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Abstract: The application of second order neutral delay differential equation (NDDE) to solvable Lie algebra 
classification in modeling human postural balance of ankle joint is reported. The process of human walking 
controlled via this model is of immense importance for computational neuroscientists. The model is based on 
inverted pendulum which introduces time–delayed feedback. These delays being intrinsic components of neural 
control can greatly influence the interpretation of human tasks such as stick balancing at the fingertip and postural 
sway during quiet standing and makes the problem unsolvable. The postural balance is examined using group 
analysis where the control force is activated only for motions exceeding some thresholds. NDDE that originates in 
the setting of an inverted pendulum is represented by solvable Lie algebra. The classification is completed following 
the second order extension of the general infinitesimal generator acting on second order NDDE. This is further used 
for achieving the determining equations for infinitesimal symmetry group. The equations are then solved and the Lie 
algebras spanned by these corresponding parameters in infinitesimal are obtained. The obtained Lie algebras 
satisfying the inclusion property render a solvable Lie algebra. All the model properties described by such NDDE 
with constant coefficients are determined. This model may contribute towards the understanding of many of real 
problems described by NDDE.  
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1. Introduction 

Modeling of human postural balancing 
(HPB) including ankle joint is an outstanding issue 
for computational neuroscientists (Milton et al., 
2008; Milton, 2011). This might be the key to the 
successful understanding of human walking with 
numerous medical implications (Piiroinen and 
Dankowicz, 2005). The existing model depending on 
inverted pendulum introduces time–delayed 
feedback. The observation greatly influences the 
interpretation of human balancing tasks because these 
time delays are intrinsic components of neural control 
such as stick balancing at the fingertip and postural 
sway during quiet standing (Mehta and Schall, 2002; 
Cabrera and Milton, 2002; Loram et al., 2005; Milton 
et al., 2009; Asai et al., 2009; Stepan, 2009). 
Generally, these interpretations are based on a 
proportional–derivative (PD) controller where the 
corrective movements depend on the angular position 
and velocity (Mehta and Schall, 2002; Stepan, 2009; 
Milton et al., 2009; Bingham et al., 2011; Kowalczyk 
et al., 2012; Paoletti et al., 2012). It is demonstrated 
that the control is highly benefited by various inputs 
including mechano–receptive sensors (tactile or force 
detectors), proprioceptive sensors (muscle spindle) 
and vestibular labyrinth (otoliths and semicircular 
canals). In addition to sensory inputs, information on 
acceleration can also be obtained from the 

mathematical model of inverted pendulum (Bottaro et 
al., 2008). These suggest that an extension of PD to 
proportional–derivative–acceleration (PDA) 
controller is essential (Gomi and Kawato, 1992; 
Peterka, 2003; Sieber and krauskopf, 2005; Welch 
and Ting, 2008).  

In computational neuroscience, the PDA 
feedback without time delay for motor plants is 
already been introduced (Gomi and Kawato, 1992; 
Gomi and Kawato, 1993). The governing equations 
for PDA controller are NDDE because the delay is 
present in the argument of the highest derivative 
(acceleration). A NDDE possesses several roots with 
positive real part. Thus, apart from the usual 
engineering objectives of using the ’noisy’ 
acceleration signals in the feedback loops, the control 
design of such systems requires special care 
(Insperger et al., 2014). Lately, the complexities of 
NDDE triggered enormous interests in mathematical 
modeling (Kolmanovskii and Nosov, 1986; Stepan, 
1989; Hale and Lunel, 1993; Malakhovski and 
Mirkin, 2006). Despite few studies the PDA 
controller based methods are far from being 
developed. The difficulty in solving such system 
allowed the researchers to just examine their stability 
(Insperger et al., 2014; Lafortune and Lake, 1995; 
Coveney et al., 2001; Kyrychko et al., 2006a; 
Kyrychko et al., 2006b). In our view, the best way to 
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study the properties of the solution of these equations 
is group analysis. 

