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Abstract: Average surface roughness value (Ra) is an important measure of the quality of a machined work piece. 
Lower the Ra value, the higher is the work piece quality and vice versa. It is therefore desirable to develop 
mathematical models that can predict the minimal Ra value and the associated machining conditions that can lead to 
this value. In this paper, real experimental data from an end milling process is used to develop models for 
predicating minimum Ra value. Two machine learning techniques, Model Tree and Sequential Minimal 
Optimization based Support Vector Machine, which have not been used before to model surface roughness, were 
applied to the training data to build prediction models. The developed models were then applied to the test data to 
determine minimum Ra value. Results indicate that both techniques reduced the minimum Ra value of experimental 
data by 4.2% and 2.1% respectively compared to the previously reported values. Model trees are found to be better 
than other approaches in predicting minimum Ra value. 
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1. Introduction 

Machining is the process of removing material 
from a work piece to transform it to a desired shape. 
Different machining processes include conventional 
processes such as grinding, milling, drilling etc. and 
non-conventional processes such as electrodischarge 
machining, electrochemical machining, waterjet 
cutting etc. The milling process uses a rotating cutter 
for material removal. Two main types of milling are: 
peripheral milling and face milling. In peripheral 
milling the machined surface is obtained parallel to 
the spindle rotation whereas in face milling the 
machined surface is produced normal to the spindle 
rotation. Further the milling process is classified as 
conventional milling and climb milling. In 
conventional milling the direction of feed of 
workpiece is against the cutter rotation whereas in 
climb milling, both the cutter rotation and the 
workpiece feed are in the same direction. End milling 
involves a mix of peripheral and face milling and 
employs bottom and edges of the milling cutter. 
Figure 1 shows the geometry of milling process. The 
important parameters are cutting speed, feed rate, 
depth of cut and rake angle. Cutting speed is the 
speed at which the tool tooth cuts through the 
workpiece. It is expressed in meters per minute or 
surface feet per minute (SFPM). Feed rate is the 

speed at which the workpiece is fed into the cutting 
tool and is expressed in inches per minute or 
millimetre per minute. Depth of cut specifies the 
penetration of the milling cutter into the workpiece 
and indicates the amount of material removed in each 
pass. The rake angle specifies the direction of chip 
flow as the workpiece is machined. 

One of the commonly used measures of the 
performance of any machining process, such as 
milling is the surface roughness of the machined 
work piece. Surface roughness is defined as the 
vertical deviations of the surface from its ideal form. 
Different surface roughness parameters are in use 
such as root mean square roughness (Rq), roughness 
average (Ra) and maximum peak-to-valley roughness 
(Ry or Rmax) etc.(Yang and Chen, 2001). However, 
roughness average (Ra) is the most widely used 
parameter. It is defined as the integral of the absolute 
value of roughness profile height over the evaluation 
length i.e. 

 

where  is the sampling length and  is the 
ordinate of the profile curve as shown in Figure 2. 
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Figure 1. Geometry of milling process showing the workpiece, cutting tool, newly formed surface, chip and 
different angles (adapted from (Groover, 2010)).  is the rake angle which specifies the direction of chip flow. 
The angle  between flank and the new surface is called the clearance angle. 
 

A low surface roughness value (Ra) indicates 
high machining performance and a better quality 
work piece and vice versa. A high quality work piece 
with lower surface roughness will be more corrosion 
resistant and have high creep life and fatigue 
strength. Therefore, considerable research effort has 
been put into the development of models that could 
predict machining parameters resulting in minimum 
Ra value. These models establish relationship 
between cutting conditions (usually expressed in 
terms of cutting speed, feed rate, depth of cut and 
rake angle) and the resulting Ra value. Artificial 
Neural Networks (ANN) have been used in the 
prediction of surface roughness in drilling (Sanjay 
and Jyothi, 2006), abrasive waterjet machining 
(Çaydaş and Hasçalık, 2008), CNC lathe (Karayel, 
2009) and end milling (Topal, 2009; Zain et al., 
2012). Least Square Support Vector Regression (LS-
SVR) is employed in (Dong et al., 2006; Xiaoh, 
2009) to predict surface roughness in the end milling 
process. In (Zain et al., 2012) regression and ANN 
models for predicting minimum Ra value in the end 
milling process were developed. As compared to 
experimental data, they achieved a reduction in 
minimum value of Ra by 1.57% and 1.07% by 
regression and ANN models respectively. References 
(Lu, 2008) (Benardos and Vosniakos, 2003) provide 
a detail review of techniques for predicting surface 
roughness in different machining processes. In this 
paper we use Sequential Minimal Optimization 
(SMO) based Support Vector Machine (SVM) 
(Smola and Schölkopf, 1998) (Shevade et al., 2000) 
and Model trees (Quinlan, 1992; Wang and Witten, 
1996) to determine minimum Ra value in the end 
milling process. 

