
Life Science Journal 2014;11(10) http://www.lifesciencesite.com

474

A New Efficient Hybrid Exact String Matching Algorithm and Its Applications

Atheer Akram AbdulRazzaq, Nur’Aini Abdul Rashid, Muhannad A. Abu-Hashem, Awsan Abdulrahman Hasan

Department of Parallel and Distributed Processing, School of Computer Sciences Universiti Sains Malaysia (USM),

 11800 Pulau Pinang, Malaysia

athproof@yahoo.com

Abstract: String matching is one of most challenging issues in computer science. In this study, a new efficient

hybrid string matching algorithm called Atheer was developed. This proposed algorithm is integrated with the

excellent properties of three algorithms, namely, the Karp–Rabin, Raita, and Smith algorithms. The Atheer

algorithm demonstrated an efficient performance in the number of comparison attempts as well as in the character

comparisons with original algorithms in the first step and with recent and standard algorithms (i.e., Horspool, Quick

search, Two-way, Fast search, SSABS, TVSBS, AKRAM, and Maximum shift) in the second step. The proposed

algorithm in this study utilized several data types, namely, DNA sequences, Protein sequences, XML structures,

Pitch characters, English texts, and Source codes. The Pitch database was the best match for Atheer in terms of the

number of comparison attempts involving long and short patterns; the DNA database was the worst match. In terms

of the character comparisons, the best database was the Source code database; the DNA sequence data type was also

the worst match when short and long patterns were used.

[AbdulRazzaq AA, Rashid NA, Abu-Hashem MA, Hasan AA. A New Efficient Hybrid Exact String Matching

Algorithm and Its Applications. Life Sci J 2014;11(10):474-488] (ISSN:1097-8135).

http://www.lifesciencesite.com. 65

Keywords: Exact string matching, Atheer algorithm, type and size of data, pattern lengths

1. Introduction

String matching is the process of finding all

occurrences of alignments by comparing two finite-

length strings (Faro and Lecroq, 2013). It is one of

the most challenging issues in many computer

science applications, including operating systems,

information retrieval from databases, web search

engines (Bhukya and Somayajulu, 2011), intrusion

detection systems (Hassan and Rashid, 2012), signal

and image processing (Lu, 2008; Klaib and Osborne,

2009), artificial intelligence (Al-mazroi and Rashid,

2011), compilers, and command interpreters. Other

examples of string matching applications are library

systems, error correction, text processing, speech and

pattern recognition (Michailidis and Margaritis,

2002), bibliographic search, question-answer

applications (Zubair et al., 2010), and in the literature

of dictionaries and memorized data (Hassan, 2005).

String matching is also used to analyzed Protein

sequences and pattern matching of DNA (Cao, 2004;

Bhukya and Somayajulu, 2011). Therefore, string

matching plays a significant role by inducing

challenging problems in theoretical computer science

(Hassan, 2005; Faro and Lecroq, 2010).

String matching involves patterns and texts, both

of which undergo a matching process to identify their

identical characters. The matching process depends

on two factors: the number of characters compared

and the number of attempts made for the comparison.

These factors are changeable depending on the type

of algorithm used (Lecroq, 1995; Kadhim, 2012;

Hussain et al., 2013). In this paper, the proposed new

hybrid algorithm depends on the good features of

existing exact strings matching algorithms and

overcome the disadvantages of these algorithms

which are Karp-Rabin, Smith and Raita. The

proposed hybrid algorithm uses all types of databases

existed in benchmark standard to determine the

suitable and unsuitable databases for this algorithm.

The main aim of this paper is to improve the

performance of existing string matching algorithms.

1.1Original algorithms

The demand for efficient hybrid exact string

matching algorithms has increased because of the

need to minimize the limitations of the original

algorithms and to obtain the best performance results

(Abdulrazzaq et al., 2013a). Three original

algorithms are used in the present study: Karp–Rabin,

Smith, and Raita.

The Karp–Rabin algorithm is based on the

hashing approach (Karp and Rabin, 1987) and

depends on the matching process of the hashing

function. In this function, each character in the string

changes to the integer number that can facilitate

transactions within a mathematical operation. The

comparison in the searching phase begins with the

comparison of the hash number of the pattern with

the hash number of the text window. The shift in the

pattern begins in the left and ends in the right. When

a mismatch occurs, the window shifts to the right by

one character. Rehashing is required to calculate the

mailto:geetakh@gmail.com
http://www.lifesciencesite.com/

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

475

new hash of the window after removing the hash

value of the first character from the left side and after

adding the new character from the right side in the

previous step. The process of rehash continues up to

the last character for every shifting process. When the

hash number of the pattern equals the hash number of

the text window, the characters in the pattern are

compared with those of the text window one by one.

