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Abstract: It is necessary to select a problem from dynamic problems of viscoelasticity about fluctuation of the
viscoelastic systems which decisions are consolidated to Voltaire's integro-differential equation of the II type. The
solution of this equation requires a problem of an analytical type of a kernel, or ths equation solves with various
numerical methods. In this paper the approximate solution of this equation for any kernels at small viscosity is
proposed. The decision in the form of a row is received, the original of which first member is the solution of this
equation received by a known method averaging, and the accounting of the subsequent members of a row improves
objective accuracy. Influence of the subsequent members of a row on the decision is calculated for Rzhanitsin's
kernel and shown that it increases at increase in frequency.
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1. Introduction %ulx,t) . 0%u(x,z)

It is known that at the solution of non- P 7 P (D
ot ox

stationary dynamic problems for various designs the

analytical type of kernels of a relaxation isn't given. where

Therefore decisions are under construction by means E = 2#(1 + V) = 2G(1 + V):

of some approximate methods which give a final v - Poisson's number which change in small limits
solution of the integro-differential equations of and therefore is considered further constant, p -

fluctuations of the viscoelastic systems, averagings
realized by a method, a freezing method, a method of
continuations and a method of integral

material density, E - the instantaneous Young's
modulus. u(x,t) - the movement, x4 - Lame's

transformations of Laplace, Fourier, Mellin and their constant.
combinations [1,2,8,13]. Replacing x with g—pu" in (1) can be
However, methods of integral obtained:
transformations are inseparably connected with 2 2 2
complex problems of the invers transformation which %f’t) =2u(1+ V)a u();’t) —2(1+v)u* 0 u();’t)
in case of more real c between tension and ot ox Ox
deformation inevitably result in need of larger Here [ )
number of cuts on branches in the course of contour . ~ ,
integration [4,5]. 2(1 * V)/J - (l * V).[F(t B T)%dr :
b 0 x
2. Material and Methods Takipg into account this in the last equation can be
In this article the approximate solution of obtain: -
the equation of longitudinal fluctuations of r (l‘)= 2GR(l‘ )
viscoelastic cores for any kernels at small viscosity is and to assume that the material of a core possesses
proposed. The image of the decision in the form of a t
row is prezented, the original of which first member small viscosity, the integral J.R(s)ds is positive and
is the solution of this equation received by a method 0
of averaging, and the accounting of the subsequent small rather to unit, therefore
members improves the accuracy of the solution of an t t
objective. J.R(s)ds = é‘J.R(s)ds <eg.
It is know that the equation of the 0 0
longitudinal fluctuations of elastic cores has the Therefore can be obtained following
following form [1,4,14]: equation:
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azu(x,t)
e

auxt auxz')

dr

jR

Accept initial cond1t1ons in the following

u(x,t)=(/)0(x) as t=0
ou(x,t
%=¢l(x)ast=0

And boundary conditions we accept in the
following form:

u(x,t)=0 as x=0

u(x,t) =0as x=1
Where [ - core length.
The particle solution of the equation (2), is

identical not equal to zero we look for in following:
u(x,t) = X(x)T(t)

Taking into account is in the (2) for finding

form:

€)

(4)

of functions and, we obtain two independent
equations:
A%
X"(x)+[—] X(x)=0
¢ ®)
T"(c)+ 22T (¢ /Isz o)I(z)

Solving the first equat1on under boundary
conditions (4), we find

X (x) = cosM
C

where

zk_+kT”c k=012,

/E o
c¢=_|— - the speed of waves distribute.
P

Thus, the common solution of the equation
of fluctuation of a viscoelastic core has following
form:

u<x,r>=§xk<x>rk<r> ©)

where X, (x) - the coordinate functions
found at the solution of the corresponding elastic
problem also don't depend on the parameters
characterizing viscous properties of a material of a
core, and function 7} () is the solution of the integro-
differential equation (5).

Thus, the problem of determine of bias in a
core is reduced to determine of functions 7 (¢) from
the equation (5).

558

Applying Laplace's integrated
t2nsformation to the equation (5) respect to time
parameter ¢ and taking into account (3), can be
obtained:

PP+ ¢
pr+2; —eliR

T.(p)= (7)

Here at small values of time parameter P -
is rather large. If we consider materials with instant
elasticity, the image R (p) with increase p tends to
zero therefore the inequality is executed:

& 2 R(p)
p’+i

Then the equation (7) can be represent in the
following form:

<1

= PPy + ¢ 1
T, = . —
) P 4% | e%R(p)
JRRT
or
Y_wk(p) p¢0+¢l Z(‘c‘ﬂ’k ()J . (8)
Here
eGR(p) * .
—2 =gl At — =
p2+l,2{ - gkz[sm k( Z')R(Z')dZ'

t t
=&l sin lkt.[R(r)cos A wdt — g4, cos lkt.[R(r)sin Adt =
=&l sin lkt.[R(r)cos A dt — A, cos /Ikt.[R(r)sin AT —

