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Abstract: Conveyer belts with pretension are a striking example of machines containing blocks (components) with 
initial stress. Pretension is necessary for passing pulling power by drive pulley, and also for restricting of belt 
sagging between the roller carriages. The problems about vibrations of the conveyer belt under the influence of 
longitudinal and transverse forces have been studied. Information on determination of critical speed of belt 
movement and frequencies of its transverse vibration [1] has been stated; Influence on the values of the above stated 
parameters of geometrical and physical characteristics of the belt used in numerical methods of the amplitude-
frequency characteristic of vibration of the conveyer belt has been considered. Determination of flexural stress in a 
conveyer belt is one of the major problems which solving is necessary for determination of reliability and durability 
of a conveyor belt. 
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1.Introduction 

A physical model of a conveyer belt represents 
a continuous strip passing on two blocks between two 
guides without friction with a constant axial transport 
velocity of υ. 

The blocks report the initial static tension to the 
strip.  The tension depends on the speed under 
normal acceleration on the blocks. 

Change of increase in tension is a function from 
the used system of supporting of blocks.  For the 
fixed blocks the tension is constant as deformation is 
continuous.  For blocks under a constant static 
tension change of the tension is +ρАυ2.  For spring 
system of supporting the change is +ηρАυ2 where 
0<η<1.  The part of the model which is of interest is 
between two guides. 
Methodology and theoretical part. 

At researches for periodic solutions of the 
system of two connected equations of motion the 
perturbation method is used. 

With Hamilton principle we receive the 
equations of transverse and longitudinal movement of 
the part of the belt located between two guides 
without rubbing. The speed of transverse movement 
of a point in this area is defined with a ratio 
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  (1.1) 
The speed of longitudinal movement of the 

point of the belt consists of two parts – the speed of 
axial transfer of the belt and the local speed caused 
by the changes of longitudinal movement: 
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The total kinetic energy (T) of the part of the 

strip located between the guides at any moment is 
expressed through 
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Potential energy of deformation (П) equals to 

the work of external forces. 
The contribution to this work from axial loading 

equals to 
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,  (1.4) 
Where R is resultant tension at any point x. The 

element with an initial length ∆х is deformed into the 
element with a length 
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 as a result of 
transverse and axial movements. 

Thus, full deformation is defined with the 
expression 
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And tension with the expression 
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Stuffing of (1.5) and (1.6) into (1.4) gives the 
contribution to the potential energy defined by the 

tension П=
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The potential energy of the bend equals to 
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The linear ratio between the moment and 

curvature 
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  , (1.9) 
 is quite accurate. 
 
Thus, for the part of the belt located between the 

supports, 
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The equation of motion determined by the two 

first terms of the expression (1.11) has the following 
form: 
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  (1.12а) 
The other terms of the expression (1.11) are 

defined with natural boundary conditions. The 
meaning of the third term from (1.11) is either the 
resultant force of vertical shift equals to zero, or on 
two supports cross transverse movements are set. The 
fourth term means that either the bending moment 
equals to zero, or on the ends the inclination is set. 
The fifth term requires either the tension on two ends 
to be the same, or axial motion to be set. The last two 
terms turn into zero as at the point of time t1 и t2 t2 
the variations equal to zero by definition 
(axiomatically). 

To bring the equations of motion to 
dimensionless form we will make the following 
substitutions: 
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 (1.13) 
The tension depending on the speed is expressed 

with the following formula: 
2
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,  (1.14) 

where 
0

tension applied to the belt at the 

state of rest 
 0

, and 


 the constant 
depending on the system of belt support 

 .0 I
 Supposing   I  and making 

research of orders of magnitude under the assumption 

that 
24V <<

2V , we will get the system of equations 
of motion more convenient for solving which still 
describes this phenomenon: 
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Boundary conditions of free supporting have the 

following view: 
V(0.τ)= V(1,τ) = 0, 
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U(0,τ) = U(1,τ) = 0. 
 
At such formulation the solution of the uniform 

equation corresponding to the equation (1.16) is not 
taken into account. 