After matching all characters, the pattern is moved by

shifting one character. The hash function technique is

considered a high-performance function because it

uses integer numbers that reduce the computing time

(Abdulrazzaq et al., 2009).

The Raita algorithm belongs to the Boyer–

Moore subgroup (Raita, 1992), and its techniques are

characterized by matching from any order behavior

(Charras and Lecroq, 2004). This algorithm depends

on the Boyer–Moore bad character (bmBc) table in

the preprocessing phase. In the searching phase, the

matching process starts after the rightmost character

in the pattern is compared with the rightmost

character in the text window. If a match is found,

then the leftmost character in the pattern is compared

with the leftmost character in text window. If the

character also matches, then they are compared with

the middle character in both the pattern and the text

window. If a mismatch is found for each of the three

characters, then the shifting of the pattern will depend

on the m value in the bmBc table. If a match is found,

the comparison starts from the second to the last

character (m−1). The middle character is compared

again during this process. If a mismatch occurs, then

the shifting of the pattern will depend on the m value

in the bmBc table. If a match is found, then the

comparison continues to another character; when all

the characters are reached, the shifting will depend on

the m value (Abdulrazzaq et al., 2013b).

The Smith algorithm is a type of hybrid

algorithm (Smith, 1991) whose technique is

characterized by matching from any order behavior.

This algorithm consists of two algorithms, namely,

Horspool and Quick search. The preprocessing phase

depends on the bmBc table and the quick search bad

character (qsBc) table. The matching operation starts

after the pattern and the text are compared from left

to right. If a mismatch occurs, then the shifting of the

pattern will depend on the higher value obtained in

the comparison between the m value in the bmBc

table and the m + 1 value in the qsBc table. If a

match is found, then the comparison continues to

another character. If all the characters match, the

shifting will then depend on the higher value between

the m value in the bmBc table and the m + 1 value in

the qsBc table (Charras and Lecroq, 2004).

2. Method

The proposed algorithm, Atheer, depends on

the preprocessing and searching phases and is

integrated with the excellent features of the Karp–

Rabin, Raita, and Smith algorithms.

2.1 Preprocessing phase
The preprocessing of this algorithm involves

three steps:

(1) bmBc step
The technique in this step is similar to that

in the two other original algorithms. This step is

utilized in the preprocessing phase of the Raita and

Smith algorithms and is employed in the hybrid

algorithm as the initial step to prepare the bmBc

table.

(2) qsBc step

This step is employed in the preprocessing

phase of the Smith algorithm, with the Atheer

algorithm using the same technique. The Atheer

algorithm needs to prepare the qsBc table, which is

the second step in the preprocessing phase of the

hybrid algorithm. The best shifting process for each

character from the bmBc and qsBc tables is selected

for the hybrid algorithm.

(3) Hashing step

This step is derived from the preprocessing

phase of the Karp–Rabin algorithm that depends on

the hashing process (Figure 1). The technique in the

Atheer algorithm differs from that in the original

algorithm. This difference is related to the hashing

characters in the Atheer algorithm, which calculates

the first hashing step (Fh) in the pattern and the text

window (Fhw). The second hashing step (Sh) and the

third hashing step (Th) depend on the specific

hashing value (Figure 1). Each letter used in the

Atheer algorithm follows ASCII representation.

 In the Fh step, hashing is calculated for only

three characters, which are the last, first, and middle

characters. The calculation depends on the equation

number (1) for this step. The hashing of these three

characters in the text window is calculated by the

equation number (1) denoted by Fhw. In the Sh step,

hashing is calculated from the second character to the

middle −1 character in the pattern. The calculation

also depends on the equation number (2) for this step.

In the Th step, hashing is calculated from the middle

+1 character to the last −1 character in the pattern.

The calculation also depends on the equation number

(3) for this step (Th). For all the hashing steps,

suppose that WF, WS, and WT are found in Fh/Fhw, Sh,

and Th, respectively.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

476

Figure 1. Hashing process for the Atheer algorithm

The hashing value is calculated using the following equations:

First hashing step: (wF[0,m ∕ 2,m-1]) = (wF [0] × 2
u-1

 + wF [m/2] × 2
u-2

 + wF [m -1] ×2
0
) mod q. (1)

Second hashing step: (wS [1… m ∕ 2-1]) = (wS [1] × 2
u-1

 + wS [2] × 2
u-2

 +...+ wS [m ∕ 2-1] ×2
0
) mod q. (2)

Third hashing step: (wT [m ∕ 2+1… m -2]) = (wT [m ∕ 2+1] × 2
u-1

+ wT [m ∕ 2+2] ×2
u-2

+...+ wT [m -2] ×2
0
) (3)

mod q.

