
 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

469

Team Size Optimization – a Management Panacea: Fact or Fantasy

Waqar Ahmad Gulzar

Department of Industrial Engineering, King Abdul Aziz University, Jeddah 21589, Kingdom of Saudi Arabia
00966-503632416 (m); wahmed@kau.edu.sa

Stream: Information System Engineering

Abstract: This paper discusses recent research findings in software engineering concerning the optimum size of
teams to be employed during project execution. The unique advantages of software development using water-fall
life-cycle method are explored. Optimizing the team sizes for successful completion of projects is discussed with a
case example from the armed services taken as a general rule. It has been considered from many years that the
optimum team size for several military tasks and similar complex projects, is four. Even so, research efforts on team
size optimization is still lively in software engineering area. The author examines the recent research efforts into
optimization of team size for testing, defect detection and other stages of waterfall life cycle model. It is concluded
that the findings of the author on the likelihood of life-cycle optimal team sizes may exist at some stages, but for
other stages the evidence is still inconclusive.
[Waqar Ahmad Gulzar. Team Size Optimization – a Management Panacea: Fact or Fantasy. Life Sci J
2014;11(6):469-478]. (ISSN:1097-8135). http://www.lifesciencesite.com. 66

Keywords: Waterfall Model, COCOMO, System Design, Metrics, Software, Team Building, Productivity,
Optimization,

1. Introduction

The main aim of Software Engineering (SE) is to
develop reliable and technologically and economically
viable software products. SE techniques attempt to
improve the functionality of software and the
competence of software developers. A systematic
software process should be followed when initiating a
software development project in order to achieve the
desired quality within the specified time schedule and
estimated budget. Researches indicate that 60%-75% of
IT projects are failures due to low productivity,
exceeding budget expenditure, delayed deliveries, high
defects rates and huge maintenance costs indicating
that the software product and the development process
are deficient and of poor quality. During the ‘70s,
efforts were made to increase software quality focusing
on the coding stage of the software development
process with no attention driven to better understanding
of the system requirements or the better management of
the software project. Since early 80s, more attention
was given to the areas of specification, design, testing,
measurement and management. Consequently various
software development methodologies were designed
concentrating on the early stages of software
development such as structured design methodologies,
Rapid Application Development (RAD) methodologies
and Agile Development methodologies.

Most important elements that affect software
development are management of the project teams who
build the system and clear understanding of system
objectives. Therefore, this paper investigates the impact
of team factors on the software quality specially the
effect of team size on the management of software

development project that uses the waterfall model as a
structured design method. Section two defines the
waterfall life cycle and its phase. It also points out the
advantages and disadvantages of using this model in
software development. Section three addresses the
software development project team highlighting its
importance and deals with the major concepts about
team building and team structure. Moreover, it touches
upon the most effective personality attributes of team
members, emphasizes the most important skills and
knowledge that each team member should acquire
depending on his responsibilities in the team and it
outlines the regulations and rules used to determine the
most advantageous team size for each phase of the
waterfall life cycle using Boehm’s Cost Constructive
Model. Furthermore, this section points out some
factors that influence the success of project team
management. Finally conclusions are presented
regarding the difficulties associated with the methods
determining the team size.

2. Materials and Methods

The Waterfall Software Development Life Cycle
is the simplest process model and widely used.

“Waterfall model establishes a sequence of stage
requirements, specifications, design, coding, testing
and maintenance to guide the development process.”
(Kang, Levy, 1989)

System engineering follows waterfall model
because of the need for the parallel development of
different part of the system. Its simplicity makes it easy
and useful for the developer to know what they need to
do. In this model one phase has to be complete before

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

470

moving on to the next and this cascade where output of
one is input to next gives the waterfall model it’s name.
Two important points have to be considered,
verification and validation means that the output of the
phase should be consistent with the input and it
consistent with the requirements of the system (Jalote,
1991, p. 17). This model is based on two assumptions,
software development proceeds linearly from analysis
down to coding and the result of each phase are frozen
before continue to the next one (Ghezzi et al, 2003,
p.407).
2.1. The Advantages and Disadvantages of
Waterfall Model

There are many advantages and disadvantages for
the Waterfall model system development. A few of
them are listed here:
2.1.1 Waterfall Model Advantages

 Good progress tracing due to clear
development stages, milestones and deliverables can be
clearly identified
(Encyclopedia.thefreedictionary.com).

