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1. Introduction 

Firstly, we recall some definitions and basic 
properties of schemes see[1]. (For detail see [5],[10]). 

Definition 1.1. Let R  be a ring with unit. We shall 
denote by spec( R ), the set of all prime ideals over R. 

For any ideal P in R , we denote by )(PV  the set of all 

prime ideal in spec( R ) containing .P these sets define 
a topology, which called a Zariski topology. 
Definition 1.2. For given topological space X, a 

ringed space is a pair ),( XX   where x  is the structure 

of sheaf on X . The space ),( XX   is called locally 

ringed space if the stalks Xx


 are locally rings for any 
x X . 

Definition 1.3. A locally ringed space ),( XX  is called 

affine space if 
)),((),( )( RspecX RspecX  

 and a 

scheme if it has an open covering iIi UX    such 

that 
),(

iUX
X 

is an affine scheme for Ii . 

A pair
)),(( )(RspecRspec 

 is locally ringed space. 
Definition 1.4. For any scheme X, the structure of 

sheaf X  is defined to be the ring of all regular 
functions denoted by: 

X}  U,:{)(X   pUp AUUffU
, 

where pA
is the local ring on X at p. 

Definition 1.5. An involution * on the sheaf x  

(* : )X X 
 is defined as an automorphism of 

order two by considering the inverse regular function, 

that is, id2(*) ,
1*  ff  and 

11*)(  fgfg . The 

scheme X with this property on sheaf X  is called a 
scheme with an involution. 

Secondly, we recall the concept of dihedral 
category, object and modules that will be useful in 

the sequel (see [3],[6]). 

Definition 1.6. The dihedral category D  is a 

category with objects order set Nnn   ],[  and the 
following family of morphisms: 

],[]1[: nni
n 

 ],[]1[: nnj
n   

],[][: nnn 
 

],[][: nnn 
 

such that the following framework are hold: 
1

11

1
1 1

,          if        i j

,          if        i j

1
         ,       ,1 2

,          , 1,1 [ ]

1 ,           1,1

j i i j
n n nn

j i i j
n n n n

ji if i jn n
j i Id if i j jn n n

ji if i jnn





 

    


      


 
     


     

 
     



              (1)

 

1
1

1
1

2
[ ]

1

1 ,                   1 i n1
1

,                 1 j1
1

[ ]
 

,                   0 i n

,                 0 j

i i
n n n n

j j
n n n n

n n

n n n n

i i
n n n n

j j
nn n n n

n Idn n

n

Id









        
 

       
  

       
      

 

     

               (2)

 
Definition 1.6. The category generated by the family 

of morphisms 
i
nd , 

j
nS

 and nr  is called a reflexive 
category and is denoted by R. 
Definition 1.7. Let  be an arbitrary category. A 
dihedral object of the category  is a functor 

: opF D   , such that ( ) nF n X , ( )i i
n nF d  , 
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( )j j
n nF S  , ( )n nF t   and ( )n nF r  ( )opD  is the 

inverse of D ). If  is a category of modules, then the 
dihedral object is called a dihedral module. 

Note that the morphisms },,,{ nn
j

n
i
n rtSd satisfy the 

relations (1),(2). 

Definition 1.8 Let 


 be an arbitrary category. A 

reflexive object of the category 


 is a functor 

: opF R  , such that ( ) nF n X , ( )i i
n nF d  , 

( )j j
n nF S  , and ( )n nF r   (

opR is the inverse of 

R ). If 


 is a category of modules, then the 
reflexive object is called a reflexive module. 

Definition 1.9. Let }{ nMM  be a dihedral (reflexive) 
k-module. The dihedral (reflexive) homology groups 
of M is given by: 

[ ]
( , ),     0   

[ ]
( ( , ),     0)

( )

( )

n

n

opk D D
K M nn

opk R D
K M nn

HD M Tor

HR M Tor









 , 
where KD (KR) is trivial dihedral (reflexive) k-

module. 
2. Reflexive and dihedral homology of schemes 

In this section we define the dihedral homology 
of schemes and study some of its properties. 

