
Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 564

OpenSSD Platform Simulator to Reduce SSD Firmware Test Time

Taedong Jung, Yongmyoung Lee, Ilhoon Shin

Department of Electronic Engineering, Seoul National University of Science and Technology, South Korea
Building 3,206, Seoul 139-743, South Korea

ilhoon.shin@snut.ac.kr

Abstract: Recently, NAND flash memory is widely used as storage media in various devices such as SD card, USB
memory, and solid state drives (SSDs). NAND flash memory has different characteristics from hard disks, and
thereby a firmware called flash translation layer (FTL) should be deployed to use traditional file systems on NAND
flash memory. Because FTL majorly determines performance and stability of NAND-based block devices, various
FTL schemes have been developed. However, their efficiency has been evaluated via simulation not on a real device,
which restricts the reliability of the results. Recently, OpenSSD platform, which allows implementing a new FTL
scheme on real NAND devices, was developed. By using it, evaluating the FTL performance on real NAND devices
becomes possible. The problem is that it is difficult and time consuming to debug the new FTL on the OpenSSD
platform. In order to address this, we design an OpenSSD simulator that helps find the bugs of FTL and reduces the
test time. The FTL developed on the simulator can be migrated to the OpenSSD platform without additional porting.
[Taedong Jung, Yongmyoung Lee, Ilhoon Shin. OpenSSD Platform Simulator to Reduce SSD Firmware Test
Time. Life Sci J 2014;11(7):564-568]. (ISSN:1097-8135). http://www.lifesciencesite.com. 77

Keywords: Bug detection, OpenSSD simulator, Flash translation layer, NAND flash memory

1. Introduction

SSD has strong points like the fast speed and
safety, contrast to HDD. SSD is guaranteed fast I/O
speed via the parallel activity of multiple NAND
flash memory. NAND flash memory consists of
multiple storage media called as block. One block
consists of many pages which are 64 or 128 units,
and so on. NAND flash memory's I/O unit is a page.
Also, pages in a block should be sequentially written,
and the page cannot be overwritten (Kawaguchi et al.,
1995). To overcome these restrictions, a firmware
called FTL is deployed within SSD, and SSD can be
used like a general disk device. Because FTL majorly
determines performance and stability of NAND-
based block devices, various FTL schemes have been
developed (Gupta et al., 2009) (Lee et al., 2007).
However, their efficiency has been evaluated via
simulation not on a real device, which restricts the
reliability of the results. Recently, OpenSSD platform,
which allows implementing a new FTL scheme on
real NAND devices, was developed. OpenSSD
platform has the same construction of the existing
SSD. As seen in Figure 1, it consists of real NAND
flash memory and controller, DRAM, SATA
Interfere, and so on. By using it, evaluating the FTL
performance on real NAND devices becomes
possible.

There are two ways for debugging FTL in
OpenSSD platform. The one method is using RV ICE
and RVDS. The second is using GNU compiler. To
the reason of character of hardware, the time for I/O
at NAND flash memory is evaluated intactly, all of
two ways spend lots of time in debugging. The case

of logical error that can be detected in a long time
after beginning of real FTL evaluation spends lots of
time for debugging, these cases makes hard for
OpenSSD platform. For solving these problems, if
OpenSSD simulator is developed by detecting the
logical error of FTL code in a way of software, the
time for development can be decreased. Because I/O
like real hardware is not operated, it can be verified
quickly at the same test environment. After verifying
the logical error of FTL via OpenSSD simulator, and
then if there is a test in OpenSSD platform, it could
be efficient because the time for debugging is
decreased very much.

Figure 1. Internal structure of the OpenSSD Platform

This paper will explain about the necessity
of simulator in chapter 2, the construction of
simulator in chapter 3. In chapter 4, there will be
verifying the effectiveness of extracting the error via
the experiment, and the conclusion will be derived in
chapter 5.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 565

2. Necessity of OpenSSD Simulator
The difficult point at the progress of

development of FTL in OpenSSD platform is
spending lots of time for finding the logical error.
These logical errors can be categorized into two ways
in large scale. At first, the error which is founded
after the long time has been passed by at the
beginning of verification. This error is not detected
before the operation of Garbage collection which
deletes the unnecessary data is operating. Secondly,
even though it is the mistaken I/O, it can be hard to
detect in the way of hardware. In the case of
overwriting the space which has already the data and
improperly access at the region of DRAM, the board
can't be recognizing its problem and operating the
mistaken I/O.

2.1. Errors that can be detected after a long time

Free Block Count Variable is the variable
which administers the free block unit for saving the
data in NAND flash memory. At the initialization of
NAND flash memory, it can be categorized into the
meta-block which saves the meta-data and data-block
which saves the data. These category's difference is
depend of FTL policy, thus Free Block Count's
variable is depend on the developer's development
policy for its difference. If all of the blocks are
exhausted, and Free Block Count's variable number
will be 0, then Garbage Collection should be
operating for getting the storage place of its new data.
However, if Free Block Count's variable is
improperly initialized because of the developer's
mistake, it can't be possible to detect the error until
all of blocks are exhausted. If Free Block Count
variable is initialized less than its normal state; the
block which is not used about its difference will be
emerging. In contrast to its situation, it is initialized
more than its normal state; it will try to find the free
block in the situation which there is not unusable
block. In this case, the problem of falling into the
infinite loop of firmware is emerging because it tries
to find the new free block while it checks all of
blocks. It can be possible to check the mistaken
initialization of Free Block Count's variable with
using of ASSERT function of inside of firmware
which is the existing debugging method, but it can be
spending lots of time to detect the error. The reason
for this is that it is operated actually the I/O of the
hardware way by OpenSSD.

