
Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 177

Applicative computations and applicative computational technologies

Larisa Yusifovna Ismailova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Kashirskoye Shosse, 31, Moscow, 115409 Russian Federation

lyu.ismailova@gmail.com

Abstract: This paper is aimed as a comparative study the main styles of applicative computations. This is a kind of
computations where the objects could symmetrically act each other using the only metaoperation of application. The
application, when done, results in a value which can be used as the object which can act with other objects on equal
rights. This evaluation is considered in three main directions: 1) in mathematics, 2) in programming, and 3) in
computing. It is shown that the evolution of the methods of evaluation the symbolic objects is moved to the
modeling the interaction of objects as the interaction of corresponding information processes of reductions and/or
expansions.
[Ismailova LYu. Applicative computations and applicative computational technologies. Life Sci J
2014;11(11):177-181] (ISSN:1097-8135). http://www.lifesciencesite.com. 25

Keywords: Objects, combinatory logic, applicative computational system, computational model, programming,
computing

1. Introduction

This paper is aimed as a comparative study
the main styles of applicative computations [1-3].
This is a kind of computations where the objects
could symmetrically act each other using the only
metaoperation of application. In symbolic notations
this means that the pairwise combinations of objects
are used, each pair resulting in a new object, which in
turn could act on other objects. This is one of the
dominant ideas in modern theoretical computer
science [4]. In such a pair, the leftmost object is
assumed as a function while the right neighboring
object is the argument for this function. A result of
applying the right object-function to left object-
argument is assumed as a value of function on this
argument. The mathematical study of symmetrical
interaction of objects has a durable history [5-6].

We illustrate by example, what is the style
and way of computing -- depending on the area of
knowledge in which they are used. Consider three
directions of evaluation: 1) in mathematics, 2) in
programming, and 3) in computing. The first
direction is discussed in details in [6], the second -- in
[7-8], and the third -- in [4], [9].

As can be seen, in each case will be applied
its own explanatory system and method of the
graphic representation. However, it will be shown for
example how, using the source combinator constants
K and S to analyze the usual mathematical operations
-- operations of the composition. As it turns out in
terms of applicative computation, this operation is
not elementary, i.e. non-atomic, and its “device” is
defined by combining of the primary constants. Such
an occurrence of “deep” structure of the composition
operation, which is considered as atomic and

indivisible from the viewpoint of algebra and
mathematical analysis, emphasizes the expressive
power of applicative computational systems. Of
course, such methods can analyze the structure of
other operations, but it is beyond the scope of this
article, but the interested reader can find it in [8, 10]
and other listed references.

2. Applicative computations

In information technologies (IT), we can
rely on the information processes, but their diversity
almost defies attempts at classification. However, in
the 20-ies of the last century there was one discovery
or invention, and this much depends on the position.
It was discovered a few mathematical constants,
using which you can construct or reconstruct all our
accumulated mathematical knowledge [1].

These initial constants were called
“combinators” that could be used as “building
blocks”, a kind of “bricks”, of which the building of
mathematics is constructed. The process of
combining these special constants called “application
operation” and a result of applying led to the
formation of larger “building blocks”, and the
process of this enlargement could be iterated. For the
development of mathematics and logic, it was not all
just fun and instructive, but also rewarding,
promoting the formation of the “mathematical
constructivism”. Arising from this mathematical
calculus became known as “applicative
computational systems” (ACS) [7], [8], [9].

2.1. Computation in mathematics

In mathematics and logic we operate with
abstract objects, which for neutrality and giving the

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 178

greatest generality called “obs” with corresponding
ob-systems.

Computational environment of
combinatorial logic (see [2]) is a highly symmetric in
the sense that if you take two objects, M and N, then
we can talk about the result of computation or
evaluation, when M is applied to N, which is written
by (M N). In this record, M plays the role of the left
object, and N – of the right one. Such an object (M N)
is binary in nature, by construction, and inductive
classes of objects can be topologically represented by
binary trees. In this computation, the first object M is
observed as a function which is applied to the N as
the argument and, in relation to the images of
ordinary mathematics, it is about the formation of
evaluation of M at the “point” N. But if in classical
mathematics swap M and N, then construction “N
from M” in understanding of the value of “N at M” is
meaningless.

Within applicative system this computation
is not only forbidden, but also has a definite meaning,
since from the computational viewpoint the objects
are absolutely symmetrical.

