
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 619

Design of an Android Real-Time Bus Location Provider

Gyeyoung Lee, Jaegeol Yim

Department of Computer Engineering, Dongguk University, Gyeongju, Gyeongbuk, 780-714, Korea
{lky, yim}@dongguk.ac.kr

Abstract: An intelligent transportation system (ITS) is an application that provides dynamic traffic information to
users so that the users can make safer and smarter use of transport networks. Examples of information type provided
by an ITS include: bus arrival information, route information, bus service information, allocation information, route
arrival information, station arrival information, front and rear car interval, transit time, and so on. In order to identify
vehicles and detect locations and speeds of vehicles, we have to install a lot of special equipments in an ITS. For
example, road side equipments (RSE), automatic vehicle identification (AVI) systems, automatic vehicle locations
(AVL) systems, trunked radio systems (TRS) are needed to be installed in an ITS. Consequently, the cost to
implement and maintain an ITS is enormous. This paper introduces a design of an Android App system that provides
bus location information. The structure of our system contains three components: service request client, location up-
loader, and a server. Design detail of the system is discussed in this paper.
[Hassanein M. K., M. A. A. Abdrabbo, A. A. Farag, S.M. Abolmaaty and A. A. Khalil. Application of Geographic
Information Systems to produce descriptive maps for Poultry Farms in Egypt. Life Sci J 2014;11(7):619-625].
(ISSN:1097-8135). http://www.lifesciencesite.com. 86

Keywords: Bus arrival time; Smartphone; App; Intelligent Transportation System

1. Introduction

We have proposed a collaborative bus arrival
time estimation method in our earlier works (Yim
2014). Bus information system (BIS) provides real-
time bus service information for bus users to save
their valuable time. The bus arrival time service is a
key service to improve public transport attractiveness
by providing users with real-time bus arrival
information which can help them to arrange their bus
travel schedule intelligently (Zhu, Dong, Huang, Pang
and Du 2012).

Existing practical BISs use special
equipments installed on buses and/or bus stops. For
example, global positioning system-based automatic
vehicle location (AVL) systems have been adopted by
many transit agencies for tracking their vehicles and
predicting travel time in real time (Gong, Liu and
Zhang 2013).

We introduced our design of BIS that does
not require any special equipment installed on buses
or bus stops. Our system is a client and server system.
There are two kinds of clients: GPS up-loaders and
bus arrival time requesters. An up-loader is a
smartphone app running on a bus passenger's
smartphone. Up-loaders continuously read GPS value
and the current time and send them to the server. With
up-loaded GPS values, the server determines which
bus is running on which bus route and where it is. A
bus arrival time requester is a smartphone app and is
supposed to be run by a user who is waiting for a bus.
This paper discusses design detail of the system.

2. Related Works
The main idea of our system is based on the

following facts: 1) Almost everybody has a
smartphone. 2) A smartphone is equipped with very
accurate GPS receiver. 3) Human being is a social
animal. Therefore, bus passengers can collect their
location information with their smartphones and
would be willing to upload their location information
to the server in order to help others who are waiting
for buses (Yim 2014).

Collecting bus location information with GPS
devices is not new. Padmanaban, et al collected the
travel time data using GPS units carried by observers
travelling in buses (Padmanaban, Divakar, Vanajakshi
and Subramanian 2010). However, they do not collect
GPS values from passengers in real-time.

 The bus arrival time is primary information
to most city transport travelers. Excessively long
waiting time at bus stops often discourages the
travelers and makes them reluctant to take buses.
Zhou et al presented a bus arrival time prediction
system based on bus passengers' participatory sensing
(Zhou, Zheng and Li 2013). The basic idea of our
system design is very similar to theirs. However, there
is big difference in detail. For example, the up-loaders
of their system use commodity mobile phones as well
as various build-in sensors to sense and report the
lightweight cellular signals and the surrounding
environment to a backend server whereas our up-
loaders use their ordinary smartphones. As another
example, their up-loaders upload regularly such as
every one second whereas our up-loaders detect bus
stop status and only upload when the bus stops.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 620

Real-time bus location information is one of
the services provided by an Intelligent Transportation
system (ITS). Most of the ITSs require on-board
devices and radio on vehicles especially buses,
pavement sensors, CCTVs, AVI (automatic vehicle
identification)/AVL (automatic vehicle location)
readers, and so on.