This paper is organized as follows: Section one 
introduces the significance of finding minimum value 
of surface roughness and describe some existing 
techniques, Section two discusses the techniques of 
Model Tree and SMO based SVM, Section three 

describes the data set used in this paper and 
elaborates the results of employing Model trees and 
SMO-SVM for estimating minimum Ra value, 
Section four evaluates the results using t tests and 
making comparison with (Zain et al., 2012), finally 
Section 5 concludes the paper. 
 
2. Models for predicting surface roughness 

Developing mathematical models for predicting 
Ra value is a challenging task because surface 
roughness value is the result of complex 
interdependence between various process parameters. 
In this section we describe the techniques of model 
trees and SMO based SVM that can be employed to 
generate reliable regression based models for Ra 
value prediction. To the best of our knowledge, this is 
the first work that employs these two techniques for 
predicting minimum Ra value. These two techniques 
are selected as they belong to two different families 
of algorithms. The models produced by SVM are 
opaque like the models produced by ANN. Model 
trees, on the other hand, belong to decision tree 
family. As compared to ANNs, they produce more 
understandable models by providing greater visibility 
into the relationship between variables that build the 
model. 
2.1 M5 Model Trees 

M5 Model trees (Quinlan, 1992; Wang and 
Witten, 1996) have multivariate linear regression 
models at their leaf nodes, differing from regression 
trees (Breiman et al., 1984) that have numeric values 
or decision trees that have classes at the leaf nodes. 
They can thus be compared to piecewise linear 
functions. Decision tree induction algorithm is used 
to build model tree. However, in contrast to decision 
tree where maximization of information gain is the 
splitting criteria, in model tree the minimization of 
variation (standard deviation – sd) in the intra-subset 
class values is used as the splitting criteria. 
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Figure 2. Definition of surface roughness. is the sampling length and  is the ordinate of the roughness 
profile curve. 
 

At each node, the standard deviation of the class 
values reaching that node is taken as a measure of 
error. At each node, the standard deviation of the 
class values reaching that node is taken as a measure 
of error. The expected reduction in error is then 
calculated for each attribute. The attribute which 
gives maximum reduction in error is chosen for 
performing splitting. The standard deviation 
reduction (SDR) is calculated by the following 
equation (Wang and Witten, 1996): 

 
where K is the set of examples that reach the 

node and K1, K2,… are the sets resulting from 
splitting the node according to the selected attribute. 

The splitting stops if the change in class values 
(standard deviation) of instances reaching a node 
becomes very small or when there are only few 
instances left. Pruning is performed from the leaf 
nodes and inner nodes are transformed into leaf 
nodes by replacing them with a linear regression 
function. To avoid discontinuities between the linear 
models of the adjacent leaf nodes in the pruned tree, a 
smoothing process is carried out. The trees formed by 
M5 algorithm are generally much smaller than the 
regression trees. M5 model trees have the ability to 
efficiently scale with very high dimensional data 
having hundreds of attributes. 
2.2 Sequential Minimal Optimization based 
Support Vector Machine 

