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Abstract: In this paper, we deduced the following new Wilker-type inequality: 
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best possible. 
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1. Introduction 

Wilker [12] proposed the following two 
open problems: 
Problem 1: If , then 

 
Problem 2: For , there exists a largest 
constant  such that 

 
In [10], the sharp constant  in (2) was found and it 
also proved that 

 

 
 

where the constants  and  are the best possible. 

In [14], the inequality (3) was refined as 

 

 

 

 

 

 
 

where  denotes the Bernoulli number of order , 
. A weighted and exponential generalization of 

Wilker's inequality (1) presented [13] as 

 

 
 

where  or    and . 

In[4], Wilker's inequality (1) established for inverse 
trigonometric and inverse hyperbolic functions by 

 

 
and 

 

 
The constants in (6) and (7) are the best possible. 
Many mathematicians were interested in Wilker's 
inequality (1) and they presented different proofs, 
various generalizations and improvements, see [5]-
[9], [11], [15]-[18].  
 
In order to attain our aim we need the following 
power series expansion [1]: 

 
 

and consequently we get 
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The purpose of this paper is to present another type 
of the Wilker inequality and prove it by power series 
expansions of some trigonometric functions. 
 
2. Main Results. 

We begin with an interesting result of 
Biernacki and Krzyż [3](see also[2]), which will play 
an important role in the sequel. 
Lemma  
Consider the power series  and 

 are convergent on , , 
where  and  for all  . If the 

sequence  is increasing (decreasing, resp.), 

then the function   is increasing (decreasing, 

resp.) too on . 
 
We can easily see that the above lemma will be true 
in case of odd and even functions. 
Theorem 1 

 

 

where the constant  is the best possible. 

Proof 
Consider the function 

 
then 

 
Let 

 
 

Using the relations  (8) and (9), we obtain 

 

 

 

 
where  Also,  

 

where . Now let 

 
which is increasing function in the variable . Then 

 is increasing and hence  is also increasing. 

Using 

 
and  

 
we get  

 
 

If , then  is decreasing function for 
, where . Now consider the 

function 

 
The function  is positive decreasing function for 

 and the function is positive 

decreasing function for  and 
. Then  is decreasing function for 

  and . Also, 

 
Then 

 

 
with a sharp bound and this complete  the proof of 
inequality (10). 
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