We are to introduce the computational
characteristics of generic constant combinators S and
K. When the characteristics are written equationally,
using equality, we get

S a b c = a c (b c),
K a b = a.

We can show the process of “growing” tree
computations for the composition operator in
Figure 1. The composition of two functions a and b is
defined by

a º b (c) = a (b (c)),
and in an applicative notation this is the conversion

a (b (c)) = a (b c) = B a b c.

In the original set of combinators there is no
combinator B with these properties. But, as it turns
out, such a combinator can be derived. The
generation process is as follows in Figure 1.

Construct the tree computations associated
with the composition (unit 1). The resultant tree is
shown in the computing unit 7. If it has existed in the
ob-system, the transition can be made to it
counterclockwise. See if we can create a virtual track,
giving it a tree computing which is constructed by
combining the known tree computations. This tree
can grow in stages, moving from tree to tree in a
clockwise direction. Transition 1-2 is simply the
application of the definition of the composition.
Transition 2-3 corresponds to the conversion

a (b c) = K a c (b c),
which carried out in accordance with the
computational, or combinatory characteristic of
combinator K. Transition 3-4 corresponds to the
conversion

K a c (b c) = S (K a) b c.
Similarly, the transitions 4-5 and 5-6 correspond to
conversion

S (K a) b c = K S a (K a) b c,
K S a (K a) b c = S (K S) K a b c.

However, object S (K S) K a b c, arranged last in the
chain of the virtual objects, corresponds to tree
computations with a “canonical” serial arrangement
of a, b and c along the branches (indicated by a single
line in the figure). However, virtual object S (K S) K
was in the “top” of the computation tree crown,
forming it “trunk” (shown by double line). In other
words, this virtual object has exactly the
computational characteristics that required of object
B, representing the composition (unit 7). This
completes the round contour conversion clockwise:

Figure 1. Characteristics of the composition combinator B and growing of tree computations for B, using trees
for the combinators S and K. (Explanation. A transition from composition a b (unit 1) to representing
combinator B (unit 7) is obtained by the counter-clockwise. This will require six steps, if there are only trees for
computing S and K.

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 179

the path from object a (b c) to object S (K S) K is
found.

This method can be used in building the
computation trees for many other mathematical
objects, presenting them to the appropriate virtual
objects and their corresponding properties of
computational trees.

2.2. Computations in programming.

Let us now try to penetrate deep into the
structure of the objects that at first glance appear
substantially atomic and indivisible with respect to
the transformations in which they participate. In
particular, try to “split” -- of course, not materially
but relative to the selected computational system --
the well-known operation of composition.

Suppose that there are objects a, b and c, in
which, for example, the following meaning is
embedded: a, b are operations add1 of adding one, or
“successors” add1 z = z + 1, and object c is equal to
3. For composition of a and b using the argument c,
we obtain

(a b) c (add1 add1) 3
 = add1 (add1 3)
 = add1 (4)
 = 5.

This is a well-known meaning given to the operation
of the composition and its internal structure is usually
not concerned at all. The computational technology
in use allows looking differently at normal
operations, distinguishing their details of the internal
structure. Try, for example, to answer the question
whether the composition is the unit operation, or is
generated as a derived object in the system of the
generic objects-combinators. For this we take the
object S (KS) K, which is composed of objects
already known as combinators and computationally
are understood. Use them to learn how this object can
interact with other objects, i.e. determine its
combinatory characterization. Initial configuration of
the objects uses the first argument a, where the
additional two arguments being analyzed are
temporarily in parentheses: (b), (c). Reasons for this
are as follows: S as in combinatorial computations
showing arity equal to 3, the arguments b, c, in
parentheses, do not act on S-computation directly.

Step 1-1: transition from S (K S) K a to K S
a (K a). So combinator S is able to interact with three
of his arguments – K S, K and a. Computation is
distributed, and the first branch of the generated
application is K S a, and the second branch -- K a.
This is the S-reduction.

Step 1-2: transition from K S a (K a) to S (K
a). Located in the first branch object K S a can be K-
reduced, as the left-most object K has the object
arguments S and a, which are necessary for

transformation. Now a result of the interaction of
objects is generated.

