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Abstract: In the real world we usually face the problem of discrete survival times, typically associated with the 
presence of ties between events and censored observations. However, the conventional Kaplan-Meier approach, as 
well as Greenwood´s variance estimator, do not adequately consider this fact, which leads to underestimation of true 
survival probabilities and variances. In this paper we therefore present a modified Kaplan-Meier approach, by 
explicitly considering the presence of ties. A variance estimator based on our modified Kaplan-Meier approach is 
developed. In absence of ties the new variance estimator equals to Greenwood variance estimator, while in 
censoring free data, it reduces to binomial variance estimator. A simulation study was conducted in order to compare 
the performance of conventional Kaplan-Meier estimator and modified Kaplan-Meier estimator on different 
censoring percentages. Our simulation results suggest a significant improvement in terms of bias of modified 
Kaplan-Meier approach in comparison to conventional Kaplan-Meier estimator. Similarly, the results of variance 
simulation favour the proposed, modified variance estimator. Our new approaches are illustrated on a leukaemia 
data set. 
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1 Introduction 

Over the last decades, statistical techniques of 
Survival analysis play increasingly important roles in 
biostatistics and modern medical research (Horton et 
al., 1979; Strasak et al., 2006; Emerson et al., 1983; 
Fleming et al., 1984). Due to considerable 
methodological development concerning this statistical 
area, today, methods of Survival analysis exist in 
manifold parametric, semi-parametric and non-
parametric forms. However, the famous Kaplan-Meier 
Survival function is the most commonly used non-
parametric method for estimating survival probabilities 
in medical research (Kaplan et al., 1958). 

Survival analysis is different from conventional 
statistical procedures due to the concept of censoring. 
Let T1, T2, …, Tn be independently identically 
distributed survival times having the distribution 
function F(t) and let G(c) be the distribution function of 
independently identically distributed censoring times 
C1, C2, …, Cn. Ti and Ci are assumed to be independent. 
Let Xi=min {Ti, Ci} be the observed survival time and 
δi=I (Ti≤Ci) indicate whether the survival time is 
censored or event. Given this context, the problem is to 

estimate the survival probability S(t)=1– F(t) from the 
ordered survival time Xi and from corresponding δi. Let 
the number of individuals who are alive just before 
time Ti, including those who are about to die at this 
time, be denoted by ri and ei to denote the number of 
persons who die at this time, the conventional Kaplan-
Meier estimator is defined as 
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However, the conventional Kaplan-Meier 

estimator considers time to be continuous, although this 
does not necessarily hold true for all real situations. For 
example, it may easily happen that a patient visits 
hospital after specific time periods (e.g. every week, 
month or quartile) and therefore visiting times are 
assumed to be discrete and not continuous. In the other 
hand, discrete survival times are typically associated 
with the presence of ties between censored and event 
time. This fact is not adequately considered by the 
conventional Kaplan-Meier method, as in case of ties 
censored observations are ignored(Collet, 1994). 
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Similarly, Greenwoods variance estimator, commonly 
used in Survival analysis and the formula of jump size 
do not give any attention to possible presence of ties in 
discrete survival times(Greenwood, 1926; Maller, 
1996). 

In this paper we present a modified estimator for 
Kaplan-Meier Survival function by explicitly 
considering the presence of ties. In section 2 we 
develop a modified approach for the Kaplan-Meier 
estimator and derive a variance formula for our 
modified survival function. A modified formula for the 
jump size, considering tie-cases is presented, as well. 
In section 3, two different simulation studies are 
performed in order to compare potential bias of 
conventional Kaplan-Meier estimator with modified 
Kaplan-Meier estimator and our new variance 
estimator with Greenwood variance estimator. In 
section 4, we apply our methods to the leukaemia data 
set of Freireich et. Al (1963). Although some previous 
authors already considered the idea of discrete survival 
times, to our knowledge up to now there is no work 
explicitly related to survival probabilities in the 
presence of ties (Hogan et al., 1998; Brookmeyer et al., 
2002; Lam et al., 2003; Adebayo et al., 2005). When 
using the conventional Kaplan-Meier Survival function 
in this case, estimated survival probabilities are 
regularly underestimated. Our new approach leads to 
better results in terms of bias and variance. 
2 Method 