Support Vector Machine (SVM) (Cortes and 
Vapnik, 1995) has found applications in numerous 
fields for solving both regression and classification 
problems. It solves a nonlinear low dimensional 
classification problem by projecting it into high 
dimensional space where an optimal separating 
hyperplane is constructed between the positive and 
negative classes with maximum margin. Support 
Vector Regression tries to find a continuous value 
function that fits the data. The input is mapped to a 
high dimension feature space and a linear model is 

constructed in that space. The aim is to minimize the 
functions of the following form (Flake and Lawrence, 
2002): 

 

In the above equation  is ε-sensitive error 
function defined as follows: 

 
The output of SVM is then expressed as: 

 

Where  and  are positive and negative 

Lagrange multipliers that obey  and 

. 
Sequential Minimal Optimization is a learning 

algorithm for SVM originally proposed for 
classification problems(Platt, 1999). A variant of this 
algorithm for support vector regression was proposed 
in (Smola and Schölkopf, 1998) and subsequently 
improved by (Shevade et al., 2000). It continuously 
searches for two Lagrange multipliers that can be 
optimized with respect to each other and then 
computes the optimal step for the two Lagrange 
multipliers. For detailed explanation refer to (Flake 
and Lawrence, 2002). 
3. Experimental dataset and Results 

The experimental dataset reported by (Zain et 
al., 2012) was chosen to study the performance of M5 
Model Trees and Support Vector Machine based 
regression models for predicting the minimum value 
of surface roughness. Their machining experiments 
involved 24 trials to measure Ra value in the end 
milling process based on eight data of two levels 
DOE 2k full factorial, four center and twelve axial 
points. All Ra values were collected for three type of 

Roughness 
Centre Line 
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cutting tools: uncoated, TiA1N coated and SNTR 
coated. The experimental results reported by them are 
shown in Table 1 and are used in this paper for 

developing M5 and Support Vector Machine based 
regression models. 

 
Table 1. Experimental cutting conditions and Ra values for End Milling Process [1]. Ra values are taken for 
three tools: Uncoated, TiA1N coated and SNTR coated. 

No. 
Data 
source 

Setting values of experimental cutting conditions Experimental Ra value (µm) 
Cutting speed v 
(m/min) 

Feed rate f 
(mm/tooth) 

Radial rake angle 
ɣ (°) 

Ra_uncoated Ra_TiA1N Ra_SNTR 

1 DOE 2k 130 0.03 7 0.365 0.32 0.284 
2 

 
160 0.03 7 0.256 0.266 0.196 

3 
 

130 0.07 7 0.498 0.606 0.668 
4 

 
160 0.07 7 0.464 0.476 0.624 

5 
 

130 0.03 13 0.428 0.260 0.280 
6 

 
160 0.03 13 0.252 0.232 0.190 

7 
 

130 0.07 13 0.561 0.412 0.612 
8 

 
160 0.07 13 0.512 0.392 0.576 

9 Center 144.22 0.046 9.5 0.464 0.324 0.329 
10 

 
144.22 0.046 9.5 0.444 0.38 0.416 

11 
 

144.22 0.046 9.5 0.448 0.460 0.352 
12 

 
144.22 0.046 9.5 0.424 0.304 0.400 

13 Axial 124.53 0.046 9.5 0.328 0.360 0.344 
14 

 
124.53 0.046 9.5 0.324 0.308 0.320 

15 
 

167.03 0.046 9.5 0.236 0.340 0.272 
16 

 
167.03 0.046 9.5 0.240 0.356 0.288 

17 
 

144.22 0.025 9.5 0.252 0.308 0.230 
18 

 
144.22 0.025 9.5 0.262 0.328 0.234 

19 
 

144.22 0.083 9.5 0.584 0.656 0.640 
20 

 
144.22 0.083 9.5 0.656 0.584 0.696 

21 
 

144.22 0.046 6.2 0.304 0.300 0.361 
22 

 
144.22 0.046 6.2 0.288 0.316 0.360 

23 
 

144.22 0.046 14.8 0.316 0.324 0.368 
24 

 
144.22 0.046 14.8 0.348 0.396 0.360 

Ra (minimum) 
  

0.236 0.232 0.190 
 
It may be noted that for some instances in Table 

1(such as 9 and 10 or 13 and 14 etc.), identical 
cutting conditions result in different Ra values. This 
discrepancy in Ra values may be attributed to 
uncontrollable factors that affect machining such as 
tool wear, chips formation, vibrations, non-
homogeneity of tool and work piece material and 
machine motion errors etc. (Brezocnik et al., 2004). 
This implies that if further experiments are carried 
out, we may obtain further different Ra values 
corresponding to identical cutting conditions, some of 
which may be lower than the currently known values. 
The aim of this research is to build mathematical 
models that can predict such potential cutting 
conditions that may lead to least Ra value. 