OpenSSD platform has lots of logical errors
that is spending lots of time to detect like Free Block
Count variable because of I/O of the hardware way.
Because Garbage collection will be operated after
NAND flash memory's whole space is exhausted, the
first operation is emerging normally after several
hours. Therefore, it costs lots of time to detect the

logical error with using only OpenSSD platform. In
case of OpensSSD platform, it can be possible to
detect the logical error at the same test environment
in a few minutes.
2.2. Errors that is hard to be detected

There is the situation that can't be
recognizing the error in case of I/O that is the
problem at the time of FTL development. The
invasion of DRAM region is the representative
example. At OpenSSD platform, the meta-data of
FTL is distributing DRAM region like Figure 2 and
saving each region. The improperly accessing is
possible about the distributed region; however, the
hardware is operating without problem. This is
possible because API which is related to memory
brings the data of ordered addresses without
verification. The data that is saved on DRAM is hard
to progress the specific verification according to the
situation because it is the randomly saved meta-data.
For example, suppose that the case of accessing to
DRAM for its changing the number of Valid Count
of figure 2. If the developer sets up 16Byte to each
entry but if access 32Bytes to the mistaken function
and it can access to the excessive region over the real
region. If some data is saved on the mistaken region,
the problem that its data is improperly recognized to
Valid Count is emerging.

Figure 2. Distribution of DRAM region

Even though it is the problematic situation
in reality, various situations which are not recognized
are around. If the sequential writing is broken on the
block, in case of I/O of block or page that is out of
region, the situation of operating the write with the
overlapping on the already written page, these cases
are the relevant cases.

3. Design of OpenSSD Simulator

OpenSSD simulator is constructed for
verifying FTL code of OpenSSD platform. Therefore,
Low-Level device Driver API which is ordering to
NAND flash memory and Memory Utility API which
is ordering to DRAM, these two things are
constructed like a Figure 3. This is the necessary API
for expressing the I/O of OpenSSD platform in the
way of software. However, OpenSSD simulator can't
replace to all of the function of OpenSSD platform.
These are the function of Power-Off Recovery and
Bad Block Management and interrupt. The better
simulator can be expected if its part is solved with the
part that is hard to realize in the way of software.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 566

Figure 3. Structure of OpenSSD Simulator

The virtual NAND flash memory at

simulator is distributed into the data-block and meta-
block. Data block is the place where saves the real
data, however the simulator is not needed these entire
place. Because the real data is not related to logical
error, and the amount of memory is limited to allot in
OS. Data block is used to verify the logical error
instead of real data that is saved because I/O order is
saved. However, all of the meta-block is necessary.
In this place the necessary order is saved like a
mapping table. In conclusion, it can be using by
distributing into the meta-block which demands all of
the space like a OpenSSD Platform and data-block
which is saving I/O order. FTL is distributing like
Read/Write/Copy Buffer, FTL Buffer, and ECT for
using effectively in DRAM space. The simulator is
using 64MB in the inside of its space with the
dynamic allotment, and each meta-data's space is
allotting on the order of FTL code.

OpenSSD simulator's activity is beginning
from passing its order of I/O. The order of I/O is
using the pattern of I/O which is collected from the
past based on users. Because the transferred order is
based on Disk, it is converting to base order of
NAND flash memory via FTL. The converted order
is saved on virtual NAND flash memory via using
Memory Utility API, Low-Level device Driver API.
Both Memory Utility API and Low-Level device
Driver API, there are added the various codes to
verify the logical error. ASSERT function which is to
detect the logical error at the simulator has the same
operation of ASSERT function of OpenSSD platform.
Lots of codes are already applied to check the logical
error that is considered in the simulator contrast to
OpenSSD platform that is added the appropriate error
check by user. Also, the function for checking logical
error by user additionally, it can be easily possible to
add with using ASSERT function of simulator. The
saved order which was doing before is using to check
the logical error. As checking the saved order on
Data block, it can be possible to verify the error about
the sequential writing on the block or pages overwrite.
In OpenSSD Platform which is I/O per page is hard
to know whether the progress of Partial Programming

is right or not. But, the simulator is possible to know
the accuracy of operation via checking the order of
data block.

4. Experiment

FTL_GREEDY code which is sample of
FTL of OpenSSD platform is using at the experiment
of OpenSSD simulator. Some part of FTL code is
necessary to delete because there are the functions
that is not provided by simulator like a Power of
recovery management function and Bad Block
management function, etc. These things are like this.