Suppose that a sample of survival data (Xi, δi), 
i=1, 2,…, n is generated from survival and censoring 
times. We assume the time to be discrete and the 
presence of ties among censoring times and event 
times. We further suppose that ri denotes the number of 
persons at risk prior to time Ti, ei to denote the number 
of events and ci the number of censored observations at 
time Ti. 
2.1  Modified Kaplan-Meier Survival Function 

We define the modified function in two steps: 
Step 1: We consider ci and ei to occur together at 

time Ti and adopt the new procedure by first 
subtracting ci from ri in order to obtain the adjusted 
number of persons at risk at time Ti. 

iii crr '

  (2) 
By first ignoring censoring in order to calculate 

censoring free survival probability at time Ti, we 

replace ri by 
'

ir  in the conventional Kaplan-Meier 
Survival function and derive 
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Step 2: We now consider the second factor i.e. ci. 

In order to incorporate the concept of ties into our new 
approach and to obtain the modified survival 

probability at time Ti, we use the arithmetic mean of ci 

and pi, considering pi to be a single observation 
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There are mainly two reasons for choosing the 

arithmetic mean instead of median, although median is 
the most commonly used method of central tendency in 
survival analysis. First, we are considering all tie cases 
having same observed times and so there is no chance 
of occurrence of outliers. Second, if choosing the 
median instead of the arithmetic mean, at tie-times 
there are more chances of getting survival probabilities 
greater than 1, which is unrealistic and statistically not 
possible. By using the concept of Product-Limit 
probability we derive our modified Kaplan-Meier 
Survival function 
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By simplifying we get 
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However, if no ties are present in the data 

'
ir

equals to ir  and
 tS *

 reduces to 
 tS  which 

corresponds to the conventional Kaplan-Meier 
estimator. 
2.2 Variance Estimator Of Modified Kaplan-
Meier Estimator 

Greenwood variance is the most commonly used 
variance estimator for calculating confidence intervals 
in survival probabilities and is given by 
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where  
^

tS KM  denotes the Kaplan-Meier 
Survival probability. Just like the conventional Kaplan-
Meier Survival function, also Greenwood’s variance 
estimator does not consider the possibility of ties. 
However, in order to calculate confidence intervals and 
other statistics for our new approach, one also needs a 
modified variance estimator. 

We obtain the modified variance estimator for 
modified Kaplan-Meier Survival function by using the 
delta method (Collet, 1994) . Considering equation 5, 
taking log and variance on both sides, we obtain 

     
i

iptS ** logvarlogvar
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By applying the delta method on the right hand 
side of equation 8 we derive 

    
i

i

i

i
r

p

p
p

*

*

* 11
logvar












 (9) 
By putting equation 9 into equation 8 we derive 

   
i

i

i r

p

p
tS

*

*

* 11
logvar










 

   (10) 

By applying delta method on 
   tSi

*logvar
 

we get 
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By simplifying we derive our modified variance 

estimator 
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Again, if events and censored observations do not 

occur at the same time then ci=0 and ii rr '

, the 
modified variance estimator reduces to conventional 
Greenwood variance estimator. If the data is free from 
censoring, the modified variance estimator equals to 
the binomial variance estimator. 

2.3 Modified Jump Size 
We now can write the modified Kaplan-Meier 

Survival function as 
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and so the distribution function is 
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 (14) 
Just like the conventional Kaplan-Meier 

estimator, the modified Kaplan-Meier estimator is 
constant at point Ti; at this point its jump is of 
magnitude 

        )(  iii tFtFtF
 (15) 

By substituting the relevant distribution functions 
in the above equation we derive 
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By simplifying we obtain the modified Jump Size estimator 
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Again, in the absence of ties, our modified Jump 

Size estimator reduces to the conventional Jump Size 
estimator. 
3 Simulation Study 

Although we considered survival times to be 
discrete, we choose commonly used continuous 
survival distributions to draw survival and censoring 
times in R as compared to discrete distributions, 
continuous survival distributions are easy to handle and 
understand (R Development Core Team, 2004). 

