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Abstract. The research of non-linear dynamic system (non-linear DS,NDS) behavior is a widespread task in many 
fields of human activity. For effective management of NDS it is necessary to know its free behavior (without 
influence of external effects), conditions which allows NDS to reach stable state, necessary parameter values for the 
system to provide the required functional characteristics. A phase-plane portrait describes a behavior of DS in the 
most obvious way. The modern development of computer engineering allows usage of computer heuristic devices as 
addition to classic analytical methods to create the phase-plane portrait.  
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Introduction 
Complex processes in various fields of 

science, technology and natural phenomena develop 
dynamically. Majority of processes in systems are 
often non-linear. Analysis of the behavior of these 
systems necessitates development special techniques 
and algorithms for non-linear dynamic systems (non-
linear DS, NDS) research. 

Modern control theory and Synergetics 
provide the ability to describe systems behavior by 
abstraction of the their nature behind generalized 
language. This method establishes a kind of 
semblance of the phenomena that explored with tools 
of different sciences, making phenomena reducible to 
a common model [1,2]. Successful identification of 
models' unity enables Synergetics to share 
achievements of one scientific domain among 
completely different domains [3,4]. 

Given that, actual place of processes in the 
world becomes irrelevant, they only need to be 
represented by the same model [5]. V. I. Vernadsky 
wrote about unusual similarity in laws of 
development of various phenomena of life sciences 
[6] and physics (population dynamics, epidemic, etc. 
[7]). 

In many fields of science and technology 
there are objects can be considered NDS. 
Mathematical model of DS are differential equations, 
presented in the form of Cauchy 

dx

dt
=F (x )

   (1) 

where x — vector of system state variables, t 
— time. 
History of NDS research 

Problems of NDS research are closely linked 
with several areas of science and technology. NDS 

research operates with theory of differential 
equations and vector fields. 

Since the XVII century many scientists has 
been involved in the study of NDS, among them: I. 
Newton, G. W. Leibniz, J. Bernoulli, L. Euler, J.-
L.Lagrange, B. Taylor, J. D'Alembert, J. Bull, A.-M. 
Ampere, C. Jacobi, G. Darboux, H. Poincare, Cauchy 
and at a later time — .E. Lorenz, H. Haken, V. I. 
Arnold, S. P. Kapitza and other researchers. 

U. S. Il'yashenko divides history of the study 
of DS on three periods: 

Newton Period: There is a differential 
equation. Solve it. 

Poincare Period: There is a differential 
equation. Describe the properties of its solutions 
without solving the equation, only using the 
properties of the right side. 

Andronov period: There no any differential 
equation. Describe the properties of its solutions [8] 
(ie, describe the general solutions' properties of any 
differential equations in plane). 

During Poincare period problem of solving a 
system of differential equations and finding explicit 
solution functions has been replaced by a proposition 
to conduct a qualitative analysis of the behavior of 
the system of equations in the state space, without 
solving the equations, but using properties of their 
right side. One of the basic tools in the theory of 
qualitative analysis was the study of special solutions 
of differential equations, in particular — stationary or 
singular points [9,10]. 

The next step (Andronov period) was the 
study of the most important properties of differential 
equations on the plane and the limiting behavior of 
all solutions [11]. 
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During Andronov period the approach was 
changed from the solution of a particular problem to 
the exploration a general form of abstract dynamic 
system. These systems require using particular cases. 

Breakthrough in computer technologies 
permitted a new approach to the research wider range 
of analytically unexplorable NDS. Such systems 
require the use of numerical methods [12, 13]. 

In recent scientific publications on the 
subject following methods can be found: qualitative 
analysis techniques, possible signs and types of 
separatrixes, possible types of singular points 
neighborhood, numerical methods for solving 
differential equations. Those methods were used to 
create interactive methodology and software for the 
explore dynamical systems. 

S. M. Ulam, who got much experience 
during work with first electronic computers, praised 
the continuous interactive cooperation between the 
machine and its operator, noting the synergy arising 
from analysis carried out by man on displayed 
information [14]. 

Today the most significant software tools for 
NDS research are software tools for analysis and 
forecasting based on symbolic computation [15-17] 
and/or simulations [18-19], but modern tools have 
many shortcomings, which gives the opportunity to 
improvement in this field. 

 
The mathematical approaches of description of 
the NDS dynamics. 

It is well known the relations between the 
parameters of dynamic system can be described by 
means of differential equations in Cauchy form (1), 
and the personal behavior of NDS is visually 
represented in the state space in the form of orbits 
(we will identify it as L). It means a set of sequential 
locations of x point in the phase space, where x point 
represents the system. 

L= {x (t )},t∈�
  (2) 

where 
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t0 — some initial time moment, x0 — the 
state of system in t0 moment. 