All the experimental data including cutting 
condition values as well as Ra values of Table 1 were 
first normalized using the following equation (Sanjay 
and Jyothi, 2006): 

 
 
Normalized data is shown in Table 2. This data 

was then divided into two parts: training set and test 
set. DOE 2k data (first eight rows of Table 2) were 
used as the training set. The remaining 16 tuples of 
data (the four tuples of center data and twelve tuples 
of axial data) were used as the test set. This is in 
contrast to (Zain et al., 2012) where the last 16 rows 
of Table 2 were taken as training data and the first 8 
rows as the test data. Our rationale for this division is 
as follows: the first eight rows have distinct pairs of 
cutting conditions values; however, the last 16 rows 
have instances where identical cutting conditions 
have resulted in different Ra values. The data with 
distinct input and output values will give more 
opportunity to the training algorithm to better 
understand the characteristics of the data and build 
more accurate classifier than the data having identical 
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input values but different output values. Thus, the 
first 8 rows of Table 2 (with all distinct cutting 
conditions pairs) are selected as training data and the 

remaining 16 rows (with repeated identical cutting 
conditions pairs) as the testing data. 

 
Table 2. Normalized experimental cutting conditions and Ra values for End Milling Process [1]. In contrast to 
(Zain et al., 2012) the first eight rows with all distinct cutting conditions pairs are taken as the Training set. 
The remaining 16 rows are used as the Test set. 

No. 
Data 
source 

Setting values of experimental cutting conditions Experimental Ra value (µm) 
Cutting speed v 
(m/min) 

Feed rate f 
(mm/tooth) 

Radial rake angle 
ɣ (°) 

Ra_uncoated Ra_TiA1N Ra_SNTR 

1 DOE 2k 0.203 0.169 0.174 0.346 0.266 0.249 
2 

 
0.768 0.169 0.174 0.138 0.164 0.109 

3 
 

0.203 0.721 0.174 0.599 0.806 0.856 
4 

 
0.768 0.721 0.174 0.534 0.560 0.786 

5 
 

0.203 0.169 0.733 0.466 0.153 0.242 
6 

 
0.768 0.169 0.733 0.130 0.100 0.100 

7 
 

0.203 0.721 0.733 0.719 0.440 0.767 
8 

 
0.768 0.721 0.733 0.626 0.402 0.710 

9 Center 0.471 0.390 0.407 0.534 0.274 0.320 
10 

 
0.471 0.390 0.407 0.496 0.379 0.457 

11 
 

0.471 0.390 0.407 0.504 0.530 0.356 
12 

 
0.471 0.390 0.407 0.458 0.236 0.432 

13 Axial 0.100 0.390 0.407 0.275 0.342 0.343 
14 

 
0.100 0.390 0.407 0.268 0.243 0.306 

15 
 

0.900 0.390 0.407 0.100 0.304 0.230 
16 

 
0.900 0.390 0.407 0.108 0.334 0.255 

17 
 

0.471 0.100 0.407 0.130 0.243 0.163 
18 

 
0.471 0.100 0.407 0.150 0.281 0.170 

19 
 

0.471 0.900 0.407 0.763 0.900 0.811 
20 

 
0.471 0.900 0.407 0.900 0.764 0.900 

21 
 

0.471 0.390 0.100 0.230 0.228 0.370 
22 

 
0.471 0.390 0.100 0.199 0.258 0.369 

23 
 

0.471 0.390 0.900 0.252 0.274 0.381 
24 

 
0.471 0.390 0.900 0.313 0.409 0.369 

Ra (minimum) 
  

0.100 0.100 0.100 
 

3.1 Results of M5P Model Tree based regression 
models 

Six model trees (3 cutting tools X 2 tree 
parameters: Pruning Enabled and Pruning Disabled) 
were built for the normalized data of Table 2 using 
M5P tree implementation of the Weka suite of 
machine learning algorithms (Hall et al., 2009). The 
results (predicted minimum Ra value) are shown in 
Table 3. 

