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Abstract: In this paper, we investigate the global behavior and rate of convergence of following anti-competitive 

system of rational difference equations: ���� =
���

�� ���
� , ���� =

����

����� ��
� , � = 0,1,⋯, where the parameters 

�, �, �,��,��,��, � ∈(0,∞) and the initial conditions ��,�� ∈ (0,∞) . Some numerical examples are given to verify 
our theoretical results.  
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1. Introduction  

Difference equations manifest themselves as 
mathematical models describing real life situations in 
probability theory, queuing problems, statistical 
problems, stochastic time series, combinatorial 
analysis, number theory, geometry, electrical 
networks, quanta in radiation, genetics in biology, 
economics, psychology, sociology, etc. It is an 
indisputable fact that difference equations appeared 
much earlier than differential equations and were 
instrumental in paving the way for the development of 
the latter. It is only recently that difference equations 
have started receiving the attention they deserve. 
Perhaps this is largely due to the advent of computers 
where differential equations are solved by using their 
approximate difference equation formulations. For 
basic theory of difference equations we refer [1-4]. In 
literature there are many papers on qualitative 
behavior of biological models [11-15]. Recently there 
has been a lot of interest in studying the global 
attractivity, boundedness character, periodicity and the 
solution form of nonlinear difference equations. 
Cinar [5] investigated the periodicity of the positive 
solutions of the system of rational difference 
equations: 

���� =
�

��
 , ���� =

��

��������
 . 

Stevi �  ́[6] studied the system of two nonlinear 
difference equations: 

���� =
��

����
 ,���� =

� �

����
, 

where ��,��,��,��are some sequences �� or ��. 
Zhang et al. [7] studied the dynamics of a system of 
rational third-order difference equation:  

���� =
����

� + � ����� ����
 ,���� =

����
� + � ����� ����

,�

= 0,1,⋯. 

where �,�,��� , ��� ,��,��� ,��� ,�� ∈ (0, ∞). 
Elabbasy et al. [8] studied the asymptotic behavior of 
two dimensional rational system of difference 
equations: 

���� =
����

��� ����
� ,���� =

����

��� ����
� , � = 0,1,⋯   

where the parameters ��,��,��, ��,��,��,� ∈(0,∞) 
and the initial conditions ��,�� ∈ (0,∞). 
Our aim in this paper is to investigate the asymptotic 
behavior of following anti-competitive system of 
rational difference equations: 

���� =
���

�� ���
� , ���� =

����

����� ��
� , � = 0,1,⋯,     (1) 

where the parameters �,�,�, ��,��, ��, � ∈(0,∞) and 
initial conditions ��,�� ∈ (0,∞).  
2. Linearized stability 
Let us consider two-dimensional discrete dynamical 
system of the form: 

� ���� = �(��,��)      

 ���� = � (��,��),� = 0,1,⋯ 
�                             (2) 

where �:� × � → � and �:� × � → � are continuously 
differentiable functions and �,� are some intervals of 
real numbers. Furthermore, a solution {(��,��)}���

�  of 
system (2) is uniquely determined by initial conditions 
(��,��) ∈ � × �. An equilibrium point of system (2) is 
a point (�̅,��) that satisfies 
�̅ = �(�̅,��), 
�� = �(�̅, ��). 
Definition 1. Let (�̅ ,��) be an equilibrium point of the 
system (2). 
(i) An equilibrium point (�̅ ,��) is said to be stable if 

for every � > 0 there exists � >  0 such that for 
every initial conditions  (��,��), if ‖(��,��)−
(�̅, ��)‖ < �  implies ‖(��,��)− (�̅, ��)‖ < �  for 
all � > 0 , where ‖∙‖ is usual Euclidian norm in 
ℝ �. 
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(ii) An equilibrium point (�̅ ,��) is said to be unstable 
if it is not stable. 

(iii)  An equilibrium point (�̅ ,��) is said to be 
asymptotically stable if there exists � >  0 such 
that ‖(��,��)− (�̅, ��)‖ < �  and  (��,��) →
(�̅ ,��) as � → ∞ .  

(iv)  An equilibrium point (�̅ ,��) is called global 
attractor if (��,��) →(�̅ ,��) as � → ∞.   

(v)  An equilibrium point (�̅ ,��) is called asymptotic 
global attractor if it is a global attractor and 
stable. 

