
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 689

Nurse Scheduling Problem using Approximation Algorithms with Cost Bit Matrix

Young-Woong Ko,Saangyong Uhmn, Jin Kim

 Department of Computer Engineering, Hallym University, Chuncheon, Gangwondo, 200-702 Republic of Korea
jinkim@hallym.ac.kr

Abstract: We applied simulated annealing and genetic algorithm to nurse scheduling problem. For time complexity
problem of these algorithms, we suggested efficient operators using a matrix called a cost bit matrix. Each cell in the
matrix indicates any violation of constraints. A cell with 1 indicates that the corresponding assignment violates any
of constraints and needs further consideration. The experimental results showed that both algorithms with the
suggested operators generated a nurse scheduling faster in time and better in quality compared to those without the
matrix. In addition, simulated annealing with the matrix performed better than the corresponding implementation of
genetic algorithm.
[Ko, Y.-W., Uhmn S., Kim J. Nurse Scheduling Problem using Simulated Annealing and Genetic Algorithm
with Cost Bit Matrix. Life Sci J 2014;11(7):689-693] (ISSN:1097-8135). http://www.lifesciencesite.com. 99

Keywords: nurse scheduling problem (NSP), simulated annealing, genetic algorithm, cost bit matrix

1. Introduction

Any organization providing a round-the-
clock service divides its daily work into consecutive
shifts each of which is a period of time for a group of
employees on duty. Each employee is assigned to a set
of shifts, which must satisfy several constraints that
may be set up by staffing requirements, rules by the
administration and labor contract clauses.

Nurse scheduling problem (NSP) is an
instance of a scheduling problem in which each nurse
is assigned to a set of shifts and rest days in a
timetable called a nurse roster (Ender, 2005; Ernst et
al., 2004; Burke et al., 2006, Cheang et al., 2003, Bard
and Purnomo, 2007). It was proven to be NP-hard
even with only a few of real world constraints
(Osgogami and Imai, 2000). Miller et al. and Warner
et al. formulated NSP as the selection of a timetable
(Miller et al., 1976; Warner and Prawda, 1972). They
simplified the problem to include too small or ignore
too many constraints to be practical. Jan et al. and
Aickelin et al. applied genetic algorithms (GA) to
NSP (Jan et al., 2000, Aickelin and Dawsland, 2004).
Kundu et al. applied genetic algorithm and simulated
annealing (SA) to the same problem instances and
compared their performances with others (Kundu et al.,
2008).

Because NSP may include many constraints
and there can be several different instances with
different set of constraints, the problem instance must
be defined clearly. In this study, we consider a cyclic
nurse scheduling problem with following constraints
as in (Kundu et al., 2008). An instance includes three
components (1) the preference of each nurse as an
aversion to particular days and shifts, (2) minimal
coverage constraint of the number of nurses per shift
and per day, (3) case-specific constraint of personal
time requirements, specific workplace conditions, and

so on. The objective of this problem is to satisfy
nurses' requests as much as possible while fulfilling
the employers' concerns.

In this paper, we applied simulated annealing
and genetic algorithm to NSP and compared their
performance in time and quality of solutions. In
addition to generic form of them, we implemented
modified versions with so-called a cost bit matrix for
time complexity of those algorithms. In the next
section, we will briefly introduce NSP and a cost
function and in section 3 a cost bit matrix and
operators in simulated annealing and genetic
algorithm will be given. Section 4 will provide
experimental results. Finally, conclusions and further
work are discussed in section 5.
2. Problem Description
2.1 Nurse Scheduling Problem

NSP is to create weekly or monthly schedules
for N nurses that must satisfy several constraints set
by labor contracts and administrative requirements.
Therefore, NSP is essentially a scheduling problem
that satisfies a number of constraints. Constraints are
usually classified under two categories: soft and hard
constraints. Hard constraints should be always
satisfied in any schedule while soft constraints can be
violated. A schedule that does not satisfy any of hard
constraints cannot be a feasible one. Possible
examples include restrictions on the number of nurses
for each shift and the maximum number of shifts in a
week or a month. Soft constraints can be violated but
as minimal as possible. In other words, the soft
constraints are expected to be satisfied, but violation
does not make it an infeasible solution. Some
examples are requests for a desired day off or a certain
shift on a certain day. Generally, there are three shifts,
morning, evening, and night, and an off-day.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 690

There are various kinds of hard and soft
constraints we may consider. Because the main
objective of this study is to provide an improvement
for SA and GA and compare their performance, we
confined the constraints as follows.