To select the best M5 Model tree, three factors: 
Root Mean Square Error (RMSE), correlation and 
minimum predicted value of Ra are considered. Table 
4 states the correlation and RMSE values of the six 
model trees corresponding to the testing data as 
reported by Weka. First we select the top three best 
model trees having the lowest RMSE values. Table 4 
shows that the models for SNTR cutting tool with 
pruning enabled, SNTR cutting tool with pruning 

disabled and Uncoated tool with pruning disabled 
have the lowest RMSE values of 0.0638, 0.0669 and 
0.1404 respectively. Now, amongst these three 
selected models we consider the correlation value of 
each and select the best two having the highest 
correlation values. It is evident from Table 4 that the 
correlation values of the three models are 0.946, 
0.9534 and 0.8209 respectively. Thus, we select the 
models for SNTR tool with pruning disabled and 
SNTR tool with pruning enabled as the best two 
models and proceed by considering the third factor, 
minimum predicted value of Ra. Table 3 shows that 
the predicted minimum values of Ra by SNTR tool 
with pruning disabled is 0.099 whereas for SNTR 
tool with pruning enabled it is 0.088. Thus, we select 
SNTR tool with pruning enabled as the best 
prediction model. 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

52 

 
Table 3 Predicted Ra values of M5 Model Tress for the three tools. Two models are developed for each tool, 
one with pruning enabled and the other with pruning disabled. 

No. Data source 
Pruning Disabled Pruning Enabled 
Ra_uncoated Ra_TiA1N Ra SNTR Ra_uncoated Ra_TiA1N Ra SNTR 

1 Center 0.333 0.280 0.326 0.358 0.301 0.361 
2 

 
0.333 0.280 0.326 0.358 0.301 0.361 

3 
 

0.333 0.280 0.326 0.358 0.301 0.361 
4 

 
0.333 0.280 0.326 0.358 0.301 0.361 

5 Axial 0.333 0.280 0.326 0.358 0.301 0.361 
6 

 
0.333 0.280 0.326 0.358 0.301 0.361 

7 
 

0.333 0.280 0.326 0.358 0.301 0.361 
8 

 
0.333 0.280 0.326 0.358 0.301 0.361 

9 
 

0.165 0.120 0.099 0.157 0.109 0.088 
10 

 
0.165 0.120 0.099 0.157 0.109 0.088 

11 
 

0.682 0.618 0.803 0.713 0.640 0.841 
12 

 
0.682 0.618 0.803 0.713 0.640 0.841 

13 
 

0.333 0.403 0.326 0.358 0.448 0.361 
14 

 
0.333 0.403 0.326 0.358 0.448 0.361 

15 
 

0.333 0.084 0.326 0.358 0.066 0.361 
16 

 
0.333 0.084 0.326 0.358 0.066 0.361 

Ra (minimum) 0.165 0.084 0.099 0.157 0.066 0.088 
 
 

Table 4 Correlation and Root Mean Square Error values of Model Trees for the testing data. 

No. Modelling Technique 
Ra_uncoated Ra_TiA1N Ra_SNTR 

RMSE Correlation RMSE Correlation RMSE Correlation 
1 M5Prunning Disabled 0.1404 0.8209 0.1614 0.6917 0.0669 0.9534 
2 M5Prunning Enabled 0.1412 0.8136 0.1669 0.6424 0.0638 0.946 

 
 
The minimum normalized predicted Ra value by 

the selected best M5 model tree is 0.088 (row nine 
and ten of Table 3) and the corresponding normalized 
cutting conditions values are: v= 0.471, f= 0.100 and 
ɣ = 0.407 (seventeenth and eighteenth rows of Table 