In order to incorporate tie-cases into the 
distributions, we now converted the continuous times 
into discrete times by choosing the 0 decimal point for 
the comparison of Kaplan-Meier and modified Kaplan-
Meier estimator in terms of bias and the 1 decimal 
point for the comparison of Greenwood’s variance 
estimator with modified variance estimator. Both 
decimal points allow for the likewise inclusion of tie-

cases and there is no difference of considering either 0 
or 1 regarding the results of our simulation approach. 
We obtained the same results by considering the 
reverse ordering of decimal points (results not shown). 
3.1  Comparison Of Kaplan-Meier And 
Modified Kaplan-Meier Survival 
Functions 

The performance of our modified Kaplan-Meier 
estimator was compared with conventional Kaplan-
Meier estimator by simulating 1000 samples of 
different sizes (n=30, 50, 70 and 100) from the 
following survival distributions of survival times: 

1. W (λ, α): Weibull with    ttS  exp
 

2. logL (λ, α): Log-logistic with 

   t
tS
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Censoring was performed using the uniform 
distribution ranging from 0 to b. In order to obtain ties 
we chose the zero decimal point with different values 
of λ, α and b, both in the survival and censoring 
distributions. As in common practice, we choose three 
points (q1=0.25, q2=0.50 and q3=0.75) at the theoretical 
survival distributions. In order to check whether our 
estimator leads to better results in different settings, we 
considered small sample size (n=30) as well as large 
sample size (n=100). 

Table 1 summarizes the results of the study by 
means of bias of conventional Kaplan-Meier estimator 
and of our modified Kaplan-Meier estimator along with 
the corresponding sum of ties and percentage of 
censoring in n*1000 samples. The results show that 
bias of the modified estimator does not only depend on 
censoring but on sample size too. Column 5, containing 
the number of ties per simulation, shows that the 
performance of our new estimator in terms of bias, 
increases with the increase of ties per simulation, as 
well as with the increase of sample size. Both survival 
distributions (Weibull and log-logistic) have the same 
behaviour regarding the censoring distribution. The 
results strongly indicate that with increasing sample 
size, bias of our new method decreases, as compared to 
bias of conventional Kaplan-Meier Survival estimator 
(Figure 1). 
3.2 Comparison Of Greenwood Variance 
Estimator And Modified 
Variance Estimator 

As with an increasing sample size the chances of 
the presence of ties increases, the second part of our 
simulation study comprised 1000 simulations of 
comparatively large samples (n=50, 75, 100, 125 and 
150),. We selected the exponential distribution with 
one decimal point for both the censoring as well as the 
survival times. Instead of conventionally considering 
three quartiles, we preferably choose the five higher 
percentiles (p50, p60, p70 and p80 and p90), as 
Greenwood’s variance regularly underestimates the 
true values at the right tail of survival distribution (Peto 
et al., 1977). However, due to the same pattern of 
behaviour at the 70th, 80th and 90th percentile in our 
simulation study, the results of the 90th percentile are 
not mentioned separately. 

Table 2 shows the simulated standard deviations 
of modified Kaplan-Meier, mean estimated standard 
errors of Greenwood’s based on Kaplan-Meier and 
mean standard errors of modified variance equation at 
the four percentiles, using Borkowf method of 
simulation (Borkowf, 2005). The results show that 
Greenwood’s standard error extremely underestimates 
the simulated standard deviations at all four selected 
points and in all samples under investigation. Although 
in case of very heavy censoring, modified standard 
error also underestimates the simulated standard 

deviation, it still gives better results at higher 
percentiles compared to Greenwood’s variance for each 
sample size (Figure 2). The same results we obtained 
by using different survival times and censoring times 
distributions. 
4 Application To Leukaemia Data Set 

We compared conventional Kaplan-Meier 
estimator and Greenwood estimator with our modified 
estimators on the famous leukaemia data set by 
Freireich et al. consisting of the survival times of 21 
clinical patients, including 9 events and 12 censored 
observations. The set consists of weeks in maintenance 
of remission for leukaemia patients treated with 6-
mercaptopurine and contained two ties at week 6 and 
10. The weeks in remission are: 6, 6, 6, 6*, 7, 9*, 10, 
10*, 11*, 13, 16, 17*, 19*, 20*, 22, 23, 25*, 32*, 32*, 
34*, 35*, where (*) denotes a censored observation. 

