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Introduction 

Currently, a parallelism is a prevailing 
paradigm of computational processes organisation. In 
the specialised computer sphere, the idea of 
parallelism has been used in practice for more than 
fifty years (CDC-6600 1964 [1] consists of ten 
independent functional devices operated in parallel), 
with up-to-date concurrent computations being used 
in practice in both multi-core processors and 
computer networks [2]. To organise computational 
process in such structures, programmers face the 
problem of non-optimal parallel hardware utilisation, 
which is associated with such problems as low 
processors load coefficients and conflicts of access to 
shared resources [3].  

In [4], on the basis of the investigation of the 
instruction interpretation process using a Von-
Neumann computer, it was shown that the number of 
machine cycles that a processor spends on the 
execution of a deterministic instruction is a random 
one. This distribution of the number of machine 
cycles depends on the hardware speed and the 
distribution of the processed data. Additionally, in 
[5], the characteristics of the transitions between 
algorithm operators for the external observer were 
classified as quasi-stochastic. As a result, the theory 
of random processes, particularly Markov (generally 
semi-Markov) process, should be applied for 
evaluation of time complexity. A major contribution 
to the theory was produced by U.K. Belyaev, B.V. 
Gnedenko, D.R. Koks, D. Lloyd, V.L. Smith, B. 
Harris, and A.M. Shirokov. Their work potentially 
may be put on a basis of the mathematical apparatus 
of time complexity evaluation of sequential 
algorithms; however, without modifications, and in 
particular, in the parallelism and/or concurrency area, 
the use of such a theory is extremely difficult. 

The methodology of the modelling of 
concurrent processes was elaborated in the works by 
C. Petri, W. Reisig, J. Peterson, and V.E. Kotov [6 - 

10], where the apparatus of Petri nets was applied in 
the research of parallelism. The situational (causal) 
character of switches in Petri nets [6, 11] 
predetermine the application of such apparatus for the 
modelling of algorithm structures and the logic of the 
events occurring. However, the asynchronous nature 
of Petri nets theory permits the answering of the 
question about the principal accessibility of states, 
but they cannot be used to predict the event 
occurrence physical time. 

Broadening of the classical Petri nets theory 
leads to a time-extended Petri nets theory [12-14]. 
Counters for the control of local or global time are 
included in such models. The time responses of token 
sojourns in positions, the generation/death of tokens 
after certain time, etc. are also determined in the 
model. Models in which the time responses are 
connected with transitions, notably the Ramchandani-
Starke discrete-time model and the Merlin time-
continuous model are the most popular [15]. 
However, even in an improved version, the timed 
Petri nets do not allow the consideration of the entire 
variety of interactions in concurrent systems. This 
fact is connected particularly with the restriction of 
the logical conditions of net switching with 
elementary conjunction. 

In a model focused on the evaluation of the 
algorithm time complexity in concurrent computer 
systems must provide the following features: 

a certain and specific strategy of the use of 
resources for data processing in every parallel 
system; 

a dynamic approach of the release/involving 
of the computational resources in the process of 
algorithm execution; 

the necessity of data exchange (intermediate 
results) between computation units and, connected 
with this phenomenon, the necessity of the 
synchronisation of the operation of processors; 
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an availability of the “competition” effect 
between components functioning concurrently. Such 
demands were most completely taken into account in 
the apparatus of Petri-Markov nets (PMN) described 
below, in which both the aspects relevant to random 
processes in computational units and the logic aspects 
of the modulus interaction [16-17] are combined. The 
models under investigation consider the structures, 
described parallelism, time-stochastic parameters of 
semi-Markov processes, and logic of an interaction of 
the computational units.   

 
Mathematical apparatus of Petri-Markov nets 
(PMN) 

The most general description of the PMN 
approach is based on the construction of a system of 
sets that comprises the PMN. The Petri-Markov net is 
a structural parametric model determined by the set:  
 = {, М},                                                (1) 

where  = {A, Z, R
~

, R̂ } - is a set that describes a 
structure of a directed bichromatic graph, which 
describes a Petri net; A = {a1(a), ..., aj(a), ..., aJ(a)} - is a 
finite set of positions; Z = {z1(z), ..., zj(z), ..., zJ(z)} - is a 
finite set of transitions; J(a) - is the size of a set of 
positions; J(z) - is the size of a set of transactions; 