2). The actual cutting condition values are v=144.22 
m/min, f= 0.025 mm/tooth and ɣ = 9.5° (seventeenth 
and eighteenth rows of Table 1). The denormalized 
minimum predicted Ra value is calculated using a 
modified Equation 1 as follows (Zain et al., 2012): 

 
 

 
 
 
3.2 Results of Sequential Minimal Optimization 
(SMO) based Support Vector Machine (SVM) 
models 

Six SVM models (3 cutting tools X 2 SVM 
kernels) were developed using SMO-SVM 
implementation of Weka (SMOreg) with the 
normalized data of Table 2. Table 5 shows the result 
(prediction of minimum Ra value) of applying the 
SMO-SVM models to the test set. Two kernels: 

Normalized Polynomial Kernel and Radial Basis 
Function (RBF) kernel were used for each of the 
cutting tool data. Experiments were performed with 
different values of Exponent parameter for 
Normalized Polynomial Kernel and Gamma 
parameter for RBF Kernel and the values resulting in 
lowest RMSE were selected finally and reported in 
Table 5.  
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Table 5 Predicted Ra values of SMO-SVM models for the three tools. Two models are developed for each tool, 
one with normalized polynomial kernel and the other with RBF kernel. The values of exponent and gamma 
shown are the ones which resulted in least RMSE. 

No. Data source 
Normalized Polynomial Kernel RBF Kernel 

Ra_uncoated Ra_TiA1N Ra SNTR Ra_uncoated Ra_TiA1N Ra SNTR 
Exponent = 9 Exponent = 8 Exponent = 1.55 Gamma = 1 Gamma = 0.5 Gamma = 4.9 

1 Center 0.360 0.324 0.423 0.372 0.318 0.393 
2 

 
0.360 0.324 0.423 0.372 0.318 0.393 

3 
 

0.360 0.324 0.423 0.372 0.318 0.393 
4 

 
0.360 0.324 0.423 0.372 0.318 0.393 

5 Axial 0.494 0.426 0.630 0.469 0.361 0.481 
6 

 
0.494 0.426 0.630 0.469 0.361 0.481 

7 
 

0.158 0.160 0.244 0.273 0.272 0.335 
8 

 
0.158 0.160 0.244 0.273 0.272 0.335 

9 
 

0.113 0.088 0.094 0.171 0.136 0.117 
10 

 
0.113 0.088 0.094 0.171 0.136 0.117 

11 
 

0.635 0.740 0.735 0.712 0.630 0.821 
12 

 
0.635 0.740 0.735 0.712 0.630 0.821 

13 
 

0.486 0.498 0.520 0.370 0.392 0.426 
14 

 
0.486 0.498 0.520 0.370 0.392 0.426 

15 
 

0.344 0.271 0.328 0.388 0.208 0.392 
16 

 
0.344 0.271 0.328 0.388 0.208 0.392 

Ra (minimum) 0.113 0.088 0.094 0.171 0.136 0.117 
 

Table 6 Correlation and Root Mean Square Error values of SMO-SVM models for the testing data 

No. Modelling Technique 
Ra_uncoated Ra_TiA1N Ra_SNTR 
RMSE Correlation RMSE Correlation RMSE Correlation 

1 
SMO-SVM (Normalized Poly 
Kernel) 

0.1639 0.6984 0.1551 0.6752 0.1364 0.769 

2 SMO-SVM (RBF Kernel) 0.1403 0.8243 0.1346 0.7463 0.0780 0.9290 
 
To determine the best SMO-SVM prediction 

model, three factors: Root Mean Square Error 
(RMSE), correlation and minimum predicted value of 
Ra are considered. Table 6 states the correlation and 
RMSE values of the six SMO-SVM models 
corresponding to the testing data as reported by 
Weka. First we select the top three best SMO-SVM 
models having the lowest RMSE values. Table 6 
shows that the models for SNTR cutting tool and 
TiA1N cutting tool with RBF kernel and SNTR tool 
with Normalized Polynomial kernel have the lowest 
RMSE values of 0.0780, 0.1346 and 0.1364 
respectively. Now, amongst these three selected 
models we consider the correlation value of each and 