As an example, let us consider Daejeon city
ITS [5]. The structure of the system is shown in
Figure 1. In the figure, TRS stands for trunked radio
system. A TRS is a complex type of computer-
controlled two-way radio system that allows sharing
of relatively few radio frequency channels among a
large group of users. Instead of assigning, for example,
a radio channel to one particular organization at a time,
users are instead assigned to a logical grouping, a
"talkgroup". When any user in that group wishes to
converse with another user in the talkgroup, a vacant
radio channel is found automatically by the system
and the conversation takes place on that channel [6].

RSE in the figure stands for road side
equipment (RSE). An RSE contains an automatic
vehicle identification (AVI) and an automatic vehicle
location (AVL) system. For example, an RSE can be
based on an RFID (radio-frequency identification)
reader. RFID is the wireless non-contact use of radio-
frequency electromagnetic fields to transfer data, for
the purposes of automatically identifying and tracking
tags attached to objects. Some tags are powered by
and read at short ranges (a few meters) via magnetic
fields (electromagnetic induction), and then act as a
passive transponder to emit microwaves or UHF (ultra
high frequency) radio waves. Others use a local power
source such as a battery, and may operate at hundreds
of meters. Unlike a barcode, the tag does not
necessarily need to be within line of sight of the reader,
and may be embedded in the tracked object [7].

Figure 1. Structure of Daejeon BIS

In the figure, every bus is attached with an
RFID tag. An RFID reader in an RSE reads RFID tags
and identifies the bus that arrives the spot where the
RSE is located. RSEs send collected data to a TRS

base station in real-time. TRS base stations, in turn,
transmit collected data to Daejeon ITS center.
Using the data, ITS center provides the following
information to citizens: bus arrival information, route
information, bus service information, allocation
information, route arrival information, station arrival
information, front and rear car interval, transit time,
and so on [5].

3. Design of Our BIS

The main components of our BIS are Up-
loader, requester and the server as shown in Figure 1.
An up-loader is a smartphone app that reads GPS
values regularly, detects if the bus stops, and sends the
current time and GPS value including latitude and
longitude to the server if the bus stops. An up-loader
is supposed to be run on a smartphone of a bus
passenger.

The server receives GPS values from up-
loaders and saves them in PassengersTable in the
database. The attributes on PassengersTable include
UserID, Time, Latitude, and Longitude. There is
BusRoutesTable in the database. The attributes on
BusRoutesTable include BusRouteID, StartStop,
EndStop, and BusCompany. There is BusStopsTable
in the database. The attributes on BusStopsTable
include BusStopID, BusRouteID, Latitude, and
Longitude. With the sequence of GPS values from an
up-loader, the server can recognize the bus route on
which the bus, in which the passenger is riding, is
running. We call this bus route a bus running route.
Note, we have one bus running route per up-loader.

Figure 2. Main components of our BIS [8]

A requester is a smartphone app and is
supposed to be run by a user who is waiting for a bus.
The user can be at a bus stop or at some other places.
In the former case, the requester reads the current GPS
value and send them to the server. In the latter case,
the requester sends the bus stop ID (or name) to the

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 621

server. Then, the server retrieves all the bus routes
that contain this bus stop. We call these bus routes
"related bus routes". The server returns the current
positions of the passengers in the buses running on
these "related bus routes".

Figure 3. The process of our up-loader

Figure 4. The layout of our requester

3.1. Design of the Up-loader

Our up-loader regularly reads GPS and
transmits location value read from GPS to the server
every minute or when the bus stops. To do this, our
up-loader initializes last-transmit-time with the current
time of the day. Our up-loader reads GPS regularly,
every 500 ms for example. Therefore, our up-loader
sleeps for t1 (500 for example) time units. Then, it
reads GPS. If the elapsed time from the last-transmit-
time is greater than a threshold (th1, one minute, for
example), then it transmits location value from GPS
to the server and updates last-transmit-time with the
current time of the day. It repeats the process of
transmitting location value from the GPS every one
minute. In addition to transmitting regularly, it also

transmits location value whenever the bus is not
moving. This process of our up-loader is shown in
Figure 3.

3.2. Design of our Requester

A scheme of the user interface of our
requester is shown in Figure 4. The user interface
contains two windows, one for a map and the other for
user input. A user can type in the name of the
departure bus stop and the destination bus stop. Then a
map of the area around the departure bus stop is
displayed on the map window. Then, it shows the bus
routes that the user should take on the map.