Definition 2.1. [8] A sheaf of X -modules is a sheaf 
 on X, such that for each open set u X, the group 

(u) is a ( ) modX u ule   and for each inclusion of 

open sets uv   the restriction homomorphism 
)()( vu  is compatible with the module 

structures via the ring. The set of all sheaves of x-
module defines a category, called a category of 

sheaves of modules and denoted by )( XMod  . 
Definition 2.2. The dihedral module of 

sheaves is a functor: )(: X
op ModDF  , such 

that: 
)1(])([  n

XnF   
)()1(:)( n

X
n

X
i
n

i
n dF     

0 1

0 1 1

( )

      ( ),  0 1

i
n n

i i n

d f f f

f f f f f i

   

      



   
)()1(:)( n

X
n

X
j

n
j

n SF     

0 1

0 1 1

( )

      ( ... ),  0 1

i
n n

i i n

S f f f

f f f id f f i

   

        



  
)()(:)( n

X
n

Xnn tF     

0 1 0 1( ) ( ),n n n nt f f f f f f        
)()(:)( n

X
n

Xnn rF    , 

,1   ),()(
1

1

11

010 


 ffffffr nnn   

with the following: 





n

i
i

i
n db

0

)1(
, 







1

0

)1(`
n

i
i

i
n db

, 
nn

n tT )1(
, 

1...1  nttN , n

nn

n rR 2

)1(

)1(


 . 
We can construct the tricomplex of 

sheaves 1     )),,(( 
X

nCD , (see [9]) where 
 =1+2+3, and: 








    :         
`

   
)1()(

1
n

X
n

X

n

n

b

b


 

1 ( ) ( )
      :2

T n nn
X XN

  
  

 

 

1-Rn
-1-R ( ) ( )n      :3 1

1

T n nn
X XR Tn n

Rn

  
 

 








  

Clearly (i)
2=0, i=1,2,3. 

In order to define the dihedral cohomology of 
schemes, we make a use of the hyperhomology of 
define in [6]. 
Proposition 2.3: [11] Let X be a schemes over k. Then 
each HHn is a quasi-coherent sheaf on X. Moreover, 

on each affine open ( )spec A  of X we have natural 

isomorphism 
0 ( , )n nHH H HH


  .By means there 

is a cyclic homology theory HCn of schemes over a 
commutative ring k, extending the usual cyclic 
homology HCn of k-algebras. 
Theorem 2.4:[5] For any affine schemes 

( )X spec A  over k we have: 
( ) ( )n nHC A HC X . 

Definition 2.5. The dihedral homology of involuative 
scheme X over a commutative ring k is the 
hyperhomology of the total complex of the tricomplex 

of sheaves ( ( , )n
X iCD   : 

* *
( ) ( ( ( ), )),

n
HD X H Tot CD Xx

 
 

 
Where 

( ( )) ,      

        0,1, 2, ...,   1.

n

X

X

n
Tot CD

Im(1 R) Im(1 T)

n


 

  

     
Note that: 

The reflexive homology of involuative scheme X 
over a commutative ring k is the hyperhomology of 
the total complex of the tricomplex of sheaves 

( , )n
X iCR   : 

* *( ) ( ( ( ), )),n
xHR X H Tot CR X    

Where 
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 0,1, 2, ...,  1( ( )) ,   .n

n
n XTot CR X

Im(1 R)
   


 


 

In the following part we study some important 
properties of the dihedral homology of schemes. 
3.The Mayer-Vietoris sequence for dihedral 
homology of schemes 

In this part we get the Mayer-Vietoris sequence 
for dihedral homology of schemes. Firstly, we 
suppose the following lemma. 
Lemma 3.1. The following sequence is exact: 

0 ( ) ( ) ( )
1 2

( ) 0,        1
1 2

J In n n
CD CD CDX X X

n
CD X X

    

  

 

  

 


 

Where 
n

XXX CD     ),(
21


is the dihedral 

complex, and  21 JJJ  ,  21 III  , are defined by: 

1 1 2 1 2 1 2 2

1 1 1 2 2 2 1 2.