The orbit L of system must be divided by 
two parts [9]. A positive half-orbit L+ describes the 
development of system state at t → +∞, a negative 
half-orbit L− describes the prehistory of the system at 
t → −∞. 

The topologically similar orbits make the 
singular areas (or basins) on the phase plane that 
describes the state space (fig. 1). 

 

Fig.1. The four basins with different dynamics. 
 
In accordance with [9], the border of any 

basin (separatrix) consists of total orbit unstable 
orbits. Every can be: 

2. An equilibrium point (a singular 
point) 

3. a limit cycle 
4. an orbit which has at least one half-

orbit, that is a separtrix of some equilibrium point 
To get a high-quality visualization of 

behavior of NDS it is necessary to calculate and 
render separtrixes (the boundaries of basins) and to 
designate the dynamics of every basin. 

 
Key provisions used in visualisation of the NDS 
phase portrait 

Visualization of the phase portrait requires 
building of a certain set of system's orbits and 
separatrixes between different basins. To find which 
orbits must be built, is determined a specific 
parameter with 0 to 1 range – weight of orbit [19]. 
Expert rating have shown a high (close to 1) weight 
of separatrixes. 

For visualization of the systems' phase 
portrait in accordance with this rating and known 
basin boundaries structure it is necessary: 

5. first determine the type of singular 
points. It gives particulary quantity of basins and 
positioning of separatrixes around each one 
equilibrium point 

6. then find the number and relative 
positioning of limit continuums, particularly limit 
cycles 

7. finally, find positioning of non-
limiting separatrixes, that means to find a limiting set 
which a separatrix of that equilibrium point 
approaches with t → +∞ and t → −∞. 

According this idea, the new method of 
topological structure determination must use 
separatrix search algorithms near equilibrium points 
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and in random points of orbit. One or several orbits is 
necessary for visualization of dynamics inside a 
basin, therefore here is also building of any orbits 
from user defined points. 

 
Analysis of system's behavior near its singular 
points 

As long as the singular points and their 
separatrixes may form part of the basin boundary, it 
is necessary to establish the position of singular 
points within the subject area and to investigate the 
dynamics of the system in the vicinity of each of 
them. 

Moreover, the type the singular points lying 
inside basin, but not in the borders (topological nodes 
and centers) determines the dynamics of their basins. 
Accordingly, for the visualization of the phase 
portrait of the system it is important to analyze the 
behavior of the system near each of its singular 
points. 

Position of the system's (1) singular points 
can be determined by numerical solution of the 
system: 

F (x )= 0           (4) 
The system dynamics near regular singular 

point can be found from the eigenvalues of the Jacobi 
matrix of the system. It can be classified as a saddle, 
node, focus or center in the Poincare 
classification [9]. 

Irregular isolated singular point, as in the 
theory of Andronov period's qualitative analysis, is 
either a topological node (similar to node or focus), 
or a center or it's neighborhood consists of a finite 
number of qualitatively different sectors [9]. The 
boundaries between these sectors usually are, but not 
always, separatrixes. 

Thereby for any particular, even a regular 
singular point, if we consider a sufficiently small 
(characteristic) neighborhood, there are three 
possibilities: 

8. neighborhood consists of a finite 
number of elliptic, nodal and saddle sectors (in the 
case of the saddle — only saddle sectors); 

9. point is a topological node (this 
category includes not only the nodes and node-like 
irregular points, but focus); 

10. point is the center. 
Even if the Jacobian of the system is close to 

zero and its numerical estimation wrongly classifies a 
point as irregular, the analysis of the neighborhood 
will correctly detect the system dynamics near this 
point. 

It can be used as the basis of the first of our 
proposed methods for searching separatrixes — edge 
detection of qualitatively different sectors in the 

neighborhood of an isolated singular point. For each 
of singular points: 

1) Determine is it irregular or not (by 
numerical estimation of the Jacobian of the system at 
this point); 

for regular singular point determine its type 
and, according to the above Poincare classification 
determine the presence of separatrixes and their 
directions; 

for irregular singular point explore it's 
neighborhood. 
 
Finding of limit continuums 

If the singular point determines the position 
of a separatrix and lies outside the defined area or 
separatrix and is a limit cycle, to find this separatrix it 
is necessary to use another features. It is known the 
separatrix as limit orbit for positive and negative half 
of at least one of the shared basins is always orbitally 
unstable [9]. Accordingly, comparing the behavior of 
neighboring orbits in some part of the study area, it is 
possible to determine the position of the separatrix 
passing through this part. 

Fig. 2 shows an example of such a 
comparison. 