Table 3 summarizes data and methods. Column 1 
shows the time in weeks, column 2 represents the 
events at different time points, followed by the 
arrangements of censored observations. As there were 
two ties in the data set, column 5 contains two different 
values from column 3. In this column we considered 
tie-cases and subtracted the number of censored 
observations from the number of persons at risk, 
yielding the number of persons at risk prior to and free 
of censoring at that time. Column 6 and 7 give the 
survival function values based on conventional Kaplan-
Meier estimator and modified Kaplan-Meier estimator. 
Greenwood´s standard errors and our modified 
standard errors are given in the following columns. 

Due to the occurrence of a tie at the first observed 
time, our modified Kaplan-Meier estimator performs 
better than conventional Kaplan-Meier estimator right 
from the start (Figure 3). For example at time 6, the 
value obtained by conventional Kaplan-Meier Survival 
function equals 0.857 and that obtained by modified 
Kaplan-Meier Survival function corresponds to 0.925. 
As both methods are types of Product-Limit method, 
our modified Kaplan-Meier approach leads to better 
results in terms of survival functions right from the first 
observed survival time. However, if ties occur only in 
the middle or later stages, our new method improves 
the curve right from these points. 

In respect to standard errors, our modified 
estimator overcomes the right-tail underestimation- 
problem of Greenwood variance estimator. For 
example, regarding the last two events at time 6 and 7, 
the values of Greenwood standard error are smaller 
than the corresponding values of our modified standard 
error. 
5 Discussion 

Although the method of Kaplan-Meier is 
frequently used for univariate statistical analysis of 
survival data, it cannot sufficiently reflect real world 
problems, as the occurrence of discrete survival times, 
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associated with the presence of ties, is not incorporated 
in this concept. In case of ties, the conventional 
Kaplan-Meier function gives high rank to censored 
observations, thereby considering it as a non-
informative factor (Marubini, 1995). This leads to 
problems regarding underestimation of survival 
probabilities and variance. Although we also 
considered censoring to be non-informative, we 
acknowledged that in case of ties, it still carries 
information. To utilize this information and to 
overcome the problem of ties, typically associated with 
discrete survival data, we developed modified Kaplan-
Meier and variance estimators. The simulation study 
performed shows that our modified estimator gives 
better results in terms of bias as compared to 
conventional Kaplan-Meier Survival function, as well 
as it gives an improvement in survival curve. 

Just like the conventional Kaplan-Meier Survival 
function, also Greenwood variance estimator does not 
pay any attention to possible presence of ties. 

Concerning this problem, we developed a modified 
variance estimator. The comparison of our modified 
variance estimator with Greenwood variance estimator 
by means of simulation study, shows that the modified 
variance estimator performs better in case of small as 
well as heavy censoring. Our simulation approach 
revealed that if censoring is in-between 30 and 60%, 
there are higher chances of ties as compared to very 
small or very heavy percentages of censoring. To check 
the performance of our new approaches, we applied the 
modified and conventional methods to a small 
leukaemia data set. Although this set consisted of only 
two tie-cases, it still gave clear impression of the 
superior performance of our modified methods. 

On basis of our simulation study and analysis 
results we reach to the conclusion that as sample size 
increases, chances of presence of ties increase and 
performance of our modified estimators increases as 
well. 