The pseudo code for all the steps in the preprocessing phase of the hybrid algorithm is shown in Figure 2.

Figure 2. Preprocessing phase in the Atheer algorithm

2.2 Searching phase

The searching phase technique in the

proposed algorithm depends on the searching phase

techniques of the original algorithms and on some of

the modulations during the matching operation. The

first step compares the hash values of the three

characters in the Fh pattern with the hash values of

the three characters in Fhw. If a match is found, then

the three characters in the text window and the three

characters in the pattern are compared one by one. If

a match is found between these characters, then the

second step is performed. If a mismatch occurs in the

hashing comparison or in the character comparisons,

then the shifting will depend on the maximum value

1. //(Fh)calculate the hash values of first step in pattern
2. fhx (fhx<<1) + firstCh, fhx (fhx<<1) + middleCh, fhx (fhx<<1) + lastCh
3. //(Fhw) calculate the hash values of first step in text window
4. fhy (fhy<<1) + y[0], fhy (fhy<<1) + y[m/2], fhy (fhy<<1) + y[m-1]
5. //(Sh) calculate the hash values of second step
6. shfx gethy(1, m/2, x)
7. // (Th) calculate the hash values of third step
8. shlx gethy (m/2+1, m-1, x)

1. Algorithm Atheer (X [0 …..m -1]
2. //Input: Pattern X
3. //Output: Shift tables of (bmBc), (qsBc) and compute the hush values.
4. // preqsBc (preprocessing Quick-Search bad-character function)
5. For K 0 to size of alphabet Do
6. qsBc[k] m +1
7. End For
8. For j 0 to m-1 Do
9. qsBc [X[j]] m- j
10. End For
11. // prebmBc (preprocessing Boyer-Moore bad-character function)
12. For K 0 to size of alphabet Do
13. bmBc [k] m
14. End For
15. For j 0 to m -2 Do
16. bmBc [X[j]] m- j -1
17. End For
18. // Compute the hush values h = d^S-1 mod q
19. For i w to S-1 Do

20. hy (hy<<1)+y[i]

21. End For
22. firstCh x[0], secondCh x+1, middleCh x[m/2], lastCh [m-1]

23. // Hash values of all steps in pattern and the first three characters in text window
24. fhx (fhx<<1) + firstCh, fhx (fhx<<1) + middleCh, fhx (fhx<<1) + lastCh

25. fhy (fhy<<1) + y[0], fhy (fhy<<1) + y[m/2], fhy (fhy<<1) + y[m-1]

26. shfx gethy(1, m/2, x)

27. shlx gethy (m/2+1, m-1, x)

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

477

between m and m + 1, where m refers to the last

character in the text window, and m + 1 refers to the

first character after the text window. This case is

derived from the Smith algorithm and depends on the

m value in the bmBc table and the m + 1 value in the

qsBc table.

If a match is found in the first step, then the

hashing characters (Sh) in the pattern are compared

with the hashing characters from the second to the

middle −1 characters in the text window in the

second step. The hashing of the second step

characters in the text window are calculated by using

the equation number (2) denoted by (Shw). If a match

is found, then the characters between them are

compared. Regardless of whether a match or a

mismatch is found, the shifting process will depend

on the same technique used in the previous step. If a

match is found in the second step, then the hashing

characters (Th) in the pattern are compared with the

hashing characters from the middle character +1 to

the last −1 character in the text window in the third

step. The hashing of the third step characters in the

text window are calculated by using the equation

number (3) denoted by (Thw). If a match is found,

then the characters are compared. Regardless of

whether a match or a mismatch is found, the shifting

process will depend on the same technique used in

the previous steps. The pseudo code for the steps in

the searching phase of the Atheer algorithm is shown

in Figure 3.

Figure 3. Searching phase in the Atheer algorithm

2.3 Proposed algorithm analyses
The time complexity of the bmBc and qsBc

functions is denoted as O (m + σ), and the hash

function is denoted as O (m). The time complexity of

the preprocessing phase of the proposed algorithm is

denoted as O (m + σ), and the space complexity is

denoted as O (σ). The next section describes the time

complexity of the searching phase.

Lemma 2.1. The time complexity of the search space

in the best case is O (n / (m + 1)).

Proof. When each character during the

comparison does not occur in the pattern, then the

shifting depends on the maximum value between m

and m + 1, where m is from the bmBc function, and

m + 1 is from the qsBc function; both values are

computed during the preprocessing phase. When all

characters in the pattern differ from the characters in

the text, the shifting depends on m + 1, and the time

complexity is O (n / (m + 1)).