    zjajr~
~
R  - is an adjacency matrix of size 

J(a)  J(z), which represents the positions of set A to 

the transactions of set Z;     ajzjr̂ˆ R  - is an 

adjacency matrix of size J(z)  J(a), which represents 
the transactions of set Z to the positions of set A; M = 
{q, h(t), } - is a set of parameters, being applied to 
structure П; q = (q1(z), ..., qj(z), ..., qJ(z)) - is a vector 
that determines the probabilities of beginning a 
process in one of the transitions of set Z; h(t) = 
[hj(a)j(z)(t)] - is a semi-Markov matrix of size J(a)  
J(z); t - is time;  = [i(z)i(a)] - is a matrix of the 
logical conditions of size J(a)  J(z);  
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IA(Z) = {IA(z1(z)), ..., IA(zj(z)), ..., IA(zJ(z))} - are the input 

functions of the transitions;     zjajpp  - is 

the stochastic matrix of a semi-Markov process; 

       tft zjajf  - is the matrix of the time 

densities of a semi-Markov process;  - is the 
symbol of a matrix direct multiplication. 

The positions of the PMN simulate the 
operators of the concurrent algorithm. The transitions 
simulate the interactions of the operators.  

Regarding the probabilities and densities, the 
following constraints apply: 

1
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For a numerical analysis of the processes in 
parallel computing systems, the following parameters 
may be determined:  

the matrix of expectations 

     



0

)( dtttT zjaj fT T         (4) 

the matrix of dispersions D = (Dj(a)j(z)) in the 
form 

TTfD  


0

2 )( dttt .              (5) 

We will differentiate between the connected 
and the disconnected PMN. Let us change the arcs 

    zjaj za , ,     ,, ajzj az ,   Aa aj  , 

  Zz zj   onto the edges     zjaj za , . The 

modified net may be called feebly connected if one of 
the following paths can be built between its different 
objects: 

aj(a)  ak(a), 1(a)  j(a), k(a)  J(a); 
zj(z)  zk(z), 1(z)  j(z), k(z)  J(z);                  (6) 

aj(a)  zj(z), 1(a)  j(a)  J(a); 1(z)  j(z)  J(z). 
The initial net may be called strongly 

connected if the modified net is a feebly connected 
one, and the paths  
aj(a)  ak(a), 1(a)  j(a), k(a)  J(a); 
zj(z)  zk(z), 1(z)  j(z), k(z)  J(z);                 (7) 
aj(a)  zj(z), 1(a)  j(a), k(a)  J(a); 1(z)  j(z), k(z)  
J(z); 
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zj(z)  aj(a), 1(a)  j(a), k(a)  J(a); 1(z)  j(z), k(z)  
J(z) 
are retained after the restoration of the arcs 

    zjaj za , ,     ,, ajzj az  instead of the 

edges     zjaj za , .  

Set Z = {z1(z), ..., zj(z), ..., zJ(z)} is divided into 
four disjoint subsets: the subsets of the beginning 
transitions ZB, the subsets of the ending transitions 
ZE, the subsets of the primitive transitions ZP and the 
subset of the synchronisation transitions ZS:  
Z = ZB  ZE  ZP  ZS,                           (8) 
ZB  ZE = ; ZB  ZР = ; ZB  ZS = ; ZE  ZP = 

; ZE  ZS = ; ZP  ZS = ; 
For the mentioned types of transitions, the 

following conditions are true: 
if zj(z)  ZB, then |IA(zj(z))| = 0 and |OA(zj(z))|  1; 
if zj(z)  ZЕ, then |IA(zj(z))|  1 and |OA(zj(z))| = 0; 
if zj(z)  ZР, then |IA(zj(z))| = 1 and |OA(zj(z))| = 1; 
if zj(z)  ZS, then |IA(zj(z))|  1 and |OA(zj(z))|  1, 

where |...| denotes the size of a set. 
The beginning, ending, and synchronisation 

transitions form the subset of the so-called non-
primitive ones: 
ZNP = ZB  ZE  ZS.                        (9) 

One of the elements of PMN as a 
mathematical apparatus for the simulation of 
concurrent algorithms is the notion of a token as a 
certain pointer. If a token is placed at position aj(a), 
this indicates that the named position at the present 
time t is in the active state. This, in turn, means that 
at the present time t, the operator that is simulated by 
position aj(a) is executed by a pre-defined 
computation unit.  

The functional similarity of the 
interpretation of algorithm operators in a parallel 
computing system is a sequence of state exchanges 
that is realised as a sequence of half-steps j(a),j(z) = 
(aj(a), z, j(z)), i.e., executed from positions into 
transitions, or j(z),j(a) = (aj(a), z, j(z)), i.e., executed 
from transitions into positions. Two consecutive half-
steps form a step. While executing a half-step j(a),j(z), 
the token is withdrawn from the position aj(a)  IA(z, 
j(z)) and placed into the transition z, j(z)  OZ(a, j(a)). 
While executing a half-step j(z),j(a), the token is 
withdrawn from the transition z, j(z) and placed into 
the position aj(a)  OA(z, j(z)). 