 
Table 1. Bias of conventional Kaplan-Meier and modified Kaplan-Meier estimator.* 
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0.042 
0.050 
0.053 
0.056 

 
0.097 
0.096 
0.092 
0.095 

 
0.000 
0.000 
0.000 
0.000 

 
0.141 
0.161 
0.163 
0.168 

 
0.049 
0.052 
0.053 
0.053 

 
-0.037 
-0.035 
-0.033 
-0.032 

 
-0.021 
-0.016 
-0.013 
-0.012 

0.422 
0.428 
0.427 

 
-0.255 
-0.367 
-0.368 
-0.368 

 
0.245 
0.275 
0.252 
0.236 

 
0.092 
0.073 
0.071 
0.054 

 
0.124 
0.139 
0.115 
0.105 

 
0.130 
0.085 
0.041 
0.008 

 
0.073 
0.068 
0.067 
0.077 

 
-0.331 
-0.433 
-0.477 
-0.495 

 
0.000 
0.000 
0.000 
0.000 

 
-0.204 
-0.237 
-0.273 
-0.315 

 
0.115 
0.060 
0.022 
0.006 

 
-0.094 
-0.076 
-0.073 
-0.062 

 
-0.030 
-0.025 
-0.024 
-0.023 

0.427 
0.429 
0.428 

 
-0.134 
-0.141 
-0.143 
-0.145 

 
0.332 
0.388 
0.426 
0.440 

 
0.097 
0.100 
0.113 
0.124 

 
0.191 
0.200 
0.206 
0.205 

 
0.350 
0.377 
0.398 
0.412 

 
0.070 
0.061 
0.057 
0.059 

 
-0.193 
-0.178 
-0.163 
-0.158 

 
0.000 
0.000 
0.000 
0.000 

 
-0.099 
-0.083 
-0.086 
-0.081 

 
0.312 
0.351 
0.368 
0.387 

 
-0.100 
-0.094 
-0.089 
-0.084 

 
-0.020 
-0.020 
-0.018 
-0.017 

-0.198 
-0.188 
-0.183 

 
0.082 
-0.198 
-0.222 
-0.223 

 
-0.349 
-0.330 
-0.331 
-0.347 

 
-0.710 
-0.719 
-0.726 
-0.730 

 
0.195 
0.213 
0.211 
0.222 

 
-0.104 
0.025 
-0.089 
-0.309 

 
0.326 
0.324 
0.325 
0.334 

 
0.121 
0.090 
-0.020 
-0.274 

 
0.007 
0.001 
0.000 
0.000 

 
0.016 
0.027 
0.000 
-0.016 

 
-0.285 
-0.331 
-0.427 
-0.635 

 
0.175 
0.187 
0.198 
0.210 

 
-0.034 
-0.035 
-0.028 
-0.029 

-0.202 
-0.197 
-0.184 

 
0.364 
0.400 
0.417 
0.427 

 
-0.292 
-0.273 
-0.267 
-0.264 

 
-0.584 
-0.488 
-0.435 
-0.374 

 
0.085 
0.058 
0.046 
0.040 

 
0.013 
0.008 
0.004 
0.002 

 
0.336 
0.337 
0.340 
0.338 

 
0.087 
0.072 
0.061 
0.064 

 
0.009 
0.002 
0.001 
0.000 

 
0.045 
0.062 
0.068 
0.080 

 
-0.152 
-0.146 
-0.141 
-0.139 

 
0.191 
0.208 
0.222 
0.231 

 
-0.039 
-0.039 
-0.033 
-0.035 

* KM=Kaplan-Meier Survival function, MKM=Modified Kaplan-Meier. 
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Table 2. Simulated standard deviations of modified Kaplan-Meier (MKM), mean standard errors of Greenwood´s variance estimator and modified variance 
estimator at four percentiles. 

Dist of 
survival 

Dist of 
censoring 

p 
t 
 
 

n 
Simulated SDs of  MKM Mean SEs of Greenwood Mean SEs of modified variance 

p.5                    p.6                  p.7                  p.8 p.5               p.6                    p.7                      p.8 p.5               p.6                    p.7                      p.8 

E(2) 
 
 
 
 
 

E(22) 
 
 
 
 
 

E(20) 
 
 
 
 
 

E(15) 
 
 
 
 
 

E(20) 
 
 
 
 
 

E(15) 
 
 

E(18) 
 
 
 
 
 

E(10) 
 
 
 
 
 

E(10) 
 
 
 
 
 

E(7) 
 
 
 
 
 

E(15) 
 
 
 
 
 

E(10) 
 
 
 