1. Algorithm Atheer (X [0 …..m -1], Y [0…….n-1])
2. //Input: Pattern X, Text Y
3. //Output: number of attempts and number of character comparisons of pattern with text
4. If (m%2 == 0) Then
5. par 1

6. End If
7. j 0

8. While j <= n – m Do
9. c y[j + m - 1]

10. // Comparing the Fh and Fhw
11. If (fhx == fhy && lastCh == c && firstCh == y[j]&& middleCh== y[j + m/2])Then
12. shfy gethy(j + 1, j + m/2, y) //calculate the hash of (Shw)

13. // Comparing the Sh and Shw
14. If (shfx == shfy && match(x + 1, m/2 - 1, y, j + 1, &temp) == 1) Then
15. shly gethy(j+m/2+1, j + m -1, y) // calculate the hash of (Thw)

16. // Comparing the Th and Thw
17. If(shlx == shly && match(x + m/2 + 1, m/2-1-par, y, j + m/2 + 1, &temp) == 1)Then
18. Count // The first occurrence of the pattern in the text
19. End If
20. End If
21. End If
22. Output the first attempt and character comparisons
23. j +=max(qsBc[y [j + m]],bmBc[y[j + m - 1]])
24. // Rehash operation for the text window
25. fhy 0,fhy (fhy<<1) + y[j],fhy (fhy<<1) + y[j+m/2],fhy (fhy<<1) + y[j+m-1]

26. End While

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

478

For example:

Text: aaaaaaaaaaaaaaaaaa

Pattern: bbbb

Lemma 2.2. The time complexity of the searching

phase is O (n × m) in the worst case.

Proof. For each character in the text, the

matching process does not take place more than m

times. Thus, all the comparisons of n characters do

not exceed m × n. The worst case occurs when all

characters in the pattern and the text window are

quite similar in every attempt. In this case, the

shifting is equal to 1, and the time complexity is O (n

× m).

For example:

Text: cccccccccccccccccc

Pattern: cccc

Given the size of the alphabet characters and

the possibility of the appearance of every character in

the text, the average time complexity is not

determined in this algorithm.

2.4 Comparison of proposed and original

algorithms

 The comparison step shows the difference

between the Atheer algorithm and the original

algorithms. This difference is determined in terms of

the preprocessing phase, searching phase and shifting

operation (Table 1).

Table 1. Comparison of the Atheer algorithm and the original algorithms

Properties Karp-Rabin Raita Smith Atheer

Preprocessing phase

Hashing  × × 

Using of Boyer-

Moore bad character

(bmBc) table
×   

Using of Quick

search bad character

(qsBc) table
× ×  

Searching phase

Hash comparisons of

three characters(Fh

and Fhw)
× × × 

Hash comparison of

(Sh and Shw)
× × × 

Hash comparison of

(Th and Thw)
× × × 

Pattern shifting by

Maximum value

between M and M+1
× ×  

Other properties

Comparison

movement
Left to right By any order By any order By any order

Shifting after

matching
One character

Character value in

bmBc table

Maximum value

between m and m+1

Maximum value

between m and m+1

Shifting after

mismatching
One character

Character value in

bmBc table

Maximum value

between m and m+1
Maximum value

between m and m+1

3. Experimental design

The design of hybrid algorithm depended on

choosing the good properties of original algorithms

and reformulating the searching phase of Atheer

algorithm, which can be dealt with different

benchmark standard databases. The hybrid algorithm

was compared to original algorithms, and then to the

recent and standard algorithms. The last step in this

research was analyzing and evaluating the results of

algorithm.

3.1 Databases

Common types of databases use string

matching algorithms. The data types utilized in this

study are DNA sequences, Protein sequences, XML

structures, Pitch characters, English texts, and Source

codes. These data types are considered the

benchmark standard, and all were downloaded from

the Pizza & Chili Corpus website

(http://pizzachili.dcc.uchile.cl/ (Pizza Chili Corpus).

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

479

The DNA sequence data contained four

nucleotides of DNA: adenine (A), guanine (G),

cytosine (C), and thymine (T). The data were

downloaded from Project Gutenberg (Karkkainen and

Joong, 2006). The Protein sequence data composed

of amino acid sequences were obtained from the

Swissprot database. The XML structure text database

included bibliographic information in the field of

computer science. The Pitch character (MIDI Pitch

values) data type specifies tuning data in digital

music (Chew and Chen, 2003). The English text data

included all the alphabet characters in the English

language and were obtained from Project Gutenberg

(Karkkainen and Joong, 2006). The Source code data

were composed of all characters used in the C/Java

languages (Ferragina and Fischer, 2007). The

patterns lengths utilized in this study were divided

into two types: short and long patterns. The short

pattern length is between 4 and 28 characters,

whereas the long pattern length (length power of two)

ranges from 2
^5

 to 2
^10

. These types have been used in

previous studies, and the characters of the patterns

are randomly selected from the text (Huang et al.,

2008; Cai et al., 2009). The total data size used in the

present study was 50 MB.

