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Introduction 

In recent years, much attention has been paid 
to the study of nonlocal problems with integral 
conditions. Such problems arise in course of studying 
various physical phenomena, when the border of 
process behavior is unavailable for direct 
measurement. As an example, let's consider problems 
arising in course of studying heat propagation [1], [2], 
particles diffusion in turbulent plasma [3], moisture 
transfer process in capillary-porous media [4]. Also, 
such problems arise in course of mathematical 
modeling of technological process external gettering 
that is used for cleaning impurities from silicon slices 
[5], [6]. 

One of the first works dedicated to the study 
of problems with integral conditions for partial 
differential equations was the work of Cannon J.R. [1] 
and Kamynin L.I. [7]. 

Research of parabolic problems with integral 
conditions was continued in works of  Ionkin N.I. [2],  
Yurchuk N.I. [8], Muravei L.A., Filinovskii  A.V. [5], 
[6], Bouziani A. and Mesloub S. [9], [10], [11]. 

Problems with nonlocal integral conditions 
for elliptic equations were considered in works of  
Skubachevskii A.L. [12],  Guschin A.K. and 
Mikhailov V.P. [13]. 

Mixed problems with integral conditions for 
hyperbolic equations were studied in works of  
Gordeziani D.G. and Avalishvili G.A. [14],  Pulkina 
L.S. [15] – [17],  Beilin S.A. [18], [19]. In works [16], 
[17] Pulkina L.S. introduced the term "conditions of 
the first kind" and proved lemmas on equivalence of 
kind I and kind II conditions. Such problems were also 
considered in works of Bouziani A. [20] and Mesloub 
S. [21]. 

In this work, we consider a parabolic 
equation with Bessel operator  
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Bessel operator, 0>k . 
Equation (1) was called B-parabolic by 

Kipriyanov I.A. [22], where a parity type condition is 
stated on the discriminating part of the border, i.e., the 
border condition  
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Problem description 

Let us consider the problem: find ),( txu  

function that satisfies conditions  
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where function )(x  is defined, and matching 

condition is observed  
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Lemma 1. If matching condition (7) is 
observed, then problems (2) - (6) and (2) - (5),  

Tttlux   00,=),(                   (8) 
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are equivalent. 

Proof. Let ),( txu  be the solution of 

problem (2) - (6). Then this solution satisfies 
condition (6). By differentiating this condition once by 

t , we obtain  
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Substituting subintegral function ),( txut  

in equation (9) by its value from (1), we obtain  
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From here and from equality (9) it follows 

that 0=),( tlux . 

Now let ),( txu  be the solution for problem 

(2) - (5), (8). Let us write equation (3) as  
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Multiplying equation (10) by 
kx , and 

integrating by x  on the interval ][0, l , we obtain  
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From here and from condition (8) it follows 
that  
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By integrating equality (11) by t , we obtain  

.=),(
0

cdxxtxu k
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Assuming here that 0=t , taking into 
account conditions of coordination (7), we obtain 

0=c  and, consequently, the condition (6) is 
observed. Equivalence has been proven. 

 
Uniqueness of solution 

Theorem 1. Problem (2) - (6) cannot have 
more than one solution. 

Proof. Let there be two solutions ),(1 txu  

and ),(2 txu  of problem (2) - (7). Then their 

difference ),(),(=),( 21 txutxutxv   shall be 

the solution of boundary value problem: find a 

function ),( txv that satisfies conditions  
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Let us write equation (13) as  
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By multiplying this equation by vxk2  and 

noting that )(=2 2v
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From equality of functions equality of 
definite integrals follows 

  .)),((),(2=),(
00

2

00

dxdxv
x

x
x

xvdxdxvx k
tl

k
tl


























 

Let us change the order of integration in the 
right part  

    .),(),(2=),(
00

2

00




ddxxv
x

x
x

xvdxdxvx k
lt

k
tl































   

(17) 
From initial condition (14) it follows that  
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To calculate inner integral in the right part of 
(17), let us apply partial integration formula  
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From the boundary conditions (15), (16) and 
on the basis of  Lemma 1, we obtain  
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Thus, equation (17) takes the form  
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Each summand of the last equality is non-
negative. Therefore, they are equal to zero. Since 

function ),( txv  is continuous, from equality 

0,=),(2

0

dxtxvx k
l

  it follows that 

0.),( txv  

From here we obtain that 

).,(),( 21 txutxu   

Solution existence. To prove existence of 
solution to problem (2) - (6) it is sufficient to prove 
existence of solution to problem (2) - (5), (8). 

According to Fourier method, specific 
solutions to equation (3) can be found in form  

),()(=),( tTxXtxu                   (18) 

whereas )(xX  and )(tT  are yet indeterminate 

functions. By inserting function (18) into equation (3), 
we obtain  
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k
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For the specific solution (18) that is different 
from null equation to satisfy boundary conditions (5) 
and (8), the following conditions should be observed   
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It is known [23] that equation (20), by 
replacing variables in formulas  
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can be reduced to Bessel equation  

 
0,=

4

1
2

22 Z
k

zZzZz 








 
     (23) 

where general solution is function  
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where  zJ k
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functions of first and second kind of order 
2
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Returning to original variables in function (24), taking 
into account formulas (22), we obtain  
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whereas 1C , 2C ,   are arbitrary 

constants. They can be found from the requirement 
that the general solution (25) satisfies conditions (21). 
To do so, let us insert it into these conditions. As a 
result, we shall obtain  
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Since owing to a known asymptotic formula 

in Bessel function [23]   0
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 with 0x  , then to 

satisfy the first boundary condition (21), there should 

be 0=2C . Then from the second boundary 

condition (21), we obtain  
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It is known [24] that equation (26) has an 
infinite number of real roots. Let us state equation 

roots   0=
2
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Then the eigenvalues  
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Lemma 2. Function (27) is orthogonal with 

the weight 
kx and form a complete system.  

Proof. Orthogonality with the weight is 
obvious  
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Let us prove completeness of this system. 

Assume that there is a function )(x  that is different 

from null equation and orthogonal to all functions (27)  
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which is feasible only for )(x  that is equal to zero 

almost everywhere on )(0, l . This proves the 

completeness of the system (27). 

Let us assume that that the function )(xf  

can be represented as a series  
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By multiplying both parts of factorization 
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satisfy equation (3) and boundary conditions (5) and 

(8) for any constants nA . 

Let us make series  
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Requiring satisfaction of initial condition (4), 
we obtain  
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The written series is the factorization of the 

given function )(x  into a series of Bessel functions 

in interval )(0, l . Coefficients of factorization (32) 

are defined by formulas  
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Conclusions 

Theorem 2. If function ][0,)( 2 lCx   

and 0=)(l , 0=(0)=(0)   , then there 

exists a unique solution to problem (2) - (6), and it is 
defined as the sum of series (31), coefficients of which 
are calculated according to formulas (33). 
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