Definition 2. Let (�̅ ,��) be an equilibrium point of a 
map � = (�(�,�),�(�,�)) where �  and �  are 
continuously differentiable functions at (�̅ ,��). The 
linearized system of (2) about the equilibrium point 
(�̅ ,��) is given by 
���� = � (��)= ����, 

Where �� = �
��
��
� and �� is Jacobean matrix of the 

system (2) about the equilibrium point (�̅ ,��). 
Let (�̅ ,��) be an equilibrium point of the system (1), 
then 

�̅  =
���

��� ��̅ 
 , �� =

���̅

����� ��
�. 

Hence, � = (0,0) be a unique equilibrium point of the 
system (1). 
The Jacobian matrix about the fixed point (�̅ ,��) is 
given by 

��(�̅ , ��)= �
−

�������̅��

(��� ��̅)�

�

��� ��̅

��

����� ��
� −

������̅��
���

(����� ��
�)�

� . 

Lemma 1. [3] For the system ���� = � (��),� =
0,1,⋯, of difference equations such that �� be a fixed 
point of �. If all eigenvalues of the Jacobian matrix �� 

about �� lie inside the open unit disk |�|< 1, then �� is 
locally asymptotically stable. If one of them has a 
modulus greater than one, then �� is unstable. 
3. Main results  
Theorem 1. Let {(��,��)} be a positive solution of 
the system (1), then for every � ≥ 0  the following 
result hold: 

(�) 0 ≤ �� ≤

⎩
⎪
⎨

⎪
⎧�

�

�
�
���

�
��
��
�
�

��, � = 2� + 1,

      �
���
���

�
���

��, � = 2� + 2.

� 

(��) 0 ≤ �� ≤

⎩
⎪
⎨

⎪
⎧�

�

�
�
�

�
��
��
�
���

��, � = 2� + 1,

    �
���
���

�
���

��, � = 2� + 2.

� 

Proof. It follows from induction. ∎  
Lemma 2. Let � < �  and �� < ��, then every 
solution {(��,��)}���

�  of the system (1) is bounded. 
Proof. Assume that 

�� = max � 
��
��

��,��� 

and 

�� = max � 
�

�
��,���. 

Then, from theorem 1 one can see that 0 ≤ �� < �� 
and 0 ≤ �� < �� for all � = 0,1,⋯. ∎  
Theorem 2. If � < �  and �� < �� , then unique 
equilibrium point � = (0,0) of the system (1) is 
locally asymptotically stable. 
Proof. The linearized system of (1) about the 
equilibrium point  � = (0,0) is given by 
���� = ��( 0,0)��, 
where                    

�� = �
��
��
� and 

 ��(0, 0) =�
0

�

�
��

��
0
� . 

The characteristic polynomial of ��(0,0) is given by  

�(�)= �� −
���

�� �
.                      (3) 

The roots of �(�)  are ��,�= ± �
���

�� �
 . Hence, by 

lemma 1 the unique equilibrium point (0,0) is locally 
asymptotically stable if � < �  and �� < ��. 
Lemma 3. [2] Let � = [�,�] and � = [�, �] be real 
intervals, and let �:� × � ⟶ �  and �:� × � ⟶ �  be 
continuous functions. Consider the system (2) with 
initial conditions  (��,��) ∈ � × � . Suppose that 
following statements are true: 
(i) �(�,�) is non-increasing in �, and non-decreasing 
in �. 
(ii) �(�, �) is non-decreasing in �, and non-increasing 
in �. 
(iii) If (��,��,��,��) ∈ �

� × �� is a solution of the 
system 
� � = �(� �,��),�� = �(� �,��) 
� � = � (� �,��),�� = � (� �,��) 
such that � � = � �, and � � = � �. Then, there exist 
one positive equilibrium point (�̅ ,��) of the system (2) 
such that lim�⟶� (��,��)= (�̅ ,��). 
Theorem 3. The unique equilibrium point � = (0,0) 
of the system (1) is global attractor. 

Proof. Let �(�, �)=
��

���� �  and �(�, �)=
���

������
� . 

Then, it is easy to see that �(�,�) is non-increasing in 
�, and non-decreasing in �. Moreover, �(�,�) is non-
decreasing in � , and non-increasing in � . Let 
(��,��,��,��) be s solution of the system 
� � = �(� �,��),�� = �(� �,��), 
� � = � (� �,��),�� = � (� �,��). 