- Static void build_bad_blk_list(void)
- Static BOOL32 is_bad_block(UINT32 const bank,
UINT32 const vblk_offset)
- Static void logging_misc_metadata(void)
- Static void logging_pmap_table(void)
- Static void load_metadata(void)
- Static void load_misc_metadata(void)
- Static void load_pmap_table(void)
- Static void write_format_mark(void)
- Static BOOL32 check_format_mark(void)
- void ftl_isr(void)

 Except this, FTL of OpenSSD's verification
is possible via the simulator without correction of
FTL code.

Table 1. PC configuration

CPU Intel i5-3210M

RAM 8GB

OS Windows 7 64bit

Complier Visual Studio 2010

Table 2. Workload Information

File System NTFS

Partition size 55GB

Total Write Count 322861057

Total Read Count 309456579

 Table 1 is the specification of PC which is
operating OpenSSD, and table 2 is the detail
explanation of workload for using in verification of
code. Workload is the result of collecting the I/O
patterns of hard-disk in a long time in PC that is
installed of windows XP, NTFS file system. If the
simulator operates and finishes the order of operation
without logical error of FTL, the result like Figure 4
is emerging. The result writes both of number of
order and count of writing, reading and erasing. This
information helps the judgment of function of FTL.
The effective I/O should be operating for making a
better process. Effective I/O work is related to less

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 567

amount of number of order of writing, erasing at the
time of using the same workload. Therefore, it can be
helpful to judge the capability of FTL with using the
simulator quickly.

Figure 4. Results of OpenSSD simulator

4.1. Experiment to find logical errors

Free block count variable is the number of
block which is not yet used. The garbage collection is
operated when its variable number becomes 1
because it means all of blocks is extinguished.
Therefore, if the programmer miscalculates this
variable and it is initiated, it should be waiting the
time as much as all blocks are extinguished, and then
it could be possible to confirm the error. The program
operates after improperly initialized its free block
count variable is added 1 more than its variable for
checking the normal operation of simulator. In this
case, the emerging of error is detected while the
process of simulator program. The detected error
shows its number of variable and location of error
like Figure 5.

Figure 5. Invalid initialization errors of free block
count variables

If OpenSSD platform is used, the time for
exhausting all of the blocks should be waited. But
OpenSSD simulator is used; you can confirm the
result in a few minutes. Also, the logical error can be
possible to confirm in the same pattern about
ignoring the sequential writing on the block,
overwrite the page which has an existed data.

4.2. Experiment of wrong DRAM access

To show DRAM region wrong accessed
example in FTL_GREEDY, block write count in the
region following valid count region was randomly
added.

Figure 6. Add Block Write Count region

Valid count metadata entries count is [total
bank count (8)] * [total block count per bank], and
size per entries is 2bytes (sizeof(UINT16)). The
count of added block write count metadata entries is
[total bank count (8)]*[total block count per bank],
and size per entries is 4bytes (sizeof(UINT32)).

Figure 7. Invading the region of Block Write Count

In order to do experiments, sizeof(UINT32)
replaces sizeof(UINT16) for the size of valid count
metadata. In this case, valid count per entries is same
but valid count metadata region invades the following
region which is block write count because of the
change in size of valid count metadata. There is a
possibility that error is not detected although
get_vcount() function for getting valid count data
gets block write count. However this kind of error
can be easily detected by debug tool in visual studio.

Figure 8. New breakpoint function

The region of DRAM's address is not
constant because its program is allotted dynamically.
Therefore, at the time of FTL initialization, DRAM
region of Block Write Count is derived. After that, it
is printing where is the location to access DRAM
region via new breakpoint of debugger implement.

Life Science Journal 2014;11(7) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 568

Figure 9. Using the debugger to check access

Via debugger, it should be detected that
invasion of Block Write Count region at the function
of set_vcount(). From this ability, the fault of
set_vcount() is corrected.

5. Conclusion

OpenSSD platform is a practical tool to
evaluate FTL performance. However, the verification
is time consuming and difficult. In order to solve the
problem, we designed a simulator for OpenSSD
platform, which reduces the verification time and
help find the bugs of FTL. Currently, it does not
provide power off recovery, bad block management,
interrupt control, and package level parallelism
capability, which is targets of our future work.

Acknowledgements:
This study was supported by the Research

Program funded by the Seoul National University of
Science and Technology.

Corresponding Author:
Dr. Ilhoon Shin
Department of Electronic Engineering
Seoul National University of Science and
Technology
NowonGu GongleungDong, Seoul 139-743, South
Korea
E-mail: ilhoon.shin@snut.ac.kr

References
1. Kawaguchi A, Nishioka S, Motoda H. A flash-

memory based file system. USENIX, USA,
1995.

2. Gupta A, Kim Y, UrgaonKar B. DFTL: A flash
translation layer employing demand-based
selective caching of page-level address
mappings. ASPLOS, USA, 2009.

3. Lee S, Park D, Chung T, Lee D, Park S, Song H.
A log buffer-based flash translation layer using
fully-associative sector translation. ACM
Transactions on storage 2007; 6(3).

4. The OpenSSD project. http://www.openssd-
project.org/wiki/Jasmine_OpenSSD_Platfrom.

1/7/2014