 

Fig. 2. On [omega]-orbital stability 
 
The test segment is divided into n parts, and 

the distance |δL1
+| between positive half-orbits L0

+ 
and L1

+ substantially are greater than the distance 
between other pairs of adjacent half-orbits. 
According this, it can be concluded that between L0

+ 
and L1

+ passes orbitally unstable at t → + ∞ 
([omega]-orbitally unstable) orbit, which is a limit for 
neighboring orbits as t → - ∞ and it is sought 
separatrix. Further refinement of its provisions can be 
done iteratively, with similar reasoning. 

Orbital stability analysis has several 
advantages. Comparing the distances between 
neighboring orbits it is possible to find attracting 
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([alpha]-orbitally unstable) and repulsive ([omega]-
orbitally unstable) closed orbits (cycles). With the 
analysis of orbital stability there are no false positives 
on the orbits with an inflection point. This makes 
weight of orbits constructed using analysis of orbital 
stability high and close to 1. Accordingly, the 
algorithmic reliability of separatrixes search by 
analyzing the orbital stability of orbits is very high. 

At the same time, calculation of the 
separatrix fragment also requires calculation of set of 
neighboring orbits fragments of the same length. 
Therefore, the complexity of building and searching 
the separatrix with this algorithm significantly higher 
than the complexity of building an orbit with a 
corresponding length [20,21]. 

In many cases, rather than reliable, but time-
consuming analysis of orbital stability, one can use 
indirect signs of separatrixes. One such indirect sign 
is the curvature of the orbits. 

Near the saddle point the separatrix is a 
straight line directed along one of the eigenvectors of 
the saddle point, and keeps a straight form far enough 
away from the singular point, depending on the 
influence of the nonlinear terms in the right-hand side 
of equation (1). Remaining orbits near a singular 
point are hyperbolas, and at opposite sides of the 
separatrix they have different "curvature", which can 
be described quantitatively. Thus, the orbit with the 
minimum curvature in the scope area with a high 
probability can be separatrix of the nearby saddle 
singular point [21]. 

The complexity of such search and the 
building of separatrix does not exceed the complexity 
of building orbit of the corresponding length. 

This algorithm has its limitations. This 
algorithm does not allow identifying the cycles that 
aren't limiting for saddles separatrixes. False 
positives are also possible if each line of the family 
of orbits in the area has an inflection point, or close 
to their characteristic directions of nodes. Because of 
these errors, weight of lines constructed with this 
algorithm is less than the line constructed by 
comparing the distances between the orbits and is 
about 0.5-0.7. 

In practice, these limitations require 
interactive interference in the analysis by researcher's 
own intelligence. 
Interactive phase portrait visualization technique 
for a nonlinear dynamical system 

Developed algorithms, methods and 
conclusions based on the theory of qualitative 
analysis, made possible to develop research technique 
of nonlinear dynamic system as a whole. It includes 
five basic stages. 

Stage 1, the user specifies the workspace 
taking into account technological restrictions, the 

equations defining the behavior of the studied 
system, its parameters and modeling parameters. 

Stage 2. Search for singular points of the 
system within the given technological constraints is 
performed. For localization of singular points 
velocity moduli in various areas of workspace are 
compared. Then the position of the singular points of 
the system is iteratively refined. Position found in the 
work area of the singular points is drawn on the 
screen and stored in memory for use in the next 
stages. 

Stage 3. The nature of the equilibrium 
(singular) points is studied. This is done by moving 
around each singular point in the positive direction 
(counterclockwise for the finite singular points and 
clockwise for ∞) and finding if neighboring points 
belongs to the separatrix. All the separatrix in the 
neighborhood of each singular point identified, 
iteratively refined and rendered. Drawing separatrix 
orbits allows to see limit set, which is approaches. 
Orbits calculated with numerical methods. 

With the results of the stage 3, user can 
adjust model parameters and set any arbitrary area for 
separatrixes search (not bound to any singular 
points). This is especially important if due to 
technological limitations needed singular points are 
not available. 

Stage 4. All separatrixes in user-defined area 
are being searched. Then found separatrixes are 
drawn (if existed). After this search area can be 
adjusted, and any found separatrix can be tuned to 
improve accuracy. 

Stage 5. User analizes found separatrixes. 
Separatrixes or auxiliary lines kinks require more 
detailed study. According to the results of the fifth 
stage user can adjust parameters or get back to the 
stage 4. 

Note that developed and described above 
algorithms are efficient for constructing separatrixes 
regardless of degeneracy and position of singular 
points. 

The user also has the ability to calculate and 
draw the orbit passing through an user-defined point. 

Software implementation of developed 
technique and NDS research algorithms gives 
sufficiently complete results both in limited scope 
area, and with irregular singular points. This feature 
is unique among tools known today. 
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