(a) Hard constraints
(i) Number of nurses for each working shift per

day. The number of nurses for morning,
evening, and night shift should be between the
minimum and the maximum values.

(ii) Working patterns. Morning after night shift,
evening after night, morning after evening shift
and three consecutive night shifts are not
allowed.

(b) Soft constraints
(i) Total number of off-days (o), night (n),

morning (m) and evening (e) shifts during the
certain period of days for each nurse.

2.2 Cost Function
We have to define a cost function for NSP to

optimize. Let N and D be number of nurses and days,
and s be one of the three shifts or an off-day. Then,
NSP may be represented as a problem to decide an
N×D matrix, X, whose element xij represents that nurse
i works on day j where xij = {m, e, n, o}. We define mj,
ej, nj as total number of nurses for morning, evening,
and night shift on day j. These numbers must be
between the minimum and the maximum number of
nurses for each shift, mmin, emin, nmin, mmax, emax, and
nmax. We also define Mi, Ei and Ni as total number of
each shift, morning, evening, and night of a nurse i
and their requirements Mreq, Ereq and Nreq. We can
define three costs for each requirement as follows.

�� = �(��� +

�

���

��� + ���)

�� = ���� +

�

���

��� + ���)

�� = ������

�

���

�

���

where
CMi : Cost for Mi. 0 if Mi = Mreq else 1.
CEi : Cost for Ei. 0 if Ei = Ereq else 1.
CNi : Cost for Ni . 0 if Ni = Nreq else 1.
cmj : Cost for mj. 0 if mmin ≤ mj ≤ mmax else 1.
cej : Cost for ej . 0 if emin ≤ nj ≤ emax else 1.
cnj : Cost for nj . 0 if nmin ≤ nj ≤ nmax else 1.
cpij : Cost for cyclic working pattern of nurse i.

0 if xij-1xij ∈ {ne, nn, nm} else 1.

Based on these costs, we can define an

objective cost function as follows.

Ctotal = C1*w1 + C2*w2 + C3*w3
where w1, w2, and w3 are weight values for the cost C1,
C2 and C3.

Our goal is to minimize the cost function
Ctotal so as to find an optimal nurse schedule. The
simplest method is a brute force approach which
evaluates all possible nurse schedules. It guarantees a
feasible schedule with the minimum cost. However,
the number of all possible nurse schedules is 4N×D. If N
and D increase, this approach is intractable. This is a
class of problems called NP-hard (Papadimitrioud,
1993), which means an algorithm that guarantees to
find an optimal solution with the size of N and D in
reasonable time may not exist. To overcome this
problem, we applied couple of approximation
algorithms: simulated annealing and genetic algorithm.
3. Cost bit matrix

Because of page limit, we only provide a
brief description of a cost bit matrix and its
application: simulated annealing with a cost bit matrix
(CMSA) and genetic algorithm with a cost bit matrix
(CMGA). Traditional SA (TSA) and GA (TGA) can
be found in (Kirkpatric and Gelatt Jr, 1983) and
(Goldberg, 1989).
3.1 Description

A cost bit matrix V is an N×D matrix whose
each cell is set if any constraint is violated. Table 1
depicted a sample schedule and its corresponding cost
bit matrix. The numbers in the first column means
nurses. The numbers of each shift and off-day for
nurse i is represented as mi, ei, ni, and oi and the
numbers of nurses for each shift and off day of day j is
represented as mj, ej, nj, and oj.

Table 1. A sample schedule and its corresponding cost

bit matrix when mmin=mmax=2, emin=emax=1, nmin=
nmax=1, Mreq=2, Ereq=2, Nreq=2, Oreq=1.

 Mon Tue Wed Thu Fri Sat Sun mi ei ni oi

1 n n o m m e e 2 2 2 1

2 e e m o m n n 2 2 2 1

3 m m e e n n o 2 2 2 1

4 o m m n e e n 2 2 2 1

5 m o n m n e e 2 2 2 1

mj 2 2 2 2 2 0 0

ej 1 1 1 1 1 3 2

nj 1 1 1 1 2 2 2

oj 1 1 1 1 1 0 1

 Mon Tue Wed Thu Fri Sat Sun

1 0 0 0 0 1 1 1

2 0 0 0 0 1 1 1

3 0 0 0 0 1 1 1

4 0 0 0 0 1 1 1

5 0 0 0 0 1 1 1

When calculating C1, C2, and C3, the cost bit

matrix is set as follows: If CMi, CEi, or CNi is not 0,
all cells on i-th row of the matrix are set to 1 or 0
otherwise; if cmj, cej, or nej is not 0, all cells on j-th