The NDDE that arises in the setting of an 
inverted pendulum are studied using the classification 
to solvable Lie algebra. A model for human postural 
balance of ankle joint is developed. The second order 
extension of the general infinitesimal generator 
acting on such NDDE is used to develop the model. 
The determining equations for infinitesimal 
symmetry group are obtained and solved. Lie 
algebras spanned by the parameters satisfying the 
inclusion property provided a solvable Lie algebra. 
The model properties are determined, analyzed and 
understood. This paper is organized as follows. 
Section 2 described the mathematical model of HPB. 
The details of Lie algebra and DDE are highlighted in 
Section 3. A classification of HPB equation to 
solvable Lie algebra is provided in Section 4. Section 
5 concludes the paper. 
 
2. Mathematical Model  

Figure 1 displays a postural balance model 
for human body by using a rod of mass m pivoted on 
joint A (Loram and Lakie, 2002). The distance 
between the center of gravity C and the suspension 

point A is denoted by AC  and CJ  is the moment of 

inertia with respect to the normal line via the center 
of gravity. The passive but insufficient resistance of 
the ankle joint against falling is modeled by a 

torsional spring of stiffness tw  and a torsional 

dashpot of damping tb . Furthermore, the elements 

attributing to the foot such as Achilles’ tendon and 
aponeurosis cannot be regulated neurally during quiet 
standing. The stiffness increases slightly with ankle 
torque ( y ) confirming the linear spring model.  

 

 
 

Figure 1: Mathematical model for postural balance. 
 

Denoting the angle between body and 
vertical by x , the equation of motion takes the form, 

 ))(sin()()(')('' txmgtxwtxbtxJ ACttA   ),(ty  

(1) 
 

where 2
ACCA mJJ   is the moment of inertia of 

the body with respect to the normal line via the pivot 
point A, and g = 9.81 m/s2 is the gravitational 
acceleration. The control torque )(ty is assumed to be 

a linear combination of the angular position x , the 
angular velocity 'x  and the angular acceleration ''x . 
They are obtained from mechano-receptive and 
proprioceptive sensors, vestibular organs and visual 
inputs.  

The presence of a sensory dead zone is 
considered by assuming that the actuating forces 
occur only if the input signals exceed some threshold 
values (Milton et al., 2009; Kowalczyk et al., 2012; 
Eurich and Milton, 1996; Deligniȇres et al., 2011). 
Furthermore, the overall reaction time is modeled as 
a feedback delay. Considering different thresholds for 
various sensation inputs, the control torque is 
expressed as, 
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where pW  , dW  and aW  are the proportional, 

derivative and acceleration gain, respectively.   is 
the time delay also appears for threshold conditions 

and ss xx ',  and sx ''  are the sensory threshold values 

for the angular position, angular velocity and the 
angular acceleration, respectively. It is worth noting 
that the control force is activated only for motions 
exceeding some thresholds (Melton et al., 2009; 
Eurich and Milton, 1996). For small motions, when 
the state variables are within the sensory dead zone 
(without control) equation (1) can be combined with 
(2) – (5) in the absence of domain of attraction 

around )0,0,0()'',',( xxx  to achieve a linear system 

(Haller and Stepan, 1998; Enikov and Stepan, 1998) 
for digital balancing given by, 
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The nonlinear system has an attractor (a 

limit cycle or a chaotic attractor) around

)0,0,0()'',',( xxx with ACt mgw  ˂ 0 (Loram and 

Lakie, 2002). Present controller is intermittent 
because the control force is switched on and off 
depending on the size of the sensory inputs. The 
corresponding switching condition is defined in the 
phase plane via ))()(')((   twxtxtx  ˃ 

0,(with 0w  ) for the controller to be on and off 
otherwise. Following Asai et al.(2009), the sensory 
dead zone is modeled through the appearance of 
intermittency. By rescaling the time and dropping the 
tilde immediately (Insperger et al., 2014), equation 
(6) is transformed as, 
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The occurrence of second derivative of the 

state variable )''(x  with both the actual and delayed 

arguments of NDDE in equation (7) makes it difficult 
to study. Researchers are mostly interested in the 
stability analyses of this equation (Insperger et al., 
2014). However, this equation is very significant for 
neuroscientists because it might be the key to control 
of human postural balance. Determination of the 
properties of this equation may reveal HPB. 
Therefore, it is vital to classify it to solvable Lie 
algebra to achieve the solution easily (for solvable 
Lie algebra is easy to solve see (Bluman and Kumei, 
1989)). The classification is performed in few steps. 
Firstly, the second order extension of the general 
infinitesimal generator acting on NDDE is used to 
obtain the determining equations for infinitesimal 
symmetry group. Secondly, the equations are solved 
and the Lie algebras spanned by these corresponding 
parameters in infinitesimal are acquired. Finally, the 
obtained Lie algebras satisfying the inclusion 
property provide the solvable one. Now, it is 
customary to underscore a glimpse on Lie algebra 
and DDEs. 
 