3.2 Implementation and environment

The experiment was run on the Al Biruni

cluster in the PDCC lab of the School of Computer

Science, USM (Biruni.cs.usm.my), using Ubuntu

Linux 10.04, 4LTS of 64-bit with NVIDIA CUDA

Toolkit v2.2 and GNU C Compiler (GCC) v4.4.3.

The secure shell (SSH) software was utilized in

accessing the Biruni cluster to implement the codes.

The following abbreviated forms of the

algorithms were used: R for Raita, K–R for Karp–

Rabin and S for Smith. These algorithms are

considered the original algorithms. The recent and

standard algorithms included Horspool (H), Quick

search (QS), Two-way (T-W), Fast search (FS),

SSABS (SS), TVSBS (TV), AKRAM (AK), and

Maximum shift (MS). Atheer (AT). To refine the

results in the number of attempts made when the

proposed hybrid algorithm was compared with the

original, recent, and standard algorithms, the

following parameters were set: logarithmic scale and

base, 10; display units, 10000; minimum number,

100000. In the number of characters compared for the

original, standard, and recent algorithms, the

logarithmic scale and base (10) and the display units

(10000) were applied. The results of this study were

deemed superior when the results of the hybrid

algorithm were better than those of the original

algorithms. Thus, the tables of evaluation for the

hybrid algorithm were arranged with the best result

presented first, followed by the results from the other

algorithms. The results were expressed as “first,”

“second,” “third,” and “fourth.” To evaluate the

performance of the hybrid algorithm in the different

types of databases, the result was expressed as “best”

when the hybrid algorithm performed better in a

specific database compared with others. “Worst” was

used to indicate the lowest performance of the hybrid

algorithm for a given database. “All databases” was

used to indicate when the hybrid algorithm or the

other algorithms attained the best performance in all

databases. “Most databases” was used to indicate that

the hybrid algorithm or the other algorithms attained

the best performance in most but not all databases.

4. Results

The comparison of the results of the Atheer

algorithm with those of the original algorithms in the

first step as well as with those of the recent and

standard algorithms in the second step depends on the

number of comparison attempts and characters

compared. The performance depends on the data type

and pattern lengths. All types of data utilized in this

study (i.e., DNA sequences, Protein sequences, XML

structures, Pitch characters, English texts, and Source

codes) used a data size of 50 MB. The short (4 to 28)

and long (2
^5

 to 2
^10

) pattern length types were also

used.

4.1 Results of the comparison of the Atheer

algorithm with the original algorithms

The number of comparison attempts and

characters compared required a data size of 50 MB.

In the number of attempts, the Atheer and Smith

algorithms achieved the best results compared with

the Raita and Karp–Rabin algorithms in both short

and long pattern lengths. The Pitch database showed

the best results in terms of the number of comparison

attempts when the long and short patterns were used;

the DNA database demonstrated the worst results

(Figures 4 and 5).

In the number of characters compared, the

Karp–Rabin algorithm showed the best results in all

short pattern lengths, except when a very short

pattern length, such as 4. This algorithm was

followed by the Atheer, Smith, and Raita algorithms.

In terms of the long pattern length, the Karp–Rabin

algorithm demonstrated the best results, followed by

the Atheer, Smith, and Raita algorithms. The Source

database showed the best results in terms of the

number of characters compared when using short and

long patterns, whereas the DNA database showed the

worst results (Figures 6 and 7).

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

480

Figure 4. Number of attempts for the Atheer and the original algorithms when using a short

pattern length and a database size of 50MB

Figure 5. Number of attempts for the Atheer and the original algorithms when using a long

pattern length and a database size of 50MB

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

481

Figure 6. Number of characters compared for the Atheer and the original algorithms when using a short

pattern length and a database size of 50MB

Figure 7. Number of characters compared for the Atheer and the original algorithms when using a long

pattern length and a database size of 50 MB

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

482

4.2 Results of the comparison of the Atheer

algorithm with recent and standard algorithms

In terms of the number of comparison

attempts, the TVSBS showed the best performance in

most databases when a short pattern length was used.

The Maximum shift algorithm demonstrated the best

performance in all databases when a long pattern

length was used. The two-way algorithm was the

worst for both short and long patterns, whereas the

Atheer showed the third best performance in most of

the databases (Figures 8 and 9). In terms of the

number of characters compared, the Atheer algorithm

showed the best performance in all databases (except

the DNA database) when the short pattern was used.

The Atheer algorithm demonstrated the second best

performance in all databases (except the XML

database). The two-way algorithm was the worst

when both short and long pattern lengths were used

(Figures 10 and 11).

