrical equivalent circuit of an electrochemical 
device (Fig. 3). 

 
Fig. 3. Electrical equivalent circuit of an 
electrochemical device 

 
In this scheme, resistance rg that models 

ohmic losses in the process of electrode polarization 
is calculated as follows: 

s

Nlg
rg

1 . 

With initial data 
s = 0.01 m2; l = 0.01 m; g1 = 0.025 

V/(Kmol/m3); N = 5.45 (Kmol/m3)m·А-1; τ2 = 1·10-6 
sec; 

γ = 35 Ohm-1·m-1; D = 1.65·10-6 m2·s-1 
we obtain the following values of electrical 

equivalent circuit parameters: 
re = 0.029 Ohm; rg = 0.136 Ohm; 
C1 = 22.52 farad; r1

(1) = 4.44·10-8 Ohm; 
r1

(2) = 4.44·10-8 Ohm; L1 = 4.44·10-8 µHenry; 
C2 = 5.63 farad; r2

(1) = 1.775·10-7 Ohm; 
r2

(2) = 1.775·10-7 Ohm; L2 = 1.775·10-7 µHenry; 
C3 = 2.50 farad; r3

(1) = 3.99·10-7 Ohm; r3
(2) 

= 3.99·10-7 Ohm; L2 = 3.99·10-7 µHenry 
 

Discussion 
If a scientific calculation is needed for a 

transient current process with given input voltage, 
calculation result is represented as a partial sum of 
an infinite series. The number of summands in partial 
sum of the series is determined by a predetermined 
current calculation error. In engineering calculations 
of transient current, an electrochemical device with a 
finite number of parallel branches with reactive 
elements is used. 

 
Conclusions 

1. Rigorous scientific calculations of an 
electrochemical device are possible only in case of a 
system study of its physical fields (concentration and 
electrical ones). 

2. A mathematical model of an 
electrochemical device as an element of an electric 
circuit can be built after calculating operating voltage 
at its electrodes. 

3. The electrical equivalent circuit of an 
electrochemical device contains an infinite number of 
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parallel branches containing active and reactive 
elements. 

4. When calculating the current in an 
external circuit of an electrochemical device 
connected to a voltage source, there is the problem of 
numerical inversion of the integral Laplace 
transformation for a complex transcendental 
expression. 

5. The obtained expression for operating 
impedance of an electrochemical device makes it 
possible to synthesize all kinds of its particular 
characteristics and to study the dynamics of any 
transition process. 
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