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Abstract: We applied simulated annealing and genetic algorithm to nurse scheduling problem. For time complexity 
problem of these algorithms, we suggested efficient operators using a matrix called a cost bit matrix. Each cell in the 
matrix indicates any violation of constraints. A cell with 1 indicates that the corresponding assignment violates any 
of constraints and needs further consideration. The experimental results showed that both algorithms with the 
suggested operators generated a nurse scheduling faster in time and better in quality compared to those without the 
matrix. In addition, simulated annealing with the matrix performed better than the corresponding implementation of 
genetic algorithm. 
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1. Introduction 

Any organization providing a round-the-
clock service divides its daily work into consecutive 
shifts each of which is a period of time for a group of 
employees on duty. Each employee is assigned to a set 
of shifts, which must satisfy several constraints that 
may be set up by staffing requirements, rules by the 
administration and labor contract clauses. 

Nurse scheduling problem (NSP) is an 
instance of a scheduling problem in which each nurse 
is assigned to a set of shifts and rest days in a 
timetable called a nurse roster (Ender, 2005; Ernst et 
al., 2004; Burke et al., 2006, Cheang et al., 2003, Bard 
and Purnomo, 2007). It was proven to be NP-hard 
even with only a few of real world constraints 
(Osgogami and Imai, 2000). Miller et al. and Warner 
et al. formulated NSP as the selection of a timetable 
(Miller et al., 1976; Warner and Prawda, 1972). They 
simplified the problem to include too small or ignore 
too many constraints to be practical. Jan et al. and 
Aickelin et al. applied genetic algorithms (GA) to 
NSP (Jan et al., 2000, Aickelin and Dawsland, 2004). 
Kundu et al. applied genetic algorithm and simulated 
annealing (SA) to the same problem instances and 
compared their performances with others (Kundu et al., 
2008). 

Because NSP may include many constraints 
and there can be several different instances with 
different set of constraints, the problem instance must 
be defined clearly. In this study, we consider a cyclic 
nurse scheduling problem with following constraints 
as in (Kundu et al., 2008). An instance includes three 
components (1) the preference of each nurse as an 
aversion to particular days and shifts, (2) minimal 
coverage constraint of the number of nurses per shift 
and per day, (3) case-specific constraint of personal 
time requirements, specific workplace conditions, and 

so on. The objective of this problem is to satisfy 
nurses' requests as much as possible while fulfilling 
the employers' concerns. 

In this paper, we applied simulated annealing 
and genetic algorithm to NSP and compared their 
performance in time and quality of solutions. In 
addition to generic form of them, we implemented 
modified versions with so-called a cost bit matrix for 
time complexity of those algorithms. In the next 
section, we will briefly introduce NSP and a cost 
function and in section 3 a cost bit matrix and 
operators in simulated annealing and genetic 
algorithm will be given. Section 4 will provide 
experimental results. Finally, conclusions and further 
work are discussed in section 5. 
2. Problem Description 
2.1 Nurse Scheduling Problem 

NSP is to create weekly or monthly schedules 
for N nurses that must satisfy several constraints set 
by labor contracts and administrative requirements. 
Therefore, NSP is essentially a scheduling problem 
that satisfies a number of constraints. Constraints are 
usually classified under two categories: soft and hard 
constraints. Hard constraints should be always 
satisfied in any schedule while soft constraints can be 
violated. A schedule that does not satisfy any of hard 
constraints cannot be a feasible one. Possible 
examples include restrictions on the number of nurses 
for each shift and the maximum number of shifts in a 
week or a month. Soft constraints can be violated but 
as minimal as possible. In other words, the soft 
constraints are expected to be satisfied, but violation 
does not make it an infeasible solution. Some 
examples are requests for a desired day off or a certain 
shift on a certain day. Generally, there are three shifts, 
morning, evening, and night, and an off-day.  
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There are various kinds of hard and soft 
constraints we may consider. Because the main 
objective of this study is to provide an improvement 
for SA and GA and compare their performance, we 
confined the constraints as follows. 