— &l sin lkt.[R(r)cos At + &4, cos lkt.[R(r)sin A rdt

t t
If to accept the following designation:

R, = J;R(r)sin Aydt, R, = {R(r)cos At

A)=sin ﬂktJR(r)cosﬂkrdr —cos ﬂkth(r)sin Ayrdt

Then we are obtained:
gA’R *
;—(’;) = el R, sin 4,1t —&l, R, cos At — &l Alt)
p + ﬂ’k °

The last formula in Laplace's can be

following form:



Life Science Journal 2014;11(9)

http://www.lifesciencesite.com

B R(p) _ AR, —shpR, — e, (p” + 23 A(p)

PP+ PP+
Considering it in (8), we receive:
= PP+
Ty (P ) TN 20\ 9
a(p)-eiib(p)
where

1 ? 1Y
E(P):(PJFESRS/L{] +ﬂi[l—Ech]

b(p)=R(p)+R, v +R, += (R2+R2)
A 4
glil;(p)

a(p)

Therefore we can write a formula (9) in
following form:

7 ()PPt 2 b(p) 2 ab(p),
np)=205 {1 M= ..}(10)

From here for the first member after the
inverse Laplace's transformations it is found:

Tl(t) = exp(— % é:RSlktj x

Here <1.

1
1 f/’l—ESRs}% 1
x| @ycos | 1——el. t+ ——=—=<sin A, | 1—-—¢&R. |t| (1])
0 k > c 1 k > c
lk(l—Eé:RCj

The last formula is the solution of the
objective, received by an averaging method [1,2].

For finding of the following approach we
will present it in a look:

n)-eiin, (0o 22 12
where

£6)+ gle)= [ £~ elear

- the0 operator of the return

transformation of Laplace. Means, it is necessary to

calculate the original of functions liEp ; For this
alp

purpose we will present it in following:
b(p) _R(p) R, p+d,

alp) alp) 4 alp)’

A
where d =£/1k +g—k(RY2 +Rcz)
R R

N N

i —lg e
LIFEIIX} :R(t)*exp[—gRslk;j.MJr

1
j‘k [1 —EJERC

R,

—exp laRJ.kt cos A, l—lchjt+

7 2 2

— 2 a1t | (13)
1 k P c
2

Regeneration of originals of the following
approximations of a row (11) doesn't present
difficulty.

From (11) and (12) receives that existence
of viscosity of a material in (2) leads to attenuation of
summary fluctuations of a core under the exponential
law and phase shift is observed.

For calculation of influence of the member
(12) on the decision, we will consider Rzhanitsin's

kernel [4,12,14] R(t)= &t exp(- /).
Where O0<a <1, f - a constant, & - some
small parameter.

For this kernel from a formula (12) can be
obtained:

7,0 = exp(__gm tj

Eh os 4 1—lgR g al1-Lar | |x
2 2 2

t
1
x [ e P 1s1n2&(1—58R jrdr+

0
ﬁ i 177 tf%cosl lflaRc t|x
2 2 2

‘
xJ‘efﬂT‘[afle' |:8Al smﬂ(lflachtf
) 2 2

e 1 ’ 1
— T cos A 1-—&R, |t xje’ﬂrr“’ICOSZ/i l——&R, [t +
2 2 : 2

+%(A2 — Ay )cos i[l—%ch Jt +

1
+ Llj% é(A3 +A5) sinﬂ[l—Ech]t
2/1[1—28&]

where R, = gl"(a )(ﬂ 2y y% sin{aarctg(%ﬂ
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R, = e(a)(p? + 2 T% Co{wmg(%ﬂ

F(a) - Euler's Gamma function.

A
4 :i; 4, =A@ R,;
1
I-—&R,
2 1
&R g [d ) SRS/?,J
I-—&R,
2
1
&l O gRs¢0
2 .
Ay = 1 TR
I-—&R,
2
1
SRY Dy _76‘2’Rv¢)0
2
As = T
1-—¢&R,
2

3. Results.
For polypropylene are constructed graphs
functions Tl(t) and 7, (t) at the following values of

parameters: o =0.1; f=0.05; ¢ = 0.09.
Fig. 1. Graphs functions Tl(t) and 7, (t) for

parameters: @, = 0; O = I.
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Fig. 2. Graphs functions Tl(t) and T, (t) for
parameters: @, = K o = 0.
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From figures it is visible that the accounting
of the subsequent members of a row improves the
decision accuracy as at the great values of frequency
the error is small, and with increase in frequency it
increases. At A4 =100 amplitude 7,(r) at some

values of time makes 20 —25% amplitudes T ().
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