I : X X X  ,    I : X X X  ,

 J : X X X  ,   J : X X X

 

 

 

   
Proof. Clearly, J is an epimorphism and I is a 

monomorphism and 0J I  . Let 

( )( ) ( )( )
1 2

n
u CD uX X X  

, then 
( )( )( ) ( ( ), ( )) 0

1 21 2
JoI u J u uX XX X   

 
where 

 )]
2

()
1

([))(
2

),(
1

(( X
nCDX

nCDuXuX  
 

and 
).( ))((

2121
X

n
X XX

CDu    
 

Theorem 3.2. If 1 2X X X   where X1 and X2 are 
open subsets of scheme X and the diagram: 

212

1

               

          

XXX

XX







 
is commutative, then there exist the following 

long exact sequence: 
*

... ( ) ( ) ( )1 2 1 2

*
( ) ( ) ....1 2 1 1 2

J
HD X X HD X HD Xn n n

I E
HD X X HD X Xn n


 





 



 
 

where 
* * *

1 2( , )I I I ,
* * *

1 2( , )J J J , E is a connecting 
homomorphism. 
Proof. The exact sequences 

0 ( ) ( ) ( )
1 2

( ) 0,       1
1 2

Jn n n
CD CD CDX X X

I n
CD X X

    

  

 

  



 
 

induce the following long exact sequence of 
dihedral groups: 

*

*

1 2 1 2

1 2 1 1 2

( ) ( ) ( )

( ) ( ) .

J
n n n

I E
n n

HD X X HD X HD X

HD X X HD X X

  

  

  

  

 

    

Since E o J* = 0. 
4.The relation between cyclic and dihedral 
homology of schemes 

In this part we study the relations between the 
cyclic and dihedral homology to all schemes over ring 
with identity and involution. We shall prove the 
following assertion. 
Theorem 4.1. Let  be a sheaf of X-modules, and let 
X be a scheme over unital ring k with an involution. 
Then the relation between the cyclic and dihedral 
homology groups is given by: 

* *

1

... ( , ) ( , )

( , ) ( , ) ...

i j
n n

n n

HD X HC X

HD X HD X



 





    

     
where j* is a connecting homomorphism. 

Proof. For a scheme X, let ),( X be the total 
complex of Connes double complex [7]. We embed 

the complex ),( X  in the tricomplex ),( XD  (see 
[6]). Passing to the total complexes associated with 

),( X and ),( XD , we get the following short 
exact sequence 

0]4)[,( ),( ),( 0   XDTotXDTotXTot 

This sequence induces the following long exact 
sequence which relates the cyclic and dihedral 
homology groups: 

* *
... ( , ) ( , )

( , ) ( , ) ...1

i j
HD X HC Xn n

HD X HD Xn n



 

  

 

 

 
 

when 2 is invertible in the ground ring k we get 
the following exact sequence 

0),(),(),(0  XnHDXnHCXnHD 

 
Remark: 

From the last sequence we get the following fact: 

( , ) ( , ) ( , )n n nHC X HD X HD X      
5. Cohomology groups of schemes 

In this part we are concerned with the dihedral 
cohomology groups. It’s necessary to translate the 
definitions and results of a pervious discussion in the 
cohomological framework because there is an 
interesting pairing between homology and 
cohomology groups. It’s well known, in cyclic 
cohomology case, that if A is a unital associated k-

algebra and ),(* kAHomA  , then its cochain complex 

is ),()( )1( kAHomAC nn  . The dualizing of the Connes 
bicomplex CC*(A) gives a bicomplex of cochains 
CC**(A) and its homology gives the cyclic 
cohomology group. The dihedral cohomology group 
can be defined in the same manner. A chive this, we 
replace the category Dop by D in the definitions 1.6, 
1.7 and 2.2, then we get the dihedral cohomology 
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group 
,0   , ),(][)(  n

D
KM

n
DkExtM

n
HD

 where KD 
is trivial dihedral k-module. Also the dihedral 
cohomology of schemes X over a commutative ring k 
is the hypercohomology of the total complex of the 

tricomplex of sheaves :)),(( iX
nCD 

 
* *( ) ( ( ( ), )),n

xHD X H Tot CD X    where 

( ( )) ,

      0,1,2,...,      1.

n
n X

XTot CD
Im(1 R) Im(1 T)

n

 
 

  

     
The theorem 3.1 of the Mayer-Vietoris sequence 

for dihedral homology and theorem 4.1 of the relation 
between cyclic and dihedral homology of schemes can 
be translated to cohomology case. 