Figure 8. Number of attempts for the Atheer and the recent and standard algorithms when using a short

 pattern length and a database size of 50MB

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

483

Figure 9. Number of attempts for the Atheer and the recent and standard algorithms when using a long

pattern length and a database size of 50MB

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

484

Figure 10. Number of characters compared for the Atheer and the recent and standard algorithms

when using a short pattern length and a database size of 50MB

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

485

Figure 11. Number of characters compared for the Atheer and the recent and standard algorithms

 when using a long pattern length and a database size of 50MB

5. Discussion and analysis

The Atheer algorithm and the original

algorithms were compared to highlight the excellent

properties that can be obtained from the original

algorithms. The Atheer algorithm was evaluated

based on its best performance compared with the

performance of the original algorithms (Faro and

Lecroq, 2010).

5.1 Evaluation of the Atheer algorithm compared

with the original algorithms

The results of the Atheer algorithm and the

original algorithms were compared based on the

number of comparison attempts and the number of

characters compared using short and long pattern

lengths, different data types, and a data size of 50

MB.

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

486

Table 2. Evaluation of the results of the Atheer

algorithm and the original algorithms

Algorithms
Data size (50MB)

Short Long

Best performance in number of attempts

Raita Third Third

Karp-Rabin Fourth Fourth

Smith First First

Atheer First First

Best performance in number of character comparisons

Raita Fourth Fourth

Karp-Rabin

First in all short pattern

lengths (but second when

used length equal 4)

First

Smith Third Third

Atheer

Second in all short pattern

lengths (but first when

used length equal 4)

Second

The Atheer algorithm obtained the best

results in terms of the number of comparison

attempts because its shifting depended on the good

shifting process of the Smith algorithm. Therefore,

both algorithms showed the lowest number of

comparison attempts compared with the other

original algorithms. The results were similar for the

Karp–Rabin algorithm in terms of the number of

characters compared. The Atheer followed the Karp–

Rabin algorithms in showing the best results for the

number of characters compared because of the hash

function, which facilitates the comparison of

characters in patterns and texts (Deighton, 2012). The

Atheer obtained the second lowest number of

characters compared in all pattern lengths, except in a

very short pattern length such as 4. This result gave

the first ranks to Atheer algorithm because the Karp–

Rabin algorithm obtained high characters when very

short pattern used but failed to do so with long

pattern (Abdulrozaq, 2009). As the searching

technique of the Atheer algorithm depends on a

combination of the modified Raita technique and

Karp–Rabin algorithm, it was able to obtain the best

results when the very short pattern length was used

(Table 2).

The Pitch database showed the best results

compared with the other databases when the Atheer

algorithm was utilized. Such results can be attributed

to Karp–Rabin hash and the bmBc found in the

Atheer algorithm, which can be considered as

efficient functions when used with the Pitch database

(Nidadavolu, 2008). Therefore, the Atheer algorithm

showed the lowest number of attempts with the Pitch

database. By using the hash function in large alphabet

databases, the Atheer algorithm produced large hash

values, which reduced the possibility of comparing

the characters. The Source code database obtained

the minimum number of characters compared. The

DNA database obtained the highest number of

attempts and character comparisons because it has a

small alphabet size, which increased the possibility of

comparing characters and reduced the long shifting

process (Abdulrozaq, 2009) (Table 3).

Table 3. Performance of the Atheer algorithm in

different types of databases

Performance

Database

Data size 50 MB

Pattern length Short Long

Attempts
Best Pitch Pitch

Worst DNA DNA

Character

comparisons

Best Source Source

Worst DNA DNA

5.2 Evaluation of the Atheer algorithm compared

with recent and standard algorithms

The Atheer algorithm was compared with

the recent and standard algorithms according to the

number of comparison attempts and the number of

characters compared using short and long pattern

lengths, different types of databases, and a data size

of 50 MB. These standard and recent algorithms are

Horspool, Quick search, Two-way, Fast search,

SSABS, TVSBS, AKRAM, and Maximum shift.