3.3. Design of our Server

Our server receives location information
from up-loaders and save it in the database. It also
finds out the bus route on which the user of the up-
loader is taking. The server also receives a message
from a requester and informs the requester of the
locations of the buses that the user wants to take. The
processes the server performs are described in Figure
5.

Figure 5. The process of our server

Therefore, the classes listed in Table 1 are

needed to be defined in the server. DBConnector
returns a database connection.

Table 1. A list of classes consisting the server

Class Name Description
DBConnector For database connection
BusInfoServiceDao For data insertion to and retrieval

from the database
FindBusRoute To find the bus route the user is taking
SaveStopState This is a web service that saves bus

location information when the bus
stops by invoking BusInfoServiceDao

SearchCurrentUserBu
sLine

This is a web service that executes
Calculate

BusStop A template class for bus stop
User A template class for user information
Distance calculates the distance between 2

point
Util Finds the intersection set of two

ArrayList

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 622

The main role of FindBusRoute class is to

find the bus route a up-loader is taking with a
sequence of locations the up-loader up-loaded. The
process of identifying the route is described in Figure
6.

Figure 6. The process of identifying the bus route on
which the up-loader is running

BusInfoServiceDao provides methods that
inserts data (DeviceID, Latitude, Longitude) into the
database and retrieves data from the database as
shown in Table 2.

Table 2. Description of methods in

BusInfoServiceDao
name Input Output Description
saveState DeviceID,

Latitude,
Longitude

void Save location of a
user and time in the
database.

getUserInfomation DeviceID All data saved by the
user indicated by
DeviceID

List of all data saved
by the user indicated
by DeviceID.

getBusLineName BusLineID BusLineName Returns the bus route
name identified by
BusLineID

getBusStationLine BusStationID BusLineIDs of the
bus lines that stops at
the bus stop indicted
by BusStationID

A list of BusLineIDs
of the bus lines that
stops at the bus stop
indicted by
BusStationID

getAllBusStation void List of all bus stops Returns a list of all
bus stops

The process of the saveState method is

shown in figure 7. It makes use of DBconnector in
order to access the database, construct an insert sql
sentence, and execute the sentence. After executing, it
returns success or failure message to the caller in
order to inform it of the execution result.

Figure 7. The process of saveState method

BusStop class and User class are template
classes. Functions defined in BusStop class are
decribed in Table 3.

Table 3. A list of methods defined in BusStop
name Input Output Description
getBusStopID void BusStopID returns BusStopID in the

class.
setBusStopID BusStopID void set BusStopID with the

parameter
getLatitude void Latitude returns Latitude in the class
setLatitude Latitude void set Latitude with the

parameter
getLongitude void Longitude returns Longitude of the class
setLongitude Longitude void set Longitude with the

parameter
getBusStopNa
me

void BusStopNa
me

returns BusStopName in the
class

setBusStopNa
me

BusStopNa
me

void set BusStopName with the
parameter

SaveStopState is a web service that takes

DeviceID, Latitude and Longitude parameters and
saves them in the database. The process of this web
service is shown in Figure 8. This service makes use
of saveState method in BusInfoServiceDao in order to
access the database. If the insertion succeeds/fails then
it returns a success/failure message.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 623

Figure 8. The process of SaveStopState

4. Implementation of Our BIS

Nowadays, most of the smartphones are
equipped with very accurate GPS receivers and
sensors. They also provide developers with efficient
APIs. For example, Android app developers can easily
read GPS/Sensor values with
LocationManager/SensorManager. Our up-loader
regularly collects accelerometer values and it assumes
that the bus is stopped when the variance of collected
accelerometer values is less than a certain threshold.

One of the most important parts of the user
interface of our system is the map. Once we obtained
an API_KEY, we can use Daum map as shown in
Table 4 in order to display the standard map.

Table 4. A part of our implementation of mapView
MapView mapview;
String API_KEY = "282ec... 65";
LinearLayout linearview = (LinearLayout)
findViewById(R.id.mapview);
mapview = new MapView(this);
mapview.setDaumMapApiKey(API_KEY);
mapview.setMapType(MapView.MapType.Standard);
linearview.addView(mapview);

Table 5. Codes to move the center of the map
MapPoint startpoint =
MapPoint.mapPointWithGeoCoord(...);
mapview.setMapCenterPoint(startpoint, false);

Given a pair of (latitude, longitude) from an

up-loader, we have to find the nearest bus stop. A part
of the procedure to find the bus stop is shown in Table
5.