select the best two having the highest correlation 
values. It is evident from Table 6 that the correlation 
values of the three models are 0.9290, 0.7463 and 
0.769 respectively. Thus, we select the models for 
SNTR tool with RBF kernel and Normalized 
Polynomial kernel as the best two models and 
proceed by considering the third factor, minimum 
predicted value of Ra. Table 5 shows that the 
predicted minimum values of Ra by SNTR tool with 
RBF kernel is 0.117 whereas for normalized 
Polynomial kernel it is 0.094. Thus, we select SNTR 
tool with Normalized Polynomial kernel as the best 
prediction model.  

 
Table 7 Statistics and Correlations (experimental data vs. M5 Model Trees with pruning enabled) 

 
Mean N Std. Deviation Std. Error Mean Correlation 

Experimental_SNTR 0.3895 16 0.20067 0.050168 0.946 
M5Pruning_enabled_SNTR 0.3572 16 0.19017 0.047543 
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Table 8 Paired-samples t test (Experimental SNTR vs SNTR M5 model tree with pruning enabled). Sig. 
(0.875) is the p value which is greater than 0.05 indicating that there is no significant difference between the 
means of the two data sets. 

Pair 

Paired Differences 

t df Sig. (2-tailed)    
95% Confidence Interval of 

the Difference 

Mean 
Std. 

Deviation 
Std. Error 

Mean 
Lower Upper 

Experimental_SNTR and 
M5Pruning_enabled_SNTR 

0.0026 0.065797 0.016449 -0.03244 0.03769 0.16 15 0.875 

 
 
The minimum normalized predicted Ra value by 

the selected best SMO-SVM model is 0.094 (row 
nine and ten of Table 5) and the corresponding 
normalized cutting conditions values are: v= 0.471, 
f= 0.100 and ɣ = 0.407 (seventeenth and eighteenth 
rows of Table 2). The actual cutting condition values 
are v=144.22 m/min, f= 0.025 mm/tooth and ɣ = 9.5° 
(seventeenth and eighteenth rows of Table 1). The 
denormalized minimum predicted Ra value is 
calculated using a modified Equation 1 as follows 
(Zain et al., 2012): 

 

 
 

4. Evaluation of Results 
The validation of model tree and SMO-SVM 

based models for predicting minimum value of Ra is 
carried out using paired-samples t tests. Tables 7 and 
8 present the results of paired-samples t test of 
experimental data for SNTR tool paired with the 
predicated data by the best model tree (SNTR tool 
with Pruning enabled). Tables 7 and 8 prove that the 
mean Ra value is reduced by 0.0026 from 
experimental results for SNTR tool to the best model 
tree results, t (15) = 0.16 and p=0.875. The 95% 
confidence interval ranges from -0.03224 to 0.03769. 
Thus, the two means of experimental SNTR tool and 
the best model tree are not significantly different 
from each other. 

Tables 9 and 10 show the results of paired-
samples t test of experimental data for SNTR tool 
paired with the predicated data by the best SMO-

SVM model (SNTR tool with Normalized 
Polynomial kernel). Tables 9 and 10 show that the 
mean Ra value is increased by 0.035 from 
experimental results for SNTR tool to the best SMO-
SVM results, the 95% confidence interval ranges 
from -0.03224 to 0.03769, t (15) =-1.033 and 
p=0.318. Thus, the two means of experimental SNTR 
tool and the best SMO-SVM model are not 
significantly different from each other. 

Considering the predicted Ra value, the model 
trees and SMO-SVM based models can be evaluated 
as follows: 
(a) Experimental data vs. Model Trees 

For the experimental data, the minimum value 
of Ra is 0.190 µm for SNTR tool (cf. Table 1). 
However, in case of model trees, the minimum 
predicted value of Ra is 0.182 µm (Equation X). 
Thus, the model tree has provided Ra value which is 
0.008 µm less than the experimental data. 
(b) Experimental data vs. SMO-SVM based 
model 

The minimum predicted value of Ra by SMO-
SVM is 0.186 µm (Equation X). Comparing with 
experimental data, it is evident that SMO-SVM based 

model has resulted in minimum Ra value which 
is 0.004 µm less than the experimental data. 
(c) Model Tree vs. SMO SVM 

As minimum predicted Ra value is 0.182 µm 
and 0.0186 µm for model tree and SMO-SVM based 
model respectively, it is evident that the model tree 
has given Ra value which is 0.004 µm less than 
SMO-SVM based model. 