Table 4. Comparison of the results of the Atheer

versus those of recent and standard algorithms

Algorithms
Data size (50MB)

Short Long

Number of attempts

Best algorithm
TVSBS

 (most databases)

Maximum shift

(all databases)

Worst algorithm
Two-way

(all databases)

Two-way

(all databases)

Number of character comparisons

Best algorithm
Atheer

(most databases)
AKRAM

(most databases)

Worst algorithm
Two-way

(all databases)

Two-way

(all databases)

The TVSBS algorithm obtained the best

number of attempts when the short pattern length was

used because it depended on the bmBc function,

which is considered as one of the useful functions in

the shifting process (Thathoo et al., 2006). The

Maximum shift algorithm obtained the best number

of attempts when the long pattern length was used

because it depended on the efficient function (ztBc)

in long shifting (Kadhim, 2012). The Atheer

algorithm showed the best number of characters

compared when the short pattern was used because

when a match was obtained for the three characters in

the first step and a mismatch occurred in the next

step, then the loss occurred only for the three

characters. For the AKRAM algorithm, when a match

was found in the suffix, which involved a non-

specific number of characters, and a mismatch

occurred in the next step, then the loss became equal

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

487

to the number of characters in the suffix (Abdulrozaq,

2009). Thus, the number of characters compared in

the Atheer was lower than that in the AKRAM

algorithm when short patterns were used. The

number of characters compared in the AKRAM

algorithm was lower than that in the Atheer algorithm

because the suffix in the AKRAM algorithm obtained

high accurate hash values, which reduced the

possibility of mismatching (Abdulrozaq, 2009). The

two-way algorithm obtained the highest results in

terms of the number of attempts and characters

compared because it depended on the factorization

technique, which sometimes produces small suffixes

that reduce the long shifting process and increase the

number of characters compared (Charras and Lecroq,

2004) (Table 4).

Table 5. Positions of the Atheer algorithm in different

types of databases

Databases

Position of Atheer algorithm

Pattern
length

Data size

50 MB

Attempts

Short Third in all databases

Long
Third in all databases

(but fourth in DNA)

Character

comparisons

Short
First in all databases
(but second in DNA)

Long
Second in most databases

(but first in XML)

For the number of comparison attempts, the

Atheer algorithm ranked third in most of the

databases with different sizes when short and long

patterns were used. For the number of characters

compared, the Atheer algorithm ranked first when

short patterns were used in most of the databases with

different sizes; it also ranked first in some of the

databases when long patterns were used (Table 5).

6. Conclusion

The Atheer algorithm is a new hybrid string

matching algorithm that is integrated with the

advantages of the Karp–Rabin, Raita, and Smith

algorithms. The Atheer algorithm performed better

than the original algorithms did. This hybrid

algorithm showed the lowest number of comparison

attempts compared with the original algorithms, and

it achieved the lowest number of characters compared

when very short pattern lengths, such as 4, were used.

The Atheer algorithm ranked the second best

algorithm, following the Karp–Rabin algorithm,

when short and long patterns were used. The Atheer

algorithm also ranked the third best algorithm in

terms of the number of comparison attempts,

followed by the TVSBS and Maximum shift

algorithms, when short and long patterns were used.

The new algorithm also obtained the best number of

characters compared when short patterns were used

and the second best after the AKRAM algorithm

when long patterns were used. The best and worst

databases in terms of the number of comparison

attempts for the Atheer algorithm were the Pitch and

DNA databases, respectively. The best and worst

databases in terms of the number of characters

compared were the Source and DNA databases,

respectively.

Acknowledgement:

This Research reported here is pursued

under the Exploratory Research Grant Scheme

(ERGS) by Ministry of Higher Education (Malaysia)

and Universiti Sains Malaysia [203/PKOMP

/6730074].

Corresponding Author:

Atheer Akram AbdulRazzaq
Department of Parallel and Distributed Processing

School of Computer Sciences, Universiti Sains

Malaysia (USM), 11800 Pulau Pinang, Malaysia

E-mail: athproof@yahoo.com

References

1. Faro S, Lecroq T. The Exact Online String

Matching Problem: a Review of the Most Recent

Results. ACM computing survey, 2013; 45(2): 1-

42.

2. Bhukya R, Somayajulu D. Index Based Multiple

Pattern Matching Algorithm Using DNA

Sequence and Pattern Count. International

Journal of Information Technology and

Knowledge Management, 2011; 4(2):431- 441.

3. Hasan AA, Rashid NA. Hybrid Exact String

Matching Algorithm for Intrusion Detection

System, Proceedings of the Second International

Conference on Communications and Information

Technology (ICCIT 2012), Al-Madinah Al-

Munawwarah, Saudi Arabia, 2012;181-185.

4. Lu CW. String Matching Algorithms Based

upon the Uniqueness Property and an

Approximate String Matching Algorithm. Based

upon the Candidate Master thesis, Department of

Computer Science and Information Engineering,

National Chi Nan University, 2008.

5. Klaib AF, Osborne H. A New String Matching

Algorithm for Searching Biological Sequences.

International Conference on Information and

Communication Systems, ICICS, Amman,

Jordan, 2009; 75-80.