Then, one has � � =
�� �

���� �
� ,�� =

�� �

���� �
�.             (4) 

and 

� � =
��� �

������ �
� , �� =

��� �

������ �
�.               (5) 
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From equations (4) and (5), one get 
� �

� �
=

� �

� �
.
���� �

�

���� �
�.                           (6) 

� �

� �
=

� �

� �
.
������ �

�

������ �
�.                          (7) 

Setting 
� �

� �
= �� ≤ 1,

� �

� �
= �� ≤ 1 .                   (8) 

In view of (8), equations (6) and (7) then implies that 

�(�� − ��)� = (����
��� − 1)���� �

�

(�� − ��)�� = (����
��� − 1)����� �

��.         (9) 

Note that right-hand side of (9) are less than or equal 
to zero, and thus 
�� − �� ≤ 0,�� − �� ≤ 0 . 
This implies that �� ≤ �� ≤ �� which hold if and only 
if �� = ��. In view of (9), it follows that �� = �� = 1 . 
Thus �� = � �,�� = � �. Hence, from Lemma (3) the 
unique equilibrium point � = (0,0) is a global 
attractor.∎  
Lemma 4. Under the conditions � < �  and �� < �� , 
the unique equilibrium point � = (0,0) of the system 
(1) is globally asymptotically stable. 
Proof. The proof follows from theorem 2, and theorem 
3.∎  
4. Rate Of Convergence 

In this section we will determine the rate of 
convergence of a solution that converges to unique 
equilibrium point (0, 0) of the system (1). 
 The following results give the rate of convergence of 
solutions of a system of difference equations 

���� = �� + � (�)���,                     (10) 
Where �� is an � − dimensional vector, � ∈ � �×�  is 
a constant matrix, and �:�� → � �×�  is a matrix 
function satisfying  

‖�(�)‖ → 0                               (11) 
as � → ∞ , where ‖.‖ denotes any matrix norm which 
is associated with the vector norm 

‖�(�)‖ = ��� + � � 
Proposition 1. (Perron’s theorem) [10] Suppose that 
condition (11) holds. If �� is a solution of (10), then 
either �� = 0  for all large � or 

� = lim�→� (‖��‖)
�

�                      (12) 
exist and is equal to the modulus of one the 
eigenvalues of matrix �. 
Proposition 2. (Perron’s theorem) [10] Suppose that 
condition (11) holds. If �� is a solution of (10), then 
either �� = 0  for all large � or 

� = lim�→�
‖���� ‖

‖��‖
                         (13) 

exist and is equal to the modulus of one the 
eigenvalues of matrix �. 
Let {(��,��)} be any solution of the system (1) such 
that lim

�→�
�� = � ,̅ lim

�→�
�� = ��. To find the error terms, 

one has from the system (1) 

���� − �̅ =
���

� +  ���
�
−

���

� + � ��̅ 
 

         = −
� ���(��

��� �̅)

(�� ���
�)(��� ��̅)(���� )̅

(�� − � )̅+

            
�

�� ���
� 
(�� − ��), 

and 

���� − �� =
����

�� + �� ��
�
−

���̅

�� + �� ��
�
 

        =
��

����� ��
� (�� − � )̅−  

�����(̅��
�����)

(����� ��
�)(����� ��

�)(�����)
(�� − ��). 

Let ��
� = � � − �  ̅and ��

� = �� − ��, one has 
����
� = ����

� + �� ��
�, 

����
� = ����

� + � � ��
�. 

Where 

�� = −
� ���(��

��� �̅)

(�� ���
�)(��� ��̅)(���� )̅

,�� =
�

�� ���
� 

, 

�� =
��

����� ��
� ,�� = −

�����(̅��
�����)

(����� ��
�)(����� ��

�)(�����)
 . 

Moreover , 

lim�→� �� = −
�������̅��

(��� ��̅)�
,lim�→� �� =

�

��� ��̅
, 

lim�→� �� =
��

����� ��
� ,lim�→� �� = −

������̅��
���

(����� ��
�)�

. 