 
 
 

Table 9 Statistics and Correlations (experimental data vs. M5 Model Trees with Pruning enabled) 

 
Mean N Std. Deviation Std. Error Mean Correlation 

Experimental_SNTR 0.3895 16 0.20067 0.050168 0.769 
SMO-SVM-NormalizedPoly_SNTR 0.4246 16 0.199629 0.049907 
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Table 10 Paired-samples t test (Experimental SNTR vs SNTR SMO-SVM with Normalized Polynomial 
kernel). Sig. (0.318) is the p value which is greater than 0.05 indicating that there is no significant difference 
between the means of the two data sets. 

Pair 

Paired Differences 

t df Sig. (2-tailed)    

95% Confidence 
Interval of the 

Difference 

Mean 
Std. 

Deviation 
Std. Error 

Mean 
Lower Upper 

Experimental_SNTR and 
SMO-SVM-

NormalizedPoly_SNTR 

-
0.035 

0.136036 0.034009 -0.10761 0.03736 -1.033 15 0.318 

 
 

5. Conclusion 
Two techniques, model trees and SMO-SVM 

were used for the first time in this research to build 
regression models for predicting the minimum value 
of surface roughness Ra in the end milling process. 
Table 11 summarizes the minimum value of Ra for 
the experimental data, model trees and SMO-SVM. 
Also the results reported in (Zain et al., 2012) using 
regression and ANN techniques are included for 
comparison. 

Accordingly, Table 12 shows the percentage 
reduction in Ra value by all techniques. It is evident 
from Table 12 that both the techniques, model trees 
and SMO-SVM reported in this paper have 
performed better than regression and ANN 
techniques reported previously (Zain et al., 2012) as 
they have reduced the minimum Ra value of 
experimental data by 4.2 and 2.1 % respectively, with 

 
Table 11 Minimum value of surface roughness. Model 
tree and SMO-SVM have been used for the first time in 
this research and use the empirical data with different 
training and test sets than ANN model of (Zain et al., 
2012). 

Technique 
Minimum value of Ra 

(µm) 
Experimental 0.190 
Model Tree 0.182 
SMO SVM 0.186 

Regression (Zain et al., 
2012) 

0.187 

ANN (Zain et al., 2012) 0.188 

 
model trees generally giving better results in 
predicting the minimum Ra value than other models. 
These better results may be attributed partly to the 
careful selection of training data. In this paper the 
first eight rows of Table 2 are selected as training 
data that contain all unique attribute values. 
However, in (Zain et al., 2012) the last 16 rows of 
Table 2 were taken as training data. Many of these 
rows have different output values corresponding to 
identical input attribute values that can lead to poorer 

training and degraded performance of resulting 
regression models. 

Statistical validation of the results indicate that 
both the techniques of Model Tree and SMO-SVM 
can be used as effective tools in modelling surface 
roughness. The application of these techniques may 
be extended to other tools and cutting conditions. The 
reliability of the results obtained through these 
machine learning based regression models can be 
enhanced further by increasing the amount of 
empirical data through additional experimentation. 

 
Table 12 Percentage reduction in minimum surface 
roughness value. Model tree and SMO-SVM have been 
used for the first time for predicting Ra value in this 
research and use the empirical data with differently 
crafted training and test sets than ANN model of (Zain 
et al., 2012). 

Technique 
Percentage Reduction 

in Ra value 
Experimental vs. Model Tree 4.2 
Experimental vs. SMO- SVM 2.1 
Experimental vs. Regression 

(Zain et al., 2012) 
1.57 

Experimental vs. ANN (Zain et 
al., 2012) 

1.05 
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