Step 2-1: transition from S (K a) b c to K a c
(b c). Start with the generated object configuration.
Interaction of object was performed as follows. As a
result of K-reduction of the previous step, S is
formed. It is known that distributor S forms its result
by applying its left branch object to the right branch
object. The result of this application S (K a) cannot
be reduced further, as the left-most object S has the
only first argument of K a.

Step 2-2: transition from K a c (b c) to a (b
c). Object of the first branch of K a c as the left-most
object contains combinator K, which has the
necessary pair of arguments a and c, and performing
K-reduction results in a.

The object of second branch is not reducible
as there is no information about the structure of the
corresponding leftmost object b, so now we have to
perform applying the result of computation in the
first branch to the result of computation in the second
branch, i.e. applying a to bc. This is exactly a (b c),
or commonly used infix notation (a º b) c.

This shows that S (K S) K is a virtual
representation of the composition operation.

Step 3: forming composition combinator B,
which allows obtaining a (b c). Now we need to fix
this semantic structure as a characterization, the
elements of which have already been prepared. A
representation of the composition is found and this is
object S (K S) K. It remains to reduce references to
this virtual object S (K S) K determining B = S (K S)
K, which completes the process of reduction and
leads to the needed characterization.

Briefly summarize the computational
process in the direction of reduction for object B,
which corresponds to perform the analysis of its
potential internal structure. Computational analysis of
the behavior of combinator S (K S) K gives the
following:

S (K S) K a b c = K S a (K a) b c
 = S (K a) b c
 = K a c (b c)
 = a (b c)

The reduction above raises the question, but
where was known in advance that object composition
B has its virtual representation of S (K S) K in the
world of interacting objects, generated by the objects-
combinators S and K? In order to overcome this
doubt, try starting from a result of composing objects
a and b, denoted by (a º b) c = a (b c), to generate the
composer B. This means precisely that B interacts
with a sequence of objects a, b and c, reducing in
their composition a (b c).

Solving the problem of synthesis of an
object with a predetermined characteristic of the

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 180

interaction requires not a reduction, but expansion.
The symbolization process allows jotting down the
entire chain of expansions, leading to a desired result.

The synthesis of combinator B, having a
characteristic of composition is as follows:

a (b c) = K a c (b c)
 = S (K a) b c
 = K S a (K a) b c
 = S (K S) K a b c
 B a b c.

This computation is in the direction of
expansion. Looking ahead, we note that it is enough
to read the steps of analysis above in reverse order
and each of the separate steps in reverse order as
well, reading the equalities from right to left. In order
to trace the expansion chain, the computations are
dropped down by steps.

Step 1: the transition from a (b c) to K a c (b
c). Use the result of the composition of objects a and
b which is written as a (b c) for any argument c. This
is the initial configuration of objects, and the target to
be achieved as a result of expansion, is (a º b) c, or,
equally, B a b c. For purely formal reasons it is
necessary simply to “disclose the parentheses”, in
which objects b and c are enclosed. The only way to
do this is in using the S-expansion, but we need to
pre-arrange a duplicate object c. And it is not difficult
to ensure, using the K-expansion of the object a. This
K-expansion process prepares the subsequent
implementation of the S-expansion in accordance to
its rule.

Step 2: transition from K ac (b c) to S (K a)
b c. For disclosing parentheses we had to pay a
duplicate object c. But this duplicate can be deleted,
and for this we need to perform S-expansion.

Step 3: the transition from S (K a) b c to K S
a (K a) b c. Again we need to open the parentheses,
and they are significant in that enclosed application K
a. This is done by K-expansion.

Step 4: transition from K S a (K a) b c to S
(K S) K a b c. The result of the previous step was a
duplicate of the object a, which need to be removed.
This is done by S-expansion.

In the last step the target configuration
objects is achieved. The object S (KS) K is
synthesized and this object in its structure is a
composer B.

2.3. Computation in computing

We show that the combinatorial B can be
directly obtained by combining the K and S.

First of all, fix the object a (b c). The idea is
that we need to release object c from the direct
influence of the object b. Mathematically, this means
that the need to open the parentheses. To do this we
synthesize this distributed computation, creating

another instance of c, which is achieved by the
advent instance of combinator K. In symbols, this is
as follows:

a (b c) = K a c (b c).
Further, one of the instances of c is to be eliminated,
which requires the instance combinator S, but in the
process the remaining instance of c is derived out of
dependence on b:

K a c (b c) = S (K a) b c.
The same method is used to derive object a out of
dependence on the object K. It is done in two steps.
First, a second instance of object a is generated,
distributing computation and generating the instance
combinator K:

S (K a) b c = K S a (K a) b c.
The entire output chain is as follows:
a (b c) = K a c (b c) = S (K a) b c = K S a (K a) b c.