Therefore, satisfaction of boundary conditions 
for U in (1.17) is guaranteed by fulfillment of 
boundary conditions for V. 

Any element of the belt is affected by four 
forces having cross direction as it is visible from 
(1.15). The first force represents inertial loading and 

is expressed by 
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represents the cross shearing force determined by the 

influence of axial tension. The third force 
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 is 
usual distributed loading connected with a bend. And 
the fourth force determined by the right part of the 
expression (1.15) results from the additional cross 
shift caused by change of tension at moving of the 
belt. Similar interpretation can be given to the terms 
of the equation of longitudinal motion. 
The results of the research 

The research of the order of values shows that 
the main equations (1.15) and (1.16) are poorly 

nonlinear for not too big amplitudes V, as nonlinear 
terms in (1.15) have the order V3. Therefore for 
determination of the value of the vibration period we 
use the perturbation method. 

We will substitute the following expansion: 
U=U0 +μU1+μ2 U2+ …, 
V=V0 +μV1+μ2 V2+ …,  (1.18) 
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into the equations (1.15) and (1.16). Here µ<1 is 

a small indeterminate parameter, ω0 is the frequency 
of linear vibrations, Һj are the constants which are 
subject to detection. Equating the coefficients at the 
identical degrees µ to the zero, we receive the 
following system of equations: 
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Coefficient Һ1 equals to 
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Then the first approximation for the linear 

problem has the following view: 

V=V0. U=U0 . 
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We will notice that the first approximation does 
not require determination of V1, U1, the following, 
or the second approximation is determined in parallel 
(simultaneously), though in more difficult way. We 
determine the particular solution V1 of the equation 
(1.21) and reject (give up) small terms in the solution 
for the first harmonic when they are negligibly small 
in comparison with the lagging terms. When the 
values V0, V1, U0 and һ1 are known, the particular 
solution U1 of the equation (1.22) is determined. In 
the same way from the equation (1.27) F2 is found, 
and then the right part of the equation (1.23) becomes 
orthogonal on average to the fundamental solution V0 
by choosing corresponding coefficient һ2. The 
coefficient һ2 is determined by the following 
expression. 
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Then the second approximation for solving of 

nonlinear equations has the following view: 
V=V0 + µV1. U=U0 + μU1. 
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Two approximations stated above were used for 
receiving evaluation of the period of nonlinear 
vibrations and the speed of convergence of 
approximate solutions. In the field of low amplitudes 
of transport velocity the first approximation gives 
very good results. 
Mathematical modeling of oscillation process of a 
belt with an initial stress. 

In conveyer belts initial stress is created 
artificially with the purpose of ensuring their working 
capacity, and it has all features of the environment 
with initial stress. It should be noted that initial stress 
caused by constructive needs of machines 
substantially influences strength properties of their 
junctions. Artificial initial stress being in the static 

loaded condition in the working process of the 
machines, turns into dynamic condition that promotes 
occurrence of complex wave effects in the belt. In 
this connection research of the nature of interference 
of static fields of initial stress and perturbed state of 
the conveyer belt during its operation is of great 
practical interest. The solution of this problem 
requires attraction of the theory of environments with 
initial stress /2, 3/. 

Let stress state of the conveyer belt in static 
state be determined by a tensor of initial stress σ0

іј in 
perturbed state (wave vibration processes), hereupon 
an additional tensor of stress Sij appears. 

In accordance with /1/ we assume correctness of 
the principle of superimposed stresses. 

Then action of external forces will be 
determined by stress tensor which components are 
the following: 

σіј =σ0
іј + Sij  (2.1). 