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 691

column are set to 1 or 0 otherwise; if cpij is 1, vij is set
to 1 or 0 otherwise. Figure 1 depicted pseudo code for
the costs. For example, the assignments of Friday,
Saturday and Sunday violating the constraints make
the corresponding columns of the cost bit matrix be
set to 1 in Table 1.
3.2 Application

In CMSA and CMGA, the cost function Ctotal
is evaluated whenever a new schedule Xnew is
generated from the current schedule Xcur and the cells
of the matrix vij is set to1 if any constraint is violated
or 0 otherwise. When a new schedule is generated, vij
of the matrix V is used to determine if xij of Xnew can
be changed or not.
3.2.1 Simulated annealing

Figure 1. Simulated annealing

SA is a probabilistic approach that can be
used to find a global optimum of a function for
combinatorial optimization problems. To use this
algorithm, a set of state S={s1, …, sn} and a cost
function C:S→R , where R is the set of real numbers,
should be defined. A real value C(S) should be

assigned to each state s∈S. The goal of the

optimization problem is to find an optimal state sopt
whose score is min(max){si|1 ≤ � ≤ � }. SA
continuously generates a new candidate state snew from
a current state scurrent by applying transition rules and
acceptance rules. The criteria of the acceptance rules
are: (a) if ∆� ≤ 0, accept a new state snew (b) if

accept a new state snew with probability �(∆�) = ��
∆�

�
where T is a temperature and ∆� = �(����)−
�(��������) is a cost difference. Probability �(∆�)
prevents the system from fixation at a local minimum.
A state scurrent is called a local minimum if there is no
new state snew in S that is generated from scurrent by
applying the transition rules and has a lower cost than
that of scurrent.

Temperature T controls a probability to
accept a new state snew. Initially, T starts from a high
temperature and after each iteration T decreases based
on an annealing schedule and becomes zero eventually.
The probability of accepting a new state with a higher
cost than that of the current also decreases as
temperature T decreases. If a careful annealing
schedule and a number of iterations are given, SA
converges to a global minimum state sopt. Because of
efficient performance by this characteristic, SA has
been applied to many combinatorial problems

In CMSA, a new schedule is generated by
applying a transition rule to Xcur. The cost bit matrix is
used to determine whether a transition rule is applied
or not. If vij is 1, a transition rule is applied to the
corresponding assignment xij in Xcur. In Figure 2,
pseudo code for a transition function is given.

3.2.2 Genetic algorithm
GA is a search algorithm to simulate the

process of natural selection. GA starts with the set of
potential solutions called a population and evolves
toward more optimal solutions. The solutions are
evaluated by a fitness function. The fitness value
represents the quality measure of a solution so that the
algorithm can use it to select ones with better genetic

C1()
{
 int c1=0;
for(j=1; j<=N; j++)
{

 if ((mj<mmin)||(mj>mmax)){c1=c1+1;}
 if ((ej<emin)||(ej>emax)){c1=c1+1;}
 if ((nj<nmin)||(nj>nmax)){c1=c1+1;}
 if (c1 != 0)
 for(i=1; i<=D; i++)
 vij=1;
}
return c1;

}

C2()
{
 int c2;
for(i=1;i<=D;j++)
{

 if (Mi!=Mreq) c2=c2+1;
 if (Ei!=Ereq) c2=c2+1;
 if (Ni!=Nreq) c2=c2+1;
 if (Oi!=Oreq) c2=c2+1;
 if (c2 != 0)
 for(j=1; j<=N; j++)
 vij=1;
}
return c2;

}

C3()
{
 int c3=0;
for (j=1; j<=D; j++)
{

 for (i=1; i<=N; i++)
 {
 if ((xij-1==n)&&(xij==m)) c3=c3+1;
 if ((xij-1==n)&&(xij==e)) c3=c3+1;
 if ((xij-1==e)&&(xij==m)) c3=c3+1;
 if ((xij-2==n)&&(xij-1==n)&&(xij==n))
 c3=c3+1;
 if (c3 != 0) vij=1;
 }
 }
 return c3;
}

Transition(){
for (i=1; i<=N; i++){

 for (j=1; j<=D; j++){
 if ((rand()%100<p)&&(vij==1)
 xij=random(d, e, n, o);
 }
 }
}

Figure 1. Pseudo code for three costs, C1, C2, and C3.