(a) Hard constraints 
(i) Number of nurses for each working shift per 

day. The number of nurses for morning, 
evening, and night shift should be between the 
minimum and the maximum values. 

(ii) Working patterns. Morning after night shift, 
evening after night, morning after evening shift 
and three consecutive night shifts are not 
allowed. 

(b) Soft constraints 
(i) Total number of off-days (o), night (n), 

morning (m) and evening (e) shifts during the 
certain period of days for each nurse. 

2.2 Cost Function 
We have to define a cost function for NSP to 

optimize. Let N and D be number of nurses and days, 
and s be one of the three shifts or an off-day. Then, 
NSP may be represented as a problem to decide an 
N×D matrix, X, whose element xij represents that nurse 
i works on day j where xij = {m, e, n, o}. We define mj, 
ej, nj as total number of nurses for morning, evening, 
and night shift on day j. These numbers must be 
between the minimum and the maximum number of 
nurses for each shift, mmin, emin, nmin, mmax, emax, and 
nmax. We also define Mi, Ei and Ni as total number of 
each shift, morning, evening, and night of a nurse i 
and their requirements Mreq, Ereq and Nreq. We can 
define three costs for each requirement as follows. 
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where 
CMi : Cost for Mi. 0 if Mi = Mreq else 1. 
CEi : Cost for Ei. 0 if Ei = Ereq else 1. 
CNi : Cost for Ni . 0 if Ni = Nreq else 1. 
cmj : Cost for mj. 0 if  mmin ≤ mj ≤ mmax else 1. 
cej : Cost for ej . 0 if emin ≤ nj ≤ emax else 1. 
cnj : Cost for nj . 0 if nmin ≤ nj ≤ nmax else 1. 
cpij : Cost for cyclic working pattern of nurse i. 

0 if xij-1xij ∈ {ne, nn, nm} else 1. 

 
Based on these costs, we can define an 

objective cost function as follows. 

Ctotal = C1*w1 + C2*w2 + C3*w3 
where w1, w2, and w3 are weight values for the cost C1, 
C2 and C3.  

Our goal is to minimize the cost function 
Ctotal so as to find an optimal nurse schedule. The 
simplest method is a brute force approach which 
evaluates all possible nurse schedules. It guarantees a 
feasible schedule with the minimum cost. However, 
the number of all possible nurse schedules is 4N×D. If N 
and D increase, this approach is intractable. This is a 
class of problems called NP-hard (Papadimitrioud, 
1993), which means an algorithm that guarantees to 
find an optimal solution with the size of N and D in 
reasonable time may not exist. To overcome this 
problem, we applied couple of approximation 
algorithms: simulated annealing and genetic algorithm. 
3. Cost bit matrix 

Because of page limit, we only provide a 
brief description of a cost bit matrix and its 
application: simulated annealing with a cost bit matrix 
(CMSA) and genetic algorithm with a cost bit matrix 
(CMGA). Traditional SA (TSA) and GA (TGA) can 
be found in (Kirkpatric and Gelatt Jr, 1983) and 
(Goldberg, 1989). 
3.1 Description 

A cost bit matrix V is an N×D matrix whose 
each cell is set if any constraint is violated. Table 1 
depicted a sample schedule and its corresponding cost 
bit matrix. The numbers in the first column means 
nurses. The numbers of each shift and off-day for 
nurse i is represented as mi, ei, ni, and oi and the 
numbers of nurses for each shift and off day of day j is 
represented as mj, ej, nj, and oj. 

 
Table 1. A sample schedule and its corresponding cost 

bit matrix when mmin=mmax=2, emin=emax=1, nmin= 
nmax=1, Mreq=2, Ereq=2, Nreq=2, Oreq=1. 