Similar arguments as those used in the proof of 
theorem 3.1 give the following theorem. 

Theorem 5.1. If 21 XXX   where X1 and X2 are 
open subsets of scheme X and the diagram 

212

1

               

          

XXX

XX







 
is commutative, then there exist the following 

long exact sequence: 
*

*

1 2 1 2

1
1 2 1 2

... ( ) ( ) ( )

( ) ( ) ....

In n n

J En n

HD X X HD X HD X

HD X X HD X X





  

  



   

where ),(
*

2

*

1
* III  , ),(

*

2

*

1
* JJJ  , E is a 

connecting homomorphism. 
Similar arguments as those used in the proof of 

theorem 4.1 give the following theorem 5.2. 
Theorem 5.2. Let  be a sheaf of X-modules, and let 
X be a scheme over unital ring k with involution. Then 
the relation between the cyclic and dihedral 
cohomology groups is given by: 

* *

1

... ( , ) ( , )

( , ) ( , ) ...

i jn n

n n

HD X HC X

HD X HD X



 





    

     
where j* is a connecting homomorphism. 

Remark. 
1-when 2 is invertible in the ground ring k we get 
the following exact sequence 
0 ( , ) ( , ) ( , ) 0.n n nHD X HC X HD X         

2- ( , ) ( , ) ( , )n n nHC X HD X HD X     . 
In what follows we are concerned with the 

cohomology theory of involutive schemes. 
6.The Connes-Tsygan long exact sequence for 
dihedral cohomology for schemes 

In this part we get the Connes-Tsygan long exact 
sequence for dihedral cohomology for schemes. The 
main result is theorem 6.4. 

Consider the following Helmmski exact 
sequence [9] 

0 ( ) ( ) ( ) ( ) 0,       (3)
I N M

CC X C X C X CC X   
 

Where ,C(X) CC(X)  is defined above and 
n nC(X) ( C (X) , b  ), 

 

( )1

      ( )1

n
b f a ,a ,...,ao n 1

n n
b f a ,a ,...,a   (-1)  f(a a ,a ,...,a ), o n 1 n o 1 n 1  



    
2 n

n n n nN 1 t ,  M 1 t t ... t ,       where 
: ( ) ( )nt CC X CC X is a cyclic operator and I is an 

inclusion. 
To get the Connes-Tsygan long exact sequence 

for dihedral cohomology of involutive schemes we 
split the sequence (3) into two exact sequences. Firstly 
we need the following lemma. 
Lemma 6.1. The sequence (3) is exact. 
Proof. We shall only show that the sequence (3) is 

exact on C( X ), that is Ker M = ImN. Clearly KerM 
 ImN, Since 

0)1)(...1()1( 2  n
n
nnnn tttttMMN . 

It remains to show that if x Ker M, then there 

exist yC( X ), such that M y = x. Suppose 
yn=(1+tn+t n²+…+tn

n ) x, 
tn yn= (tn +tn²+…+tn

n )x, then 
yn–t n y n=(1-t n

n )x. Let y = y1+y2+…+yn 
then 
y+t n y = (n+1)x = (1-t n)y. 
Hence 
y=1/(n+1){n + +(n-1)tn +(n-2)t2

n +…+t n
n-1 )} 

C(A ). So Ker M I m N. The lemma is proved. 
If the group Z/2Z acts on the sequence (3) as 

follows, on CC( X ), by the reflexive operator 

: ( ) ( )nr CD X CD X 

 and by n nr t  on C( X ), we get 
the following assertion: 
Proposition 6.2. The sequence (3) induces the 
following commutative diagram: 

 
     0                   0               0

                                    

C C (X ) C D (X ) C D (X )