83 
83 
83 
83 
83 
 

14 
14 
14 
14 
14 
 

16 
16 
16 
16 
16 
 

18 
18 
18 
18 
18 
 

21 
21 
21 
21 
21 
 

23 
23 
23 
23 
23 

2277 
2491 
2651 
2754 
2823 

 
1539 
1696 
1792 
1872 
1938 

 
1671 
1821 
1907 
1969 
2047 

 
2001 
2186 
2316 
2410 
2466 

 
1631 
1777 
1850 
1919 
1985 

 
1982 
2135 
2227 
2295 
2369 

50 
75 
100 
125 
150 

 
50 
75 
100 
125 
150 

 
50 
75 
100 
125 
150 

 
50 
75 
100 
125 
150 

 
50 
75 
100 
125 
150 

 
50 
75 
100 
125 
150 

0.161 
0.144 
0.136 
0.125 
0.127 

 
0.207 
0.207 
0.201 
0.187 
0.173 

 
0.208 
0.196 
0.180 
0.165 
0.158 

 
0.176 
0.175 
0.176 
0.184 
0.184 

 
0.211 
0.210 
0.187 
0.159 
0.164 

 
0.181 
0.170 
0.174 
0.178 
0.183 

0.174 
0.171 
0.162 
0.150 
0.147 

 
0.225 
0.231 
0.229 
0.228 
0.216 

 
0.231 
0.233 
0.228 
0.216 
0.206 

 
0.230 
0.220 
0.217 
0.218 
0.218 

 
0.232 
0.233 
0.229 
0.211 
0.203 

 
0.233 
0.217 
0.211 
0.217 
0.221 

0.235 
0.265 
0.250 
0.231 
0.218 

 
0.242 
0.257 
0.268 
0.280 
0.289 

 
0.247 
0.263 
0.280 
0.287 
0.288 

 
0.254 
0.270 
0.263 
0.248 
0.240 

 
0.260 
0.267 
0.281 
0.296 
0.294 

 
0.272 
0.285 
0.271 
0.254 
0.250 

0.288 
0.334 
0.346 
0.346 
0.328 

 
0.257 
0.258 
0.257 
0.245 
0.247 

 
0.253 
0.246 
0.243 
0.252 
0.276 

 
0.215 
0.234 
0.274 
0.293 
0.285 

 
0.264 
0.255 
0.255 
0.259 
0.276 

 
0.217 
0.267 
0.312 
0.317 
0.303 

0.049 
0.047 
0.051 
0.046 
0.043 

 
0.066 
0.054 
0.047 
0.042 
0.038 

 
0.067 
0.055 
0.048 
0.043 
0.039 

 
0.064 
0.052 
0.047 
0.041 
0.039 

 
0.067 
0.055 
0.047 
0.043 
0.039 

 
0.066 
0.053 
0.047 
0.042 
0.039 

0.067 
0.076 
0.084 
0.075 
0.071 

 
0.065 
0.053 
0.045 
0.043 
0.038 

 
0.069 
0.056 
0.048 
0.045 
0.039 

 
0.070 
0.057 
0.050 
0.045 
0.041 

 
0.068 
0.055 
0.048 
0.045 
0.039 

 
0.070 
0.057 
0.050 
0.045 
0.040 

0.082 
0.090 
0.093 
0.089 
0.086 

 
0.064 
0.053 
0.047 
0.044 
0.038 

 
0.069 
0.056 
0.048 
0.043 
0.040 

 
0.071 
0.057 
0.050 
0.046 
0.042 

 
0.069 
0.055 
0.048 
0.046 
0.039 

 
0.072 
0.058 
0.052 
0.047 
0.040 

0.089 
0.079 
0.072 
0.064 
0.057 

 
0.064 
0.052 
0.047 
0.045 
0.038 

 
0.070 
0.056 
0.048 
0.043 
0.040 

 
0.069 
0.057 
0.050 
0.046 
0.043 

 
0.069 
0.055 
0.049 
0.046 
0.039 

 
0.073 
0.059 
0.053 
0.045 
0.040 

0.063 
0.049 
0.057 
0.048 
0.046 

 
0.174 
0.151 
0.135 
0.106 
0.101 

 
0.172 
0.129 
0.101 
0.100 
0.102 

 
0.134 
0.140 
0.146 
0.163 
0.159 

 
0.157 
0.144 
0.101 
0.100 
0.100 

 
0.115 
0.103 
0.114 
0.122 
0.129 

0.074 
0.080 
0.090 
0.082 
0.080 

 
0.224 
0.206 
0.189 
0.169 
0.143 

 
0.237 
0.195 
0.170 
0.143 
0.133 

 
0.227 
0.206 