Now one of the two instances of object a is to be
eliminated using the generated object S:

K S a (K a) b c = S (K S) K a b c.
Thus, the target object is synthesized, it remains only
to put

S (K S) K a b c ≡ B a b c.
Thus, in a total, output chain looks as follows:
a (b c) = K a c (b c) = S (K a) b c = K S a (K a) b c =

= S (K S) K a b c ≡ B a b c.

3. Conclusions and Future Work

1. The applicative interaction of objects in
mathematics usually is not symmetric leading to
“ordinary” functions with known number of their
arguments before the evaluation. This restricts the
real usage of arbitrary given functions.

2. The demands on arity of functions in
applicative interaction of objects in programming are
less restrictive. The functions can be used with
partially known arguments which become actual ones
on later stages of computation. This enables the
bidirectional “information process” of
analysis/synthesis of objects in computations “on
fly”.

3. Most of interacting symmetry is in
general computation model, used in pure computing,
where objects-actors can capture other objects along
their applicative ability. This means that only the
partially evaluated objects-processes can exist and
interact with other partially evaluated ones.

This preliminary study gives rise to further
study of the kinds of interaction environments. This
could be done by restricting the applicative pre-
structure of some, but not all the objects.

Acknowledgements:

This work is a generalization of the results,
which are associated with the construction of
conceptual and computational model obtained at

Life Science Journal 2014;11(11) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 181

different times during the projects, partially
supported by Russian Basic Research Foundation
grants 14-07-00119-a, 12-07-00661-a, 14-07-00072-
a, 12 -07-00646-a, 13-07-00716-a, 12-07-00554-a,
14-07-00054-a.

Corresponding Author:
Dr. Larisa Ismailova
Department of Cybernetics
National Research Nuclear University MEPhI
(Moscow Engineering Physics Institute)
Kashirskoye shosse, 31, Moscow, 115409, Russian
Federation
E-mail: lyu.ismailova@gmail.com

References
1. Cardone F., Hindley JR. History of lambda-

calculus and combinatory logic. In Logic from
Russell to Church, volume 5 of Handbook of the
History of Logic, Eds., Dov M. Gabbay and John
Woods. Elsevier, Amsterdam, 2009;732–617.

2. Hindley JR, Seldin JP. Lambda-Calculus and
Combinators, an Introduction. Cambridge
University Press, 2008; 345.

3. Bimbó K. Combinatory Logic: Pure, Applied,
Typed. CRC Press, 2012; 345.

4. Wolfengagen VE. Applicative computing. Its
quarks, atoms and molecules, Ed. Dr. L.Yu.
Ismailova. Moscow: Center JurInfoR, , 2010; 62

5. Rosser, JB. A mathematical logic without
variables. Part 1. Annals of Mathematics, 1935;
36: 127-150.

6. Scott, DS. Outline of a mathematical theory of
computation. Technical report, Oxford
University Computing Laboratory Programming
Research Group, 1970.

7. Wolfengagen VE. Combinatory logic in
programming, Ed. Dr. Ismailova, L.Yu.
Moscow: Center JurInfoR, 2003; 336.

8. Ismailova, LYu, Kosikov SV, Zinchenko KE,
Mikhailov AI, Bourmistrova LV, Berezovskaya
AV. Equationally Expressed Evaluation. In the
Proceedings of the 9th International Workshop
on Functional and Logic Programming, WFLP
2000, Ed. Maria Alpuente, Benicassim, Spain.
September 28–30, 2000; 135-143.

9. Wolfengagen VE. Semantic modeling:
computational models of the concepts. In the
Proceedings of the 2010 International
Conference on Computational Intelligence and
Security, CIS 2010. Sponsors: Xidian University,
Beijing Normal University, CPS of IEEE.
Nanning, 2010; 42-46. DOI=
http://dx.doi.org/10.1109/CIS.2010.16.

10. Homotopy Type Theory: Univalent Foundations
of Mathematics. The Univalent Foundations
Program, 2013. Institute for Advanced Study,
2013; 480. Date Views 05.02.2014
homotopytype theory.org/book/

6/24/2014

