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Abstract: It is necessary to select a problem from dynamic problems of viscoelasticity about fluctuation of the 
viscoelastic systems which decisions are consolidated to Voltaire's integro-differential equation of the II type. The 
solution of this equation requires a problem of an analytical type of a kernel, or ths equation solves with various 
numerical methods. In this paper the approximate solution of this equation for any kernels at small viscosity is 
proposed. The decision in the form of a row is received, the original of which first member is the solution of this 
equation received by a known method averaging, and the accounting of the subsequent members of a row improves 
objective accuracy. Influence of the subsequent members of a row on the decision is calculated for Rzhanitsin's 
kernel and shown that it increases at increase in frequency.  
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1. Introduction 

It is known that at the solution of non-
stationary dynamic problems for various designs the 
analytical type of kernels of a relaxation isn't given. 
Therefore decisions are under construction by means 
of some approximate methods which give a final 
solution of the integro-differential equations of 
fluctuations of the viscoelastic systems, averagings 
realized by a method, a freezing method, a method of 
continuations and a method of integral 
transformations of Laplace, Fourier, Mellin and their 
combinations [1,2,8,13]. 

However, methods of integral 
transformations are inseparably connected with 
complex problems of the invers transformation which 
in case of more real c between tension and 
deformation inevitably result in need of larger 
number of cuts on branches in the course of contour 
integration [4,5]. 

 
2. Material and Methods  

In this article the approximate solution of 
the equation of longitudinal fluctuations of 
viscoelastic cores for any kernels at small viscosity is 
proposed. The image of the decision in the form of a 
row is prezented, the original of which first member 
is the solution of this equation received by a method 
of averaging, and the accounting of the subsequent 
members improves the accuracy of the solution of an 
objective. 

It is know that the equation of the 
longitudinal fluctuations of elastic cores has the 
following form [1,4,14]: 
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where 

   ,1212   GE  

 - Poisson's number which change in small limits 
and therefore is considered further constant,   - 

material density, E - the instantaneous Young's 
modulus.  txu ,  - the movement,  - Lame's 

constant. 

Replacing   with    in (1) can be 

obtained:  
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Taking into account this in the last equation can be 
obtain: 
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and to assume that the material of a core possesses 

small viscosity, the integral  
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small rather to unit, therefore  
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Therefore can be obtained following 
equation: 
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Accept initial conditions in the following 
form: 
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And boundary conditions we accept in the 
following form: 
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Where l - core length. 
The particle solution of the equation (2), is 

identical not equal to zero we look for in following: 
     tTxXtxu ,   

Taking into account is in the (2) for finding 
of functions and, we obtain two independent 
equations: 
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Solving the first equation under boundary 
conditions (4), we find 
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Thus, the common solution of the equation 

of fluctuation of a viscoelastic core has following 
form: 
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where  xX k  - the coordinate functions 

found at the solution of the corresponding elastic 
problem also don't depend on the parameters 
characterizing viscous properties of a material of a 

core, and function  tTk  is the solution of the integro-

differential equation (5). 
Thus, the problem of determine of bias in a 

core is reduced to determine of functions  tTk  from 

the equation (5). 

Applying Laplace's integrated 
transformation to the equation (5) respect to time 
parameter  t  and taking into account (3), can be 
obtained: 
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Here at small values of time parameter p  - 

is rather large. If we consider materials with instant 

elasticity, the image  pR  with increase p  tends to 

zero therefore the inequality is executed: 

 
1

22

2


 k

k

p

pR




 

Then the equation (7) can be represent in the 
following form: 
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If  to accept the following designation: 

   

     










t

kk

t

kk

kcks

dRtdRttA

dRRdRR





sincoscossin

cos,sin
00  

Then we are obtained: 

 
 tAtRtR

p

pR
kkskkck

k

k 











cossin
22

2

 
The last formula in Laplace's can be 

following form: 
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Considering it in (8), we receive: 
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Therefore we can write a formula (9) in 

following form: 
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From here for the first member after the 

inverse Laplace's transformations it is found: 
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The last formula is the solution of the 

objective, received by an averaging method [1,2]. 
For finding of the following approach we 

will present it in a look: 
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transformation of Laplace. Means, it is necessary to 
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Regeneration of originals of the following 

approximations of a row (11) doesn't present 
difficulty. 

From (11) and (12) receives that existence 
of viscosity of a material in (2) leads to attenuation of 
summary fluctuations of a core under the exponential 
law and phase shift is observed. 

For calculation of influence of the member 
(12) on the decision, we will consider Rzhanitsin's 

kernel [4,12,14]    tttR     exp1 .  

Where  ,10  - a constant,  - some 

small parameter. 
For this kernel from a formula (12) can be 

obtained: 
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  - Euler's Gamma function. 
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3. Results. 

 For polypropylene are constructed graphs 

functions  tT1  and  tT2  at the following values of 

parameters: 0.1; 0.05; 0.09.      

Fig. 1. Graphs functions  tT1  and  tT2  for 

parameters: 0 10; 1   . 

 

 
Fig. 2. Graphs functions  tT1  and  tT2  for 

parameters: 0 11; 0   . 

 
 
From figures it is visible that the accounting 

of the subsequent members of a row improves the 
decision accuracy as at the great values of frequency 
the error is small, and with increase in frequency it 

increases. At 100  amplitude  tT2  at some 

values of time makes %2520   amplitudes  tT1 . 
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