 Mon Tue Wed Thu Fri Sat Sun mi ei ni oi 

1 n n o m m e e 2 2 2 1 

2 e e m o m n n 2 2 2 1 

3 m m e e n n o 2 2 2 1 

4 o m m n e e n 2 2 2 1 

5 m o n m n e e 2 2 2 1 

mj 2 2 2 2 2 0 0     

ej 1 1 1 1 1 3 2     

nj 1 1 1 1 2 2 2     

oj 1 1 1 1 1 0 1     

 Mon Tue Wed Thu Fri Sat Sun 

1 0 0 0 0 1 1 1 

2 0 0 0 0 1 1 1 

3 0 0 0 0 1 1 1 

4 0 0 0 0 1 1 1 

5 0 0 0 0 1 1 1 

 
When calculating C1, C2, and C3, the cost bit 

matrix is set as follows: If CMi, CEi, or CNi is not 0, 
all cells on i-th row of the matrix are set to 1 or 0 
otherwise; if cmj, cej, or nej is not 0, all cells on j-th 
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column are set to 1 or 0 otherwise; if cpij is 1, vij is set 
to 1 or 0 otherwise. Figure 1 depicted pseudo code for 
the costs. For example, the assignments of Friday, 
Saturday and Sunday violating the constraints make 
the corresponding columns of the cost bit matrix be 
set to 1 in Table 1. 
3.2 Application 

In CMSA and CMGA, the cost function Ctotal 
is evaluated whenever a new schedule Xnew is 
generated from the current schedule Xcur and the cells 
of the matrix vij is set to1 if any constraint is violated 
or 0 otherwise. When a new schedule is generated, vij 
of the matrix V is used to determine if xij of Xnew can 
be changed or not.  
3.2.1 Simulated annealing 

Figure 1. Simulated annealing 
 

SA is a probabilistic approach that can be 
used to find a global optimum of a function for 
combinatorial optimization problems. To use this 
algorithm, a set of state S={s1, …, sn} and a cost 
function C:S→R , where R is the set of real numbers, 
should be defined. A real value C(S) should be 

assigned to each state s∈S. The goal of the 

optimization problem is to find an optimal state sopt 
whose score is min(max){si|1 ≤ � ≤ � }. SA 
continuously generates a new candidate state snew from 
a current state scurrent by applying transition rules and 
acceptance rules. The criteria of the acceptance rules 
are:  (a) if ∆� ≤ 0, accept a new state snew  (b) if 

accept a new state snew with probability �(∆�) = ��
∆�

�   
where T is a temperature and ∆� = �(����)−
�(��������)  is a cost difference. Probability �(∆�) 
prevents the system from fixation at a local minimum. 
A state scurrent is called a local minimum if there is no 
new state snew in S that is generated from scurrent by 
applying the transition rules and has a lower cost than 
that of scurrent. 

Temperature T controls a probability to 
accept a new state snew. Initially, T starts from a high 
temperature and after each iteration T decreases based 
on an annealing schedule and becomes zero eventually. 
The probability of accepting a new state with a higher 
cost than that of the current also decreases as 
temperature T decreases. If a careful annealing 
schedule and a number of iterations are given, SA 
converges to a global minimum state sopt. Because of 
efficient performance by this characteristic, SA has 
been applied to many combinatorial problems 

In CMSA, a new schedule is generated by 
applying a transition rule to Xcur. The cost bit matrix is 
used to determine whether a transition rule is applied 
or not. If vij is 1, a transition rule is applied to the 
corresponding assignment xij in Xcur. In Figure 2, 
pseudo code for a transition function is given. 

3.2.2 Genetic algorithm 
GA is a search algorithm to simulate the 

process of natural selection. GA starts with the set of 
potential solutions called a population and evolves 
toward more optimal solutions. The solutions are 
evaluated by a fitness function. The fitness value 
represents the quality measure of a solution so that the 
algorithm can use it to select ones with better genetic 

C1() 
{ 
  int c1=0; 
for(j=1; j<=N; j++) 
{  

    if ((mj<mmin)||(mj>mmax)){c1=c1+1;} 
    if ((ej<emin)||(ej>emax)){c1=c1+1;} 
    if ((nj<nmin)||(nj>nmax)){c1=c1+1;} 
    if (c1 != 0) 
      for(i=1; i<=D; i++) 
        vij=1; 
} 
return c1; 

