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Abstract: In this paper, we deduced the following double inequality 
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with sharp bounds, where   is the Euler's constant and jB
are the Bernoulli numbers. 
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1. Introduction 

The 
thn  partial sum of the harmonic (divergent) 

series 
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 nkk  
is called the harmonic number and is denoted by 

nH
, ,...3,2,1n . In 1734, the Swiss 

mathematician L. Euler defined one of the most 
useful constants in mathematics by the limit of the 
sequence 

)2(),ln(lim nH n
n





 

which is called Euler's constant and it is also 
known as the Euler-Mascheroni constant, in 
recognition of the work of the Italian mathematician 
L. Mascheroni (1750-1800), who the first to use the 

symbol   to denote this constant as he extended 
several results of Euler [8]. 

The constant   has many applications in 
analysis, special functions, number theory, 
probability and physics. For an interesting historical 
discussion about this constant and its different 
formulas, see J. Havil [9]. 

Because of the importance of the constant   
there exists a very rich literature on its inequalities. 
Here some examples [21], [22], [12], [2], [5], [7], [4], 
[6]: 
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The sequence 
nH nn ln

 converges 
toward its 

limit   very slowly like n

1

, so there are many 

quicker approximations of the constant   were 
established. C. Mortici open a new direction to 
accelerate the convergence of the sequence 

 nH n ln
 and other sequences see [13]-[20]. 

 
By utilizing the Euler-Maclaurin summation 

formula, the function nH
 is asymptotically equal to 

the (divergent) series 
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where the kB
 ( ,...2,1,0k ) are the Bernoulli 

numbers defined by [1] 

.
1!0 





t

j

j

j

e

t
t

j

B

 
The first question which arises whether it is 

possible to determine the sign of the following 

function for 
Nn
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The second question whether the choice of the 
constants is the best choice. In this paper we will 
answer about these two questions, hence we can 
refine some of the above mentioned inequalities of 

the sequence 
 nH n ln

. 
 
2. Main Results. 

The diagamma function 
)(x

is the 

logarithmic derivative of the gamma function 
)(x

. 
Using the relations [1] 
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Lemma 2.1. 

Let 0m be an integer. The function 
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is strictly completely monotonic on 
),0( 

. 
 
Proof 

Firstly consider the function 
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In [3], Alzer proved that the function 
)(xFm is 

strictly completely monotonic on ),0(  , that 
is, 

.1,0)()1( )1(1   rxF r
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Then 
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Similarly, using that the function [3] 
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is strictly completely monotonic on 
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that is, 
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we can conclude the following result: 

 
Lemma 2.2. 

Let 0m be an integer. The function 
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Theorem 1. 

For any natural number 
Nn

, 
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with sharp bounds. 

 
Proof. 

Using the relations (13) and (15) at 0r and 

;nx  Nn , we obtain the inequality (16). Now 
we will prove that the constants in it can not be 
improved. By the definition of the asymptotic 

expansion [10], the expansion of a function 
)(xF

 
obtained from Euler's summation formula of the form 
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If we have other constants 
,...,, 642 ccc

have 

the property that for all 
Nn
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etc. These inequalities give us that 
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etc. Comparing the relations (17) and (18), gives us 
that 
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Then the choice of the constants 
k

B k

2
2

 in the 
inequality (16) is the best one. To complete our 

results, we need to prove that the constant 2/1  in 

the the sequence 
n

nH n
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can not be 
improved by any method whatsoever. Consider the 
sequence 
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and the function 
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 is increasing function 

with 
2/1)(lim 


xv

x . So, the best choice of A  is 

2/1 . Also, the function )(xV  is increasing with 

limit tends to zero as x , then 

.0)( xV  

Hence the sequence na
 is increasing with 

0na
 as n , which give us that 
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with sharp bounds. 
By direct calculations, we can see that the 

inequality (16) give us a superiority over the 
inequalities (6) and (8) at some values of the integer 
m , since 
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