Then, respectively, the values σxx , σxy ,σyy will 
be determined by dependences of the following type: 
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σxx= σxx+ Sхх 
σxy= σxy+ Syy  (2.2) 
σyy= σyy+ Sуy 

similarly 

σ11= σ0
xx+ S11 

σ22= σ0
yy + S22  (2.3) 

σ12= σ0
xy + S12 

Between (2.2) and (2.3) there is a usual 
connection of the following type: 

σ11= σ0
xx cos2α + σ0

yysin2α + σ0
xysin2α 

σ22= σ
0

xx sin2α + σ0
yycos2α + σ0

xysin2α  (2.4) 

σ12= ½(σ0
yy

 + σ0
xx) sin2α + σ0

xysin2α 
Substituting in (2.4) ratios (2.2) and (2.3) and 

supposing that 
Сosα  cos2α 1 

sin2α  2

1

sin2α  α  (2.5) 
i.e. are correct at small α (αw), we will receive 

Biot formulas/1/ 
Sхх= S11-2σ0

yyw, 
Syy= S22+2σ0

xyw,  (2.6) 
Sхy= S12+(σ0

xx+σ0
yy) w. 

In the three-dimensional case σ*
іј= σ0

іј+ Sіј+ σ0
ј 

wi (2.7) 
where, as above 

іј= 2

1
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)  (2.9) 
Substituting (2.7) into a classical equation of the 

elasticity theory in the deformed state /40,46/and 
considering lengthening and shifting to be small in 
comparison with a unity, we have the following 
system of equations of motions for the environments 
with initial stress: 
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  (2.10) 
i=(Sij+σ0

јkwіk+ekkσ
0

ij-σ
0

ikeјk)nj  (2.11) 
The received systems of the equations (2.10) 

and (.11) are the main equations of motion and 
boundary conditions of the environments with initial 
stress. The advantage of the systems (2.10) and (2.11) 
is that initial stress is included in them in a 
differential form, and the boundary conditions are 
written in Euler coordinates. Thus, the system (2.10) 
with boundary conditions (2.11) can be successfully 

used for analysis of nonlinear oscillatory processes in 
the belts with initial stress. 

Conveyer belts with preliminary tension are a 
striking example of cars containing knots with initial 
tension. Pretension is necessary for transfer of pulling 
power by rubbing with a drive pulley and also for 
restriction of sagging of the belt between the roller 
carriages. It is characterized by tensile force and the 
speed of the movable pulley. Vibrations of the 
flexible belt with initial stress in one-dimensional 
case are described with nonlinear equation. We will 
note that in one-dimensional case only longitudinal 
wave which speed is determined is taking into 
account. 

For perturbed state of the conveyer belt the 
connection between stresses and deformations is set 
in the following way: 

.333231

,232221
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,
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  (2.12) 
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Thus shear coefficients i
 are determined with 

the following ratio: 
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 (2.14) 
Vibrations of the flexible belt with initial stress 

in one-dimensional case can be described with 
nonlinear equations of the following type: 
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  (2.15) 
where 

 






0

11
1

xx

xxeEa 
,  (2.16) 

а1 is the velocity of elastic wave propagation. 
We will note that in one-dimensional case only the 
longitudinal wave which speed is determined by 
dependence (2.16) is taken into account. Depending 
on the simplification systems we get various formulas 
for determination of velocity of the longitudinal 
wave, for example: 
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 






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11
2

xx

xxeEa 
,  (2.17) 

Thus it was found out that in the belts with 
initial stress longitudinal waves arise before 
appearance of transverse vibrations. The velocity of 
distribution of these waves depends on the tensor of 
initial stress σ0

іј. At determination of durability of the 
belts it is necessary to use dynamic coefficient of 
Young modulus. In the case when lengthening and 
shifts are small in comparison with a unity it is 
possible to linearize the main nonlinear equation 
(2.15) that considerably simplifies its research and 
receiving analytical solution /4/. 
 
Conclusions 

Conveyer belts with pretension are a striking 
example of machines containing junctions with initial 
stress. Pretension is necessary for transfer of pulling 
power by rubbing with a drive pulley and also for 
restriction of sagging of the belt between the roller 

carriages. It is characterized by tensile force and the 
speed of the movable pulley. Vibrations of the 
flexible belt with initial stress in one-dimensional 
case are described with nonlinear equation. We will 
note that in one-dimensional case only the 
longitudinal wave which speed is determined is 
taking into account. 
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