The half-step j(a),j(z) is executed if a decision 
about the execution of a certain half-step is made 
with probability pj(a)j(z) and the time of half-step 
execution, which is defined with density fj(a)j(z)(t), has 
elapsed. The half-step j(z)j(a) is executed if logical 
condition (3) is fulfilled, i.e., if j(z)j(a) is equal to 
j(z)j(a) = 1. 

 
Petri-Markov simple subnets 

A Petri-Markov net (1) may be divided into 
subnets, whose structure is described as follows:  

k = {Ak, Zk, 
kR

~
; 

kR̂ },                         (10)  

where Ak  A; Zk
  Z. RR

~~
k

; RR ˆˆ k
.  

The matrix 
kR

~
can be determined from 

matrix R
~

 by means of the deletion of the rows 
corresponding to positions А\Ak and the columns 
corresponding to the transitions Z\Zk, where \ is a 
symbol designating the set difference operation. The 

matrix 
kR̂ is determined from matrix R̂  by means 

of the deletion of the rows corresponding to 
transitions Z\Zk and the columns corresponding to the 
positions А\Ak. The subnet k is also a directed 
bichromatic graph. 

Let us assume that a PMN is broken up into 
subnets in the following manner: 


K

k

k

1

 ,                                    (11) 

where k = {k, Мk} - is a Petri-Markov simple 

subnet (PMSS); k = {Ak, Zk, 
kR

~
, 

kR̂ } - is the 
structure of a PMSS; Ak = {ak

1(a, k), ..., a
k
j(a, k), ..., a

k
J(a, 

k)}  A; Zk = {zk
1(z, k), ..., zk

j(z, k), ..., zk
J(z, k)}  A; 

    k
kzjkaj

k r
,,

~~
R ; 

    k
kajkzj

k r
,,

ˆˆ R ; Mk = {qk, hk(t), k} - are 

the characteristics of a PMSS; qk = (qk
1(z, k), ..., q

k
j(z, k), 

..., qk
J(z, k)); hk(t) = (hk

j(a, k)j(z, k)(t)); 
k = (k

i(z, k)i(a, k)); 
hk(t) = pk  fk(t); pk = (pk

j(a, k)j(z, k));  fk(t) = (fk
j(a, k)j(z, 

k)(t)). 
The Petri-Markov simple subnets k 

intersect on non-primitive transitions, i.e., 

NP

K

kl
l

lk Z
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All other transitions of a PMSS are the 

primitive ones, i.e., if  
k

kzj Zz ,  and 



Life Science Journal 2014;11(11)      http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  509

 























K

kl
l

l
kzjz

,1
, , then   k

kjA AzI , , 

  k
kjA AzO ,  and 

    1,,  kjAkjA zOzI . 

Every PMSS k includes at least one 
transition of a subset ZB  ZS and one transition of a 

subset ZE  ZS. If   kk
BA AZO  , then the 

transitions of subset   k
BSB

k ZZZZ    

form a subset 
k
BZ  of the initial transitions of PMSS 

k. If   kk
EA AZI  , then the transitions of 

subset   k
ESE

k ZZZZ  form a subset 

k
EZ  of the ending transitions of PMSS k. 

The positions and primitive transitions 

inside of PMSS 
k  form typical structures, which 

are shown in fig. 1. 
  

 
... 

... 

aj(a,k) 

zj(a,k) zl(a,k) 

zm(a,k) zn(a,k) 

b aj(a,k) 

zj(a,k) 

zl(a,k) 

a 

 
 
Fig. 1. Typical structures inside a PMSS 

 
Structure  
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,
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1
...

...
0
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...

...

...
,...,,,..., ,,, kzlkzjkaj zza

,            (13) 
which is shown in fig. 1 a, simulates the linear part of 
a sequential algorithm, which is executed by one 
computation unit (i.e., of Von-Neumann type).  

Structure  

            ,...,,,,,..., ,,,,, kzlkzjkzlkzjkaj zzzza  
















































.........
...0...
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,
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1
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1
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...
0
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...
0
...

...

...

... ,    (14) 

which is shown in fig. 1 b, simulates the ramified part 
of an algorithm, which is interpreted using one 
computation unit.  