3. Methodology 

The classification of equation (7) to solvable 
Lie algebra is proposed. Some striking features of Lie 
algebra and DDEs are hereunder. 

Definition 3.1 (Andreas, 2009): A Lie algebra L is an 
n-dimensional solvable Lie algebra if a sequence 
exists that yields, 

,...21 LLLL n   

where kL  is a k-dimensional Lie algebra and 1kL  is 

an ideal of nkLk ,...,1,   in which two-dimensional 

Lie algebra are solvable. 
 
Definition 3.2 (Bluman and Kumei, 1989): Let 

s
si

x
Q




   and ,

s
sj

x
Q




  rji ,...,1,  and 

ns ,...,1  be two infinitesimal generator. The 

commutator ],[ ji QQ  of iQ  and jQ  is the first order 

operator such that, 

.)(

],[

 














n

s

n

m sm

s
m

m

s
m

ijjiji

xxx

QQQQQQ







 

Definition 3.3 (Humi and Miller, 1988): A finite set 

of infinitesimal generator },...,,{ 21 rQQQ is said to be 

a basis for the Lie algebra L if LQi   and  

1. rQQQ ,...,, 21 from a basis of the vector space 

L , 

2. kijkji QcQQ ],[ . 

Where the coefficients ijkc  for ,,...,2,1,, rkji   

are called the structure constant of the Lie 

algebra. 

Theorem 2.1 (Second Fundamental Theorem of 
Lie) (Bluman and Kumei, 1989): Any two 
infinitesimal generators of an r-parameter Lie group 
satisfying commutation relation of the form

kijkji QcQQ ],[  form a basis for Lie algebra. 

Theorem 3.5 (Third Fundamental Theorem of 
Lie) (Bluman and Kumei, 1989): The structure 
constants satisfy the following relations,  
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In other word, the structure constants 
determine the Lie algebra and hence the Lie group. 
Lemma 3.6 (Muhsen and Maan, 2014): The second 
order NDDEs containing the infinitesimal generator 
  that obeys periodic property is given by 

).,(),(  xtxt   

Lemma 3.6 implies that   is independent of x . 

Assume, 

)'',',',,,(''  xxxxxtfx  ,                     (10) 
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where ),(),(''''),(''),(   txxtxxtxxtxx

),(''   txx  and ).(''''  txx
 Equation (10) is 

a second order NDDE. Using Lemma 3.6, the 
determining equation for (10) is derived in the form 
of, 
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4. Classification of HPB Equation to solvable Lie 
algebra  

Consider that aw is not equal to zero, 

equation (7) becomes second order NDDE. Now, 
rewrite equation (7) in the solvable form as,  
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The general infinitesimal generator of HPB can be 
written as, 
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where ),( 
  xt  .  

The second extension of (14) acting on 
neutral delay is required because HPB is a second 

order NDDE. The second order extension of equation 
(11) is given by, 
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where ),(txx  ),(''''),('' txxtxx   

).1(''''),1(''  txxtxx    

Combination of Equation (15) with (13) yields the 
invariance condition as,  
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where ),( 
  xt  . 

Equating the first and second order 
coefficients of the various monomials of x  and x , 

the determining equations for the symmetry group of 
Equation (13) as listed in Table 1 are obtained. 
 
Table 1. The determining equations for the symmetry group 
obtained using Equation (13) 

Monomial Coefficient 
Number of 
equation 
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From (a6) it is clear that  is independent of

x and (a3) exhibits  is linear in x . Here, 
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),()( thxtg   with )(tg  and )(th  as arbitrary 

functions of t. Using, (a5) one obtains,  
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                                                (16)  
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Different cases are analyzed below.     