Figure 2. A transition function for CMSA

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 692

material for producing new solutions and further
generations. This simulation of evolution allows
survival of better solutions and extinction of inferior
ones. The goal is to find better solutions in each
generation. The process of evolution is carried out by
selection, crossover and mutation. In terms of GA,
those processes are called genetic operators. The
selection chooses superior solutions in every
generation and assures that inferior solutions are
extinct. The crossover operator chooses two solutions
from current population and generates a new solution
based on their genetic material. Selection and
crossover operators will expand good features of
superior individuals through the whole population.
They will also direct the search process towards a
local optimum. The mutation operator changes the
value of some genes in a solution and helps to search
other parts of problem space.

After selection and crossover in CMGA, two
new schedules can be obtained. With mutation
probability Pm, the two schedules can be mutated. In
this study, a cost bit matrix is used to determine
whether a mutation operator is applied to these
schedules. A mutation operator is applied to the cell xij
in a schedule with cell change probability Pcc only if
the corresponding cell vij=1. The mutation operator is
presented in Figure 3.

4. Experimental results

We implemented TSA, CMSA, TGA, and
CMGA in C and ran on a PC with an Intel® Core(TM)
i5-2520M 2.5 Ghz CPU and 4GB of memory. All the
constraints described in this paper were included in all
implementations with exact same conditions. The goal
was to check whether the proposed algorithms, CMSA
and CMGA, could actually generate an acceptable
NSP efficiently and compare them with the
corresponding traditional algorithms. The random
number generator rand() was used when necessary.
Each set of instances is consisted of 100 problems
generated randomly. The number of nurses, N, is 15
and the number of weeks, D, is from one to four. The
weights for cost functions are w1=5, w2=5 and w3=1,

respectively. Hard constraints are same for all the
problems (dmin=4, dmax=6, emin=3, emax=5, nmin=3,
nmax=5) and soft constraints for one week are Dreq=2,
Ereq=2, Nreq=2, and Oreq=1, and are proportional to the
number of weeks for two to four weeks. The crossover
probability Pc=0.03, mutation probability Pm=0.01 and
cell change probability pcc=0.01 were applied.

The TSA and CMSA were compared on the
bases of three criteria: the average cost Cfinal of the
obtained schedules, the average number of iterations
to reach the final schedule, and execution time Tfinal.
The TGA and CMGA were compared on the
following values: the average cost Cfinal of the
obtained schedules, the average number of generations
to reach the final schedule, and execution time Tfinal.

In Table 2 and 3, the experimental results of
the algorithms were given.

Table 2. Performance results of TSA and CMSA.

Week Method Cfinal Iterations Tfinal
(sec) to Cfinal Total

1 TSA 3.6 511,141 1×106 19.1
CMSA 0.0 221,806 1×106 2.9

2 TSA 7.4 2,677,684 5×106 66.3
CMSA 0.0 2,062,308 5×106 35.4

3 TSA 10.4 1,1236,294 20×106 393.8
CMSA 0.0 1,0120,325 20×106 246.3

4 TSA 13.8 5,7878,176 100×106 2845.2
CMSA 0.0 4,8276,960 100×106 1472.4

Table 3. Performance results of TGA and CMGA.

Week Method Cfinal Generations
to Cfinal

Populations Tfinal
(sec)

1 TGA 8.8 2.33×105 100 81.7
CMGA 7.6 2.21×105 100 13.3

2 TGA 9.4 3.77×105 400 750.3
CMGA 6.4 4.22×105 400 516.6

3 TGA 15.8 4.40×105 1,000 4,292.2
CMGA 8.8 4.40×105 1,000 4,207.3

4 TGA 24.0 5.50×105 3,000 21,104.0
CMGA 15.6 5.00×105 3,000 15,492.0

As seen in Table 2, CMSA outperformed
TSA in all criteria. While CMSA provided a schedule
with Cfinal=0 for all weeks, TSA didn’t. As the number
of weeks is increased, the difference between these
two methods in every criterion became larger.
However, TSA and CMSA showed slightly different
results in Table 3. Both of TGA and CMGA failed to
find a schedule with Cfinal=0 for all weeks even though
they executed much longer in time than TSA and
CMSA. Unlike the number of required iterations in
TSA and CMSA, the numbers of generations for TGA
and CMGA are very similar or almost identical. In
addition, the differences in execution time Tfinal
between TGA and CMGA were not as large as those
between TSA and CMSA.