                                    

C (X )   C R (X ) C R (X )

                                  





  

 

  

 

 

 

 

      4

`

` `

  

                      ( )

C (X )   C R (X ) C R (X )

                                    

C C (X ) C D (X ) C D (X )

                                    

0                       0             







 

  

 

  

 

  

  

   0     



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

702 

where ( )       

`     

1
            ``( ) ((1 )( ), (1 )( )),    ( ),

2

1
  f ((1 r )(f),(1 r )(f)), f CC(X),n n

2

1
           (f) ((1 r t )(f),(1 r t )(f)), f C(X),n n n n

2

f r f r f f CC Xn n







   

   

   



 
Proposition 6.3. The following sequences are exact: 

(5)

I N M
0 CD (X) CR(X) CR(X) CD(X) 0    

I N M
0 CD (X) CR(X) CR(X) CD(X) 0      

  
 

   
 

  

  



  
Note that, in (5), if we take an element xKer M, 

invariant with respect to n nr t , that is ( )n nr t x x , 

then there exist an element  ( )y CR X , such that 

nr y y . 
Using the short exact sequence (5) we can 

consider the following sequences: 

0 ( ) ( ) ( ) 0      

0 ( ) ( ) ( ) 0

I N
CD X CR X CSR X

N M
CSR X CR X CD X

 

  


 

 
 

 

 
 

Where 1   ,  ( )  CSR A Ker M  . They 
induce the following two long exact sequences group 
cohomologies: 

1
( ) ( ) ( ) ( )

1
( ) ... ( ) ( ) ( )

1 1
( ) ( ) ...                                (6)

oo o o
HD X HR X HSR X HD X

n n n
HR X HD X HR X HSR X

n n n
HD X HR X

   

   

  


  

 
   

 
 



  
1

( ) ( ) ( ) ( )

11 1
... ( ) ( )

( ) ( ) ......                                    (7)

oo o o
HSR X HR X HD X HSR X

nn n
HR X HD X

n n
HSR X HR X

   

  

 

 

 
  

 










 

Suppose that, the connection map 
n (n0) in 

(7) is a topological vector space isomorphism, then by 
using this isomorphism in (6) we get- the following 
exact sequence: 

1

1

... ( ) ( )

1( ) ( ) (8)

1 ) ( ) ...,

         

(

n
n

n

n

n

n

HD X HR A

nHD X HD X

n nHR X HD X








 

 

 







 



  



 

  
Where 

1 1 1( ) ( ),  .n n n n n nH N            
 

The sequence (8) is the Connes–Tsygan long 
exact sequence for dihedral cohomology of schemes. 

Now considering the Connes–Tsygan exact 
sequence from and the relation, that, relates the cyclic 
and dihedral cohomologies of schemes, we get the 
following infinite commutative diagram with exact 
rows and columns: 

  0              0                  0   0

                               

1 1
... ( )     ( ) ( ) ( ) ...

                                      

1
... ( )      ( ) ( )      

n n n n
HD HR HD HD

n n n
HC H HC

X X X X

X X X

   



   

  
    

   


   

1
( ) ...   (9)

                            

1 1
... ( ) ( ) ( ) ( ) ...

                               

0  0               0                 0

n
HC

n n n n
HD HR HD HD

X

X X X X   




   

  
    

   

 
 
Theorem 6.4. Let H be a Hilbert schemes space and 
A = L(H)  is algebra of all bounded operators on H. 

Then 
α nHD (A) = 0, n ? , ε = ±1. 

(for more information about Hilbert schemes, see 
[5]) 
Proof. Clearly the algebra A is C*-algebra and has no 

bounded traces. So 
 0 nH (A) = HC A = 0

. Following 

[5]   0nHC A = 0, n 
. Considering these facts in (9) 

we have: 
0 0 0 0

0 0 1 1... ( ) ( ) ... ( ) ( ) ...

... 0            0  ...         0 0 ...                          . (10)

0 0 1 1... ( ) ( ) ... ( ) ( ) ...

0 0 0 0

n nHD A HR A HD A HD A

n nHD A HR A HD A HD A
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