 
Case 1: if pwa   

By equating the coefficients of the various 
monomials one obtains, 
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Recalling Equation (14) as the general 
infinitesimal generator for (13) one achieves,  
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The Lie algebra of the HPB equation is 

spanned by the following three infinitesimal 
generators corresponding to each parameter 21,cc to 

attain, 
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where 3Q  is an infinite dimensional Lie sub-algebra.  

Definition 3.1 renders },{ 212 QQL   as 

solvable Lie algebra of the HPB equation. In fact, the 

expression for 2L with the Lie sub-algebra 3Q

encloses all the properties of HPB equation. To study 

this equation one needs 321 ,, QQQ . Now, the space is 

solvable signifying their easy implementation. 

 
Case 2: If .pwa   

By equating the coefficients of the various 
monomials we get, 
 

,0)()1(  tdtta gwbgw                     (19) 

,0 ttatdpttt kwkwkwahbhh      (20) 

 
which implies )(),( thtg  and )( tk  are the 

solutions of (13). From (19), we have 

.
)(

)1(
tt

d

a
t g

wb

w
g




                                (21) 

 
Substituting Equation (16) in (21) we get, 
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Integrating both side to obtain,  
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Combining the above equations we gets, 
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 where 4,...,1, ici are arbitrary constants. 

Recalling Equation (14) as the general 
infinitesimal generator for (13) one achieves,  
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The Lie algebra of the HPB equation is 

spanned by the following three infinitesimal 
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with infinite dimensional Lie sub-algebra 
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To prove the solvability of the Lie algebra 

},,,{ 43214 QQQQL   the following commutator table 

is generated by using definition 3.2. 
 

],[ ji QQ  
1Q  2Q  3Q  

4Q  

1Q  0 
2Q  0 

4Q  

2Q  2Q  0 0 
3Q  

3Q  0 0 0 0 

4Q  4Q  3Q  0 0 

 

Here, },,,{ 43214 QQQQL   is spanned by 

4321 ,,, QQQQ  is the Lie algebra of Equation (13). 

The sub-space },{ 11 QL  },,{ 212 QQL 

},,{ 3213 QQQL  is one, two and three dimensional 

Lie sub-algebra of 4L , respectively. Furthermore, 

they obey the inclusion property such that, 

,4321 LLLL   

and hence 4L  is a solvable Lie algebra of HPB 

equation.  

The solvable Lie algebra 4L with the Lie 

sub-algebra 5Q includes all the properties of HPB 

equation. To study this equation one needs to 

examine 54321 ,,,, QQQQQ where the space is easily 

solvable.  
 

Case 3: If 1aw , 1 dwb , and .aw p   

Then, the Lie algebra of the HPB equation is 
spanned by 
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with infinite dimensional Lie sub-algebra 
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 )()(3  . Hence, by 

definition 3.1 },{ 212 QQL  is solvable Lie algebra of 

HPB equation. 
 
5. Conclusion  

A classification scheme of HPB model to 
solvable Lie algebra is presented. HPB for the ankle 
joint is taken as a special case. This model is found to 
play a significant role in computational neuroscience 
that controls human walking. The transformation of 
HPB into second order NDDE is demonstrated where 
the solution can easily be found. Classification of 
HPB equation to solvable Lie algebra allows us to 
determine the models properties. Time–delayed 
feedback in the model being intrinsic components of 
neural control is introduced via inverted pendulum 
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motion. The interpretation of human tasks including 
stick balancing at the fingertip and postural sway 
during quiet standing is found to be strongly 
influenced by these delays. Group analysis is 
performed for the postural balance. The control force 
is activated only for motions exceeding some 
thresholds. Second order extension of the general 
infinitesimal generator acting on NDDE is employed 
for classification which is later used for achieving the 
determining equations for infinitesimal symmetry 
group. The characteristics equations for HBP are 
solved where the Lie algebras satisfying the inclusion 
property are spanned by these corresponding 
parameters in infinitesimal. Three cases with 
different constant coefficients of NDDE are 
considered and the model properties are computed. 
Classification of other models described by higher 
order NDDE with functional coefficients is worth-
looking. The admirable features of the results suggest 
that our methodology for modeling HPB to solvable 
Lie algebra may constitute a basis for solving many 
real problems in neuroscience portrayed by second 
order NDDE.  
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