0.219 
0.231 
0.238 

 
0.202 
0.193 
0.163 
0.123 
0.116 

 
0.198 
0.162 
0.159 
0.178 
0.188 

0.130 
0.163 
0.138 
0.112 
0.100 

 
0.278 
0.300 
0.313 
0.315 
0.317 

 
0.338 
0.340 
0.347 
0.285 
0.275 

 
0.300 
0.311 
0.318 
0.290 
0.289 

 
0.316 
0.345 
0.326 
0.309 
0.273 

 
0.320 
0.296 
0.253 
0.236 
0.235 

0.189 
0.288 
0.313 
0.286 
0.229 

 
0.304 
0.303 
0.307 
0.309 
0.310 

 
0.374 
0.360 
0.355 
0.343 
0.326 

 
0.312 
0.342 
0.345 
0.301 
0.306 

 
0.350 
0.352 
0.346 
0.320 
0.316 

 
0.300 
0.330 
0.345 
0.385 
0.341 

 
Table 3. Estimated Survival functions and standard errors using conventional and modified Kaplan-Meier estimators, Greenwood and modified standard error.* 

Time 
 

rn 
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SKM SMKM SEGW SEMKM 
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7 
 

9 
 

10 
 

11 
 

13 
 

16 
 

17 
 

19 
 

20 
 

22 
 

23 
 

25 
 

32 
 

34 
 

35 

21 
 

21 
 

17 
 
 
 

15 
 
 
 

12 
 

11 
 
 
 
 
 
 
 

7 
 

6 

0 
 
3 
 
1 
 
 
 
1 
 
 
 
1 
 
1 
 
 
 
 
 
 
 
1 
 
1 

0 
 
1 
 
0 
 
1 
 
1 
 
1 
 
0 
 
0 
 
1 
 
1 
 
1 
 
0 
 
0 
 
1 
 
2 
 
1 
 
1 

21 
 

20 
 

17 
 

16 
 

14 
 

13 
 

12 
 

11 
 

10 
 

9 
 

8 
 

7 
 

6 
 

5 
 

4 
 

2 
 

1 

1.000 
 

0.857 
 

0.807 
 
 
 

0.753 
 
 
 

0.690 
 

0.628 
 
 
 
 
 
 
 

0.538 
 

0.448 

1.000 
 

0.925 
 

0.871 
 
 
 

0.840 
 
 
 

0.770 
 

0.700 
 
 
 
 
 
 
 

0.600 
 

0.500 

0.000 
 

0.076 
 

0.087 
 
 
 

0.096 
 
 
 

0.107 
 

0.114 
 
 
 
 
 
 
 

0.128 
 

0.135 

0.000 
 

0.062 
 

0.087 
 
 
 

0.100 
 
 
 

0.132 
 

0.163 
 
 
 
 
 
 
 

0..225 
 

0..290 

* SEGW=Greenwood Standard error, SEMKM=Modified Standard error 
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Figure 1. Simulated bias of conventional and modified Kaplan-Meier survival function (dotted curves represent bias 
of conventional Kaplan-Meier survival function and solid curves represent bias of modified Kaplan-Meier survival 
function from w(1.5, 25)). 
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Fig 2. Set of curves of (a) simulated SDs of modified Kaplan-Meier survival function, (b) mean estimated 
Greenwood standard error and (c) mean estimated standard error of modified Kaplan-Meier survival function from 
E(15). Each curve was estimated using 1000 simulated sets of data for a given sample size (n=50, 75, 100, 125, 
150). 
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Figure 3. Kaplan-Meier Survival curve and modified Kaplan-Meier Survival curve for the leukaemia data. 
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