} 
 
C2() 
{ 
  int c2; 
for(i=1;i<=D;j++) 
{  

    if (Mi!=Mreq) c2=c2+1;   
    if (Ei!=Ereq) c2=c2+1;   
    if (Ni!=Nreq) c2=c2+1;   
    if (Oi!=Oreq) c2=c2+1; 
    if (c2 != 0) 
      for(j=1; j<=N; j++) 
        vij=1; 
} 
return c2; 

} 
 
C3() 
{ 
  int c3=0; 
for (j=1; j<=D; j++) 
{ 

    for (i=1; i<=N; i++) 
    {  
      if ((xij-1==n)&&(xij==m)) c3=c3+1; 
      if ((xij-1==n)&&(xij==e)) c3=c3+1; 
      if ((xij-1==e)&&(xij==m)) c3=c3+1; 
      if ((xij-2==n)&&(xij-1==n)&&(xij==n)) 
        c3=c3+1; 
      if (c3 != 0) vij=1; 
  } 
 } 
  return c3; 
} 

Transition(){ 
for (i=1; i<=N; i++){ 

   for (j=1; j<=D; j++){ 
      if ((rand()%100<p)&&(vij==1) 
        xij=random(d, e, n, o); 
   } 
  } 
} 

Figure 1. Pseudo code for three costs, C1, C2, and C3. 

Figure 2. A transition function for CMSA 
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material for producing new solutions and further 
generations. This simulation of evolution allows 
survival of better solutions and extinction of inferior 
ones. The goal is to find better solutions in each 
generation. The process of evolution is carried out by 
selection, crossover and mutation. In terms of GA, 
those processes are called genetic operators. The 
selection chooses superior solutions in every 
generation and assures that inferior solutions are 
extinct. The crossover operator chooses two solutions 
from current population and generates a new solution 
based on their genetic material. Selection and 
crossover operators will expand good features of 
superior individuals through the whole population. 
They will also direct the search process towards a 
local optimum. The mutation operator changes the 
value of some genes in a solution and helps to search 
other parts of problem space. 

After selection and crossover in CMGA, two 
new schedules can be obtained. With mutation 
probability Pm, the two schedules can be mutated. In 
this study, a cost bit matrix is used to determine 
whether a mutation operator is applied to these 
schedules. A mutation operator is applied to the cell xij 
in a schedule with cell change probability Pcc only if 
the corresponding cell vij=1. The mutation operator is 
presented in Figure 3. 

 
4. Experimental results 

We implemented TSA, CMSA, TGA, and 
CMGA in C and ran on a PC with an Intel® Core(TM) 
i5-2520M 2.5 Ghz CPU and 4GB of memory. All the 
constraints described in this paper were included in all 
implementations with exact same conditions. The goal 
was to check whether the proposed algorithms, CMSA 
and CMGA, could actually generate an acceptable 
NSP efficiently and compare them with the 
corresponding traditional algorithms. The random 
number generator rand() was used when necessary. 
Each set of instances is consisted of 100 problems 
generated randomly. The number of nurses, N, is 15 
and the number of weeks, D, is from one to four. The 
weights for cost functions are w1=5, w2=5 and w3=1, 

respectively. Hard constraints are same for all the 
problems (dmin=4, dmax=6, emin=3, emax=5, nmin=3, 
nmax=5) and soft constraints for one week are Dreq=2, 
Ereq=2,  Nreq=2, and Oreq=1, and are proportional to the 
number of weeks for two to four weeks. The crossover 
probability Pc=0.03, mutation probability Pm=0.01 and 
cell change probability pcc=0.01 were applied. 

The TSA and CMSA were compared on the 
bases of three criteria: the average cost Cfinal of the 
obtained schedules, the average number of iterations 
to reach the final schedule, and execution time Tfinal. 
The TGA and CMGA were compared on the 
following values: the average cost Cfinal of the 
obtained schedules, the average number of generations 
to reach the final schedule, and execution time Tfinal. 