Mutation()
{

for (i=1; i<=N; i++)
{

 for(j=1; j<=D; j++)
 {
 if ((rand()%100<p)&&(vij==1))
 xij=random(d, e, n, o);
 }
 }
}

Figure 1. A mutation operator for CMGA

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 693

We applied simple crossover, multi-point
crossover and uniform crossover in our GA and the
best one was simple crossover. CMGA was very
effective compared to TGA based on the above
comparison, while CMSA was the best. In all the
qualities of the solutions, CMSA was very impressive
because of its powerful operators with a cost bit
matrix.
5. Conclusion and future works

In this paper, we applied SA and GA to NSP
and proposed a strategy to improve performance of
them. In CMSA and CMGA, a cost bit matrix was
used to generate a new schedule efficiently, which
was justified by the experimental results. In CMSA, a
transition rule was applied based on the matrix. In
CMGA, the selection and crossover operators were
applied based on the probability only, while the
mutation operator was applied based on the
probability and the values in the matrix. The usage of
the matrix resulted in pruning of search space that was
the main cause of reduction in execution time. In
addition, possibility to find feasible solutions in
CMSA was increased, which made our algorithms
find solutions satisfying all the constraints. These
approaches, CMSA and CMGA, generated a nurse
schedule faster in speed and better in quality than
traditional ones, respectively. And SA and CMSA
outperformed the corresponding version of GA
respectively.

Although we have presented this work in
terms of nurse scheduling, it should be noticed that the
main idea of the approach could be applied to many
other scheduling problems.

Future research aims at parallelization of the
algorithms by utilizing state-of-the-art GPGPUs.

Acknowledgements:

This research was supported by Hallym
University Research Fund, 2013(HRF-201309-017).

Corresponding Author:
Dr. Jin Kim
Department of Computer Engineering
Hallym University
Chuncheon, Gangwondo 200-702 Republic of Korea
E-mail: jinkim@hallym.ac.kr

References
1. Ender O. Memetic algorithms for nurse rostering.

Lecture notes in computer science, In: The 20th
International Symposium on Computer and
Information Sciences, Springer-Verlag 2005; 482-
492.

2. Ernst AT, Jiang H, Krishamoorty M, Owens B,
Sier D. An annotated bibliography of personnel
scheduling and rostering. Annals of Operations
Research 2004;127(1):21-144.

3. Burke EK, De Causmaecker P, Petrovic S,
Vanden Berghe G. Meta-heuristics for handling
time interval coverage constraints in nurse
scheduling. Applied Artificial Intelligence
2006;20(9): 743-766.

4. Cheang B, Li H, Lim A, Rodrigues B. Nurse
rostering problems-A bibliographic survey.
European Journal of Operational Research
2003;151(3):447-460.

5. Bard JF, Purnomo HW. Cyclic preference
scheduling of nurses using a Lagrangian based
heuristic. Journal of Scheduling 2007;10(1):5-23.

6. Osogami T, Imai H. Classification of Various
Neighborhood Operations for the Nurse
Scheduling Problem. In: ISAAC '00: Proceedings
of the 11th International Conference on
Algorithms and Computation, Springer-Verlag
2007;72-83.

7. Miller HE, Pierskalla WP, Rath GJ. Nurse
Scheduling using Mathematical Programming.
Operations Research 1976;24(5):857-870.

8. Warner DM, Prawda J. A Mathematical
Programming Model for Scheduling Nursing
Personnel in a Hospital. Management Science
1972;19(4-Part-1):411-422.

9. Jan A, Yamamoto M, Ohuchi A. Evolutionary
Algorithms for Nurse Scheduling Problem. In:
Proc. The 2000 Congress on Evolutionary
Computation, 2000;196-203.

10. Aickelin U, Dowsland KA. An indirect Genetic
Algorithm for a Nurse-Scheduling Problem.
Computers & Operations Research 2004;31(5):
761-778.

11. Kundu S, Mahato M, Mahanty B, Acharyya S.
Comparative Performance of Simulated
Annealing and Genetic Algorithm in Solving
Nurse Scheduling Problem. In: Proc. Int'l Multi
Conference of Engineers and Computer Scientists
2008;1-5.

12. Kirkpatrick S, Gelatt Jr CD, Vecchi MP.
Optimization by Simulated Annealing. Science
1983;220(4598):671–680.

13. Goldberg DE. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison
Wesley, 1989.

14. Papadimitriou CH. Computational Complexity,
Addison Wesley, 1993.

5/26/2014