6. Al-mazroi AA, Abdul Rashid N. (2011). A Fast

Hybrid Algorithm for the Exact String Matching

Problem, American Journal of Engineering and

Applied Sciences, 2011; 4(1): 102-107.

mailto:geetakh@gmail.com

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

488

7. Michailidis PD, Margaritis KG. On-line

approximate string Searching algorithms: survey

and experimental results. International Journal of

Computer and Mathematic, 2002; 79(8): 867–

888.

8. Zubair M, Wahab F, Hussain I, Zaffar

J. Improved Text Scanning Approach for Exact

String matching. International Conference on

Information and Emerging Technologies.

(ICIET), 2010; 1-5.

9. Hassan AA. Mixed Heuristic Algorithm for

Intelligent String Matching for Information

Retrieval. Proceedings of the Sixth International

Conference on Computational Intelligence and

Multimedia Applications. (IEEE), 2005; 11-16.

10. Cao F. Fast String Matching Algorithm and its

Application in DNA Sequence Search. Master

Thesis, School of Computer Science, Wayne

State University, 2004.

11. Faro S, Lecroq T. The Exact String Matching

Problem: a Comprehensive Experimental

Evaluation. Data Structures and Algorithms.

Report arXiv: 1012.254, 2010; 7: 1-22.

12. AbdulRazzaq AA, Abdul Rashid N, Ali ANB.

Fast Hybrid String Matching Algorithm.

International Journal of Digital Content

Technology and its Applications (JDCTA),

2013a; 7(10): 62-71.

13. Karp RM, Rabin MO. Efficient Randomized

Pattern-Matching Algorithms. IBM Journal of

Research and Development, 1987; 31: 249–260.

14. Abdulrazzaq AA, Abdul Rashid N, Hamdani

HBY, Ghadban RM, Mahmood AW. Influenced

Factors on Computation Among Quick Search,

Two-Way and Karp-Rabin Algorithms,

Proceeding of the 3rd International Conference

on Informatics and Technology (Informatics '09),

Kuala Lumpur, 2009; 81-87.

15. Raita T. Tuning the Boyer-Moore-Horspool

String Searching Algorithm. Software - Practice

and Experience (SPE), 1992; 22(10):879–884.

16. Charras C, Lecroq T. Handbook of Exact String

Matching algorithms. King's College

Publications, France, 2004.

17. AbdulRazzaq AA, Abdul Rashid N, Hasan AA,

Abu-Hashem MA. The exact string matching

algorithms efficiency review. Global Journal on

Technology (GJT), 2013b; 04: 576-589.

18. Smith PD. Experiments with a Very Fast

Substring Search Algorithm. Software Practice

and Experience, 1991; 21:1065–1074.

19. Karkkainen J, Joong CN. Faster Filters for

Approximate String Matching Proceedings of the

Nine Workshop on Algorithm Engineering and

Experiments, ALENEX, USA, 2006; 84-90.

20. Chew E, Chen YC. Mapping Midi to the Spiral

Array: Disambiguating Pitch Spellings.

Operations Research/Computer Science

Interfaces Series, 2003; 21:259-275.

21. Ferragina P, Fischer J. Suffix Arrays on Words.

Springer-Verlag. Lecture Notes in Computer

Science, 2007; 4580: 328–339.

22. Huang Y, Ping L, Pan X, Cai G. A Fast Exact

Pattern Matching Algorithm for Biological

Sequences. International Conference on

Biomedical Engineering and Informatics,

(BMEI) College of Computer Science and

Technology, Zhejiang University, China2008; 8-

12.

23. Cai G, Nie X, Huang Y. A Fast Hybrid Pattern

Matching Algorithm for Biological Sequences.

Proceedings of 2nd International Conference on

Biomedical Engineering and Informatics, (BMEI

'09), 2009; 1-5.

24. Deighton RA. Using Rabin-Karp fingerprints

and LevelDB for faster searches, University of

Ontario Institute of Technology (UOIT), Master

thesis, School of Computer Science, Canada

2012.

25. Abdulrozaq AA. Fast Hybrid String Matching

Algorithm Using Message Passing Programming

Model. Master thesis, School of Computer

Science, University Science Malaysia, 2009.

26. Nidadavolu R. Content-based Retrieval of Music

Using Monophonic Queries on a Database of nd

Polyphonic, MIDI Information. ProQuest

information and learning company. United

States, 2008; 21-22.

27. Thathoo R, Virmani A, Lakshmi SS,

Balakrishnan N, Sekar K. TVSBS: A fast exact

pattern matching algorithm for biological

sequences. Supercomputer Education and

Research Centre, Indian Institute of Science,

Bangalore, India. Current Science, 2006; 91: 47–

53.

28. Kadhim HA. New Sequential and Gpu-Based

Hybrid String Matching Algorithms. Master

thesis, Computer Science School, University

Science Malaysia, 2012.

6/25/2014

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5615426
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5615426