The typical structures, which are shown in 
fig. 2, are intended for the simulation  of parallelism 
as follows:  

“fork” (fig. 2 a) -  

         , , ,

... ... ...

... 1 ... ... ... ... ... ...
, , , ... , , ... , ... 0 ... , ... 0 1 1 ...

... 0 ... ... ... ... ... ...

... ... ...

j a k j a l j a m j za a a z

  
     

    
     
    

; 

(15) 
 

 

... 

b 

aj(a,m) 

zj(z) 

a 

aj(a,l) 

aj(a,k) 

k 

l m 

... 

zj(z) 

k l 

m 

aj(a,k) aj(a,l) 

aj(a,m) 

 
 

... 
aj(a,n) 

zj(z) 

c 

aj(a,m) 

k 

m n 

... 

l 

aj(a,k) al(a,l) 

 
 

Fig. 2. Structures for the simulation of parallelism 
 
“joint” (fig. 2 b) -   

         , , ,

... ... ...

... 1 ... ... ... ... ... ...
, , , ... , , ... , ... 1 ... , ... 0 0 1 ...

... 0 ... ... ... ... ... ...

... ... ...

j a k j a l j a m j za a a z

  
     

    
     
    

; 

(16) 
“sync” (fig. 3 c) -  

            , , , ,, , , , ... , , ... ,j a k j a l j a m j a n j za a a a z  
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... ... ...

... 1 ... ... ... ... ... ... ...

... 1 ... , ... 0 0 1 1 ...

... 0 ... ... ... ... ... ... ...

... 0 ...

... ... ...

 
 

  
      

   
.                         (17) 

In (15) and (16) transition 

 
k l m

j zz Z Z Z   . In (17), transition 

 
k l m n

j zz Z Z Z Z    . 

Let us consider the transitions 

  S
k

kzj ZZz , , which have on one 

position belonging to subset Ak both input and output 

functions (fig. 3), i.e.,    1,  k
kzjA AzI , 

   1,  k
kzjA AzO . 

 

 

aj(a,k) 

aj(a,k) 

al(a,k) 

al(a,k) 

zj(z,k) 

zj(z,k) zl(z,k) 

k 

k 

a 

b 

 
 

Fig. 3. Disintegration of the synchronising 
transition  

 
The structure 
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(18) 
may be transformed to the structure 
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...00...

...01...

............

,

............

...10...

...00...

............

,...,,,...,, ,,,, kzjkzjkalkaj zzaa

 

(19) 

by means of splitting the transition  kzjz ,  into the 

transitions  kzjz ,  and  kzlz , . The transition 

 kzjz ,  has no positions in the input function 

belonging to subset 
kA , i.e., 

   0,  k
kzjA AzI  and 

   1,  k
kzjA AzO , and it can be 

classified as the initial transition of PNSS 
k . The 

common output function of this transition does not 
change, and from the input function, a position 

belonging to subset 
kA  is excluded.   

Transition  kzlz ,  has no positions in the 

output function belonging to subset 
kA , i.e., 

   1,  k
kzlA AzI  and 

   0,  k
kzlA AzO . Thus, the transition 

can be classed as the final transition of PNSS 
k . 

The common input function of this transition is equal 

to the input function of transition  kzjz ,  before 

splitting. The output function of  kzlz ,  may be 

formed by excluding from the output function of 

 kzjz ,  a position belonging to the subset 
kA  that 

does not change and excluding from the input 

function a position belonging to subset 
kA . 

Thus, instead of set 
kZ , due to the splitting 

during every synchronisation transition of set 
kZ on 

the beginning and ending transitions, subset 
kẐ  

may be formed, in which the elements may be 
clustered onto three groups:  

the subset of beginning transitions 
k
BẐ , 

which includes transitions of subset 
k
BZ  and the 

corresponding parts of the disintegrated 
synchronisation transitions, with numbers 1  j(z, k)  
M(z, k); 
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the subset of primitive transitions 
k
PZ  with 

numbers M(z, k) + 1  j(z, k)  N(z, k); 

the subset of ending transitions 
k
EẐ , which 

includes transitions of subset 
k
EZ  and the 

corresponding parts of the disintegrated 
synchronisation transitions, with numbers N(z, k) + 1 

 j(z, k)   kzJ ,ˆ . 

 
Conclusions 

An effective and rather straightforward 
mathematical apparatus was developed for modelling 
concurrent computing systems. The apparatus is 
oriented towards the evaluation of the time 
complexity algorithm implemented in such systems. 
In models along with the structural and time aspects 
of the functioning computer units the logics if 
interaction of units is taken into account.  
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