Now the limiting system of error terms can be written 
as  

�
����
�

����
�

�= �
−

�������̅��

(��� ��̅)�

�

��� ��̅

��

����� ��
� −

������̅��
���

(����� ��
�)�

��
��
�

��
��, 

which is similar to linearized system of (1) about the 
equilibrium point � = (0,0). Using the proposition 
(1), one has following result. 
Theorem 4. Assume that {(��,��)} be a positive 
solution of the system (1) such that lim

�→�
�� = �  ̅and 

lim
�→�

�� = �� where 

(�̅ ,��)= (0,0). 

 Then, the error term �� = �
��
�

��
�� of every solution of 

(1) satisfies both of the following asymptotic relations 

lim
�→�

(‖��‖)
�

� = ����(�̅ , ��) �, lim
�→�

‖���� ‖

‖��‖
=

����(�̅ ,��) �, 

where ���(�̅ ,��)  are the characteristic roots of 

Jacobian matrix ��(�̅ ,��) about(0,0) . 
5. Examples 

In order to verify our theoretical results we 
consider several interesting numerical examples in this 
section. These examples represent different types of 
qualitative behavior of solutions to the system of 
nonlinear difference equations (1). All plots in this 
section are drawn with mathematica. 
Example 1. Consider the system (1) with initial 
conditions �� = 2.99,�� = 1.96 . Moreover, choosing 
� = 115,� = 120,� = 2.9,�� = 116,�� =
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117,�� = 0.04,� = 1.994. Then, the system (1) can 
be written as  

���� =
�����

�����.� ��
�.��� , ���� =

�����

�����.�� ��
�.���,     (14) 

n = 0,1,⋯, and with initial conditions �� = 2.99, 
�� = 1.96 . 
Moreover, in Fig. 1 the plot of �� is shown in Fig. 1a, 
the plot of �� is shown in Fig. 1b and an attractor of 
the system (14) is shown in Fig. 1c. 

 
(a) Plot of �� for the system (14) 

 

 
(b) Plot of �� for the system (14) 

 

 
(c) An attractor of the system (14) 

Figure 1: Plots for the system (14) 
 

Example 2. Consider the system (1) with initial 
conditions �� = 1.99,�� = 0.99 . Moreover, choosing 
the parameters  � = 155,� = 160.6,� = 0.0089, 
�� = 169.5,�� = 170.95,�� = 0.0095,� = 0.94 . 
Then, the system (1) can be written as  

���� =
�����

���.���.���� ��
�.�� ,���� =

���.���

���.����.���� ��
�.��  

(15) 
n = 0,1,⋯,and with initial conditions �� = 1.99,�� =
0.99 .  
Moreover, in Fig. 2 the plot of �� is shown in Fig. 2a, 
the plot of �� is shown in Fig. 2b and an attractor of 
the system (15) is shown in Fig. 2c. 

 
(a) Plot of �� for the system (15) 

 

 
(b) Plot of �� for the system (15) 

 

 
(c) An attractor for the system (15) 
Figure 2: Plots for the system (15) 

 
Example 3. Consider the system (1) with initial 
conditions �� = 4.09,�� = 3.9 . Moreover, choosing 
the parameters  � = 13.9,� = 14,� = 0.009, �� =
15, �� = 16, �� = 0.005, � = 5.004. Then, the system 
(1) can be written as  

���� =
��.���

����.��� ��
�.��� ,���� =

����

����.��� ��
�.���    (16) 
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n = 0,1,⋯, and with initial conditions �� =
4.09,�� = 3.9. 
Moreover, in Fig. 3 the plot of �� is shown in Fig. 3a, 
the plot of �� is shown in Fig. 3b and an attractor of 
the system (16) is shown in Fig. 3c. 

 
(a) Plot of �� for the system (16) 

 

 
(b) Plot of �� for the system (16) 

 

 
(c) An attractor for the system (16) 
Figure 3: Plots for the system (16) 

 
6. Conclusions 

In the paper, we study the asymptotic 
behavior of an anti-competitive system of rational 
difference equations. The system has only one 
equilibrium point (0,0) which is stable under some 
restrictions on parameters. The linearization method is 
used to show that equilibrium point (0,0) is locally 

asymptotically stable. The most important finding here 
is that the unique equilibrium point (0,0) can be a 
global asymptotic attractor for the systems (1). 
Moreover, we have determined the rate of 
convergence of a solution that converges to unique 
equilibrium point (0,0). Some numerical examples are 
provided to support our theoretical results. These 
examples are experimental verifications of theoretical 
discussions. 
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