In Table 2 and 3, the experimental results of 
the algorithms were given. 

 
Table 2. Performance results of TSA and CMSA. 

Week Method Cfinal Iterations Tfinal 
(sec) to Cfinal Total 

1 TSA 3.6 511,141 1×106 19.1 
CMSA 0.0 221,806 1×106 2.9 

2 TSA 7.4 2,677,684 5×106 66.3 
CMSA 0.0 2,062,308 5×106 35.4 

3 TSA 10.4 1,1236,294 20×106 393.8 
CMSA 0.0 1,0120,325 20×106 246.3 

4 TSA 13.8 5,7878,176 100×106 2845.2 
CMSA 0.0 4,8276,960 100×106 1472.4 

 
Table 3. Performance results of TGA and CMGA. 

Week Method Cfinal Generations 
to Cfinal 

Populations Tfinal 
(sec) 

1 TGA 8.8 2.33×105 100 81.7 
CMGA 7.6 2.21×105 100 13.3 

2 TGA 9.4 3.77×105 400 750.3 
CMGA 6.4 4.22×105 400 516.6 

3 TGA 15.8 4.40×105 1,000 4,292.2 
CMGA 8.8 4.40×105 1,000 4,207.3 

4 TGA 24.0 5.50×105 3,000 21,104.0 
CMGA 15.6 5.00×105 3,000 15,492.0 

As seen in Table 2, CMSA outperformed 
TSA in all criteria. While CMSA provided a schedule 
with Cfinal=0 for all weeks, TSA didn’t. As the number 
of weeks is increased, the difference between these 
two methods in every criterion became larger. 
However, TSA and CMSA showed slightly different 
results in Table 3.  Both of TGA and CMGA failed to 
find a schedule with Cfinal=0 for all weeks even though 
they executed much longer in time than TSA and 
CMSA. Unlike the number of required iterations in 
TSA and CMSA, the numbers of generations for TGA 
and CMGA are very similar or almost identical. In 
addition, the differences in execution time Tfinal 
between TGA and CMGA were not as large as those 
between TSA and CMSA. 

Mutation() 
{ 

for (i=1; i<=N; i++) 
{ 

    for(j=1; j<=D; j++) 
    { 
      if ((rand()%100<p)&&(vij==1)) 
        xij=random(d, e, n, o); 
    } 
  } 
} 

Figure 1. A mutation operator for CMGA 
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We applied simple crossover, multi-point 
crossover and uniform crossover in our GA and the 
best one was simple crossover. CMGA was very 
effective compared to TGA based on the above 
comparison, while CMSA was the best. In all the 
qualities of the solutions, CMSA was very impressive 
because of its powerful operators with a cost bit 
matrix. 
5. Conclusion and future works 

In this paper, we applied SA and GA to NSP 
and proposed a strategy to improve performance of 
them. In CMSA and CMGA, a cost bit matrix was 
used to generate a new schedule efficiently, which 
was justified by the experimental results. In CMSA, a 
transition rule was applied based on the matrix. In 
CMGA, the selection and crossover operators were 
applied based on the probability only, while the 
mutation operator was applied based on the 
probability and the values in the matrix. The usage of 
the matrix resulted in pruning of search space that was 
the main cause of reduction in execution time. In 
addition, possibility to find feasible solutions in 
CMSA was increased, which made our algorithms 
find solutions satisfying all the constraints. These 
approaches, CMSA and CMGA, generated a nurse 
schedule faster in speed and better in quality than 
traditional ones, respectively. And SA and CMSA 
outperformed the corresponding version of GA 
respectively. 

Although we have presented this work in 
terms of nurse scheduling, it should be noticed that the 
main idea of the approach could be applied to many 
other scheduling problems. 

Future research aims at parallelization of the 
algorithms by utilizing state-of-the-art GPGPUs. 
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