Table 6. A part of our implementation to find the bus
stop nearest to the given location

public void calculateArrayDistance(double
latitude,double longitude){
 Distance distance = new Distance();
 ...[] arrayBusStops = mapView.getBusStops();
...
 for(int i=0;i< arrayBusStops.length;i++){
 if(arrayBusStops [i].getTag() == 0) continue;
 String temp=null;
 double P2_late = arrayBusStops [i].get... latitude;
 double P2_lon = arrayBusStops [i].get... longitude;
 double dis = distance.distance (latitude, longitude,
P2_lat , P2_lon);
 temp = "Distance to" arrayBusStops[i]....()
+"is"+(int)dis +"m ";
...
}

5. Experiments
We have tested our bus stopped status

recognition program. Our test results showed that our
program says "The bus is stopped" not only when the
bus stops but also the bus slows down at a corner.

Table 7. Example collected GPS values
 GPS Google Map
Stop1 35.86409402133178

129.200397409416
35.86703
129.201458

Stop2 35.862011420672324
129.19768552134303

35.860376
129.196048

Stop3 35.85794626379323
129.19756174836533

35.857677
129.197748

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 624

Figure 9 The standard map

We have tested accuracy of GPS receivers.

Example test results are shown in Table 6.
Considering the distance between latitude 35 degree
and 36 degree is longer than 100 Km, we can imagine
how big the difference between GPS value and the
coordinates obtained from Google map is. Even so,
our procedure to find the nearest bus stop finds the bus
stop correctly because the distance between adjacent
two bus stops is much longer than the GPS error.

One of the most important parts of the user

interface of the client is the map. A result of executing
the code in Table 4 is shown in Figure 9 and a result
of Table 5 is shown in Figure 10.

Figure 10 After moving the center of the map

6. Conclusions

BIS is extremely costly because it requires
special equipments installed on buses and/or bus stops.
We proposed a method that relies on smartphones
which are equipped with GPS receivers. Since most
smartphones are equipped with GPS receivers and
almost everybody carries a smartphone, our method is
very economical. We also proposed a structure of bus
information system (BIS) that utilizes our proposed
method. Furthermore, we have shown our test results
that show the proposed BIS is practical.

We discussed our design of the system in this
paper. We now have to refine our procedure of
detecting stopped status of a bus so that it can
discriminate slowing down status of a bus.

We also have to improve accuracy of GPS
values obtained from smartphones. To this end, we are
planning to utilize the Kalman filter process and map
matching method. After improving the accuracy of
GPS values, we are planning to implement a practical
BIS prototype.

Acknowledgements:

This research was supported by Basic
Science Research Program through the National

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 625

Research Foundation of Korea(NRF) funded by the
Ministry of Education (NRF-2011-0006942) and by
‘Development of Global Culture and Tourism IPTV
Broadcasting Station’ Project through the Industrial
Infrastructure Program for Fundamental Technologies
funded by the Ministry of Knowledge Economy
(10037393).

Corresponding Author:
Ph.D. Yim, Jaegeol
Department of Computer Engineering
Gyeongju Campus, Dongguk Univ.
Gyeongju, Gyeongbuk, 780714, Korea
E-mail: yim@dongguk.ac.kr

References
1. Zhu T, Dong J, Huang J, Pang S, Du B. The bus

arrival time service based on dynamic traffic
information. 6th International Conference on
Application of Information and Communication
Technologies 2012; 1-6.

2. Gong J, Liu M, Zhang S. Hybrid dynamic
prediction model of bus arrival time based on
weighted of historical and real-time GPS data.

25th Chinese Control and Decision Conference
2013; 972-976.

3. Padmanaban R, Divakar K, Vanajaksho L,
Subramanian S. Development of a real-time bus
arrival prediction system for Indian traffic
conditions. Intelligent Transport Systems 2010;
4(3): 189-200.

4. Zhou P, Zheng Y, Li, M. How long to wait?
Predicting bus arrival time with mobile phone
based participatory sensing. IEEE Transactions
on Mobile Computing 2013; PP(99): 1-14

5. http://traffic.daejeon.go.kr/eng/introduction/
intelligentTransportSystem.do

6. http://en.wikipedia.org/wiki/Trunked_radio_syste
m

7. http://en.wikipedia.org/wiki/Radio-
frequency_identification

8. Yim, J., "Proposing a Collaborative Bus Arrival
Time Estimation Method," The 2014 FTRA
International Conference on Advanced
Computing and Services (ACS-14) Proceedings,
Jeju Island, Korea, 2014; 66-68

9/6/2012