 Follows orderly prioritized stages where the
output of each phase is the input of the next phase. This
sequential nature enforces organized procedure, which

facilitate software construction process, (Als, A. and
Greenidge, C., 2003, p.4).

 Documentation is produced after each phase,
which will result in a well documented system (Als, A.
and Greenidge, C., 2003, p.4).
2.1.2 Waterfall Model Disadvantages

 The entire system requirement should be
gathered during the Requirement Gathering and
Analysis phase in order to produce a properly designed
system. Unfortunately in real life customers keeps on
adding requirements even after the end of the
Requirement Gathering and Analysis phase. (Parekh,
2005, p.2).

 The problems of each phase are not
completely solved during the relevant phase and many
others may occur after the phase is ended which will
result in badly structured system (Parekh, 2005, p.2).

 It forces developers to make large jumps in
the system state during developments, which is not
necessarily (Plant, 1991).

 It doesn’t reflect the way code is really
developed (Pfleeger, 2001, p.50).
2.2 Water-Fall Model Stages

Figure 2.1: The Waterfall Model

2.2.1 Requirement Analysis & Definition: The
functionality and constrains which required from the
system by the end-user are gathered and analyzed at
this stage in order to create the Requirement
Specification document which will be the guideline for
the next phase of the model (Parekh, 2005, p.1).
2.2.2 System & Software Design: the system
design is prepared in this phase though studding the
requirement specification from previous phase in order

to define the system architecture and specifying the
hardware and software requirement (Parekh, 2005,
p.1). The system design specification will be the input
of the next phase (Parekh, 2005, p.1).
2.2.3 Implementation & Unite Testing: the actual
coding is started in this phase after the system design is
received and the project is divided to unites, the system
development starts by developing the units which will
be integrated in the next phase (Parekh, 2005, p.1).

System & Software
Design

Implementation &
Unit Testing

Integration & System
Testing

Operation &
Maintenance

Requirement Analysis
& Definition

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

471

Each unit is tested in order to inshore the requirement
verifications (Parekh, 2005, p.1).
2.2.4 Integration & System Testing: unites are
integrated into a complete system and the coordination
between different unites is tested and the whole system
behavior is tested too during this phase to inshore that
the pre specified requirement are met in order to
deliver the system to the customer (Parekh, 2005, p.1).
2.2.5 Operation & Maintenance: this is the
longest and never ending phase since it represent the
system life time, after deployment the problems of the
system development are exposed during the actual
system use and are solved in order to maintain the
system functionality and reliability (Parekh, 2005, p.1).

3. Software Development Project Team definition

Software development is a complicated and
sophisticated process where long procedural steps are
involved, which can’t be accomplished by one person
effort. Depending on the forgoing the effort of many
people is needed to develop a software system which
will lead to a team. According to Verma, V., (1997,
p.37) team is a group of people working
interdependently and that they are generally committed
to certain common goals to produce high quality
results. Thus team is group of people with special
characteristics, in which they have to work in mutually
supporting bases in order to achieve a common goal
with high quality results. Some basic features team are
given in Table 3.1.

Table 3.1: The Basics of Team Building
(teamtechnology.co.uk, 1995, p.1)

A group of
people

Synergy Having one aim

Whole > Sum Co-operation Flexibility
Working
together

Reporting to one
boss

Serving one
customer

A team may also be defined based on the

fundamental features given in Table 3.1 as a synergy
group of people working together committed to a single
goal and customer at a time, cooperating with each
other and reporting to one boss.
3.1. Team Building

Building a team is a process of selecting group of
various individuals with different skills, backgrounds
and expertise to work together effectively as a team
unit to plan work, face challenges, deal with problems,
find solutions and deliver results. The knowledge and
effort of the team members are merged and directed to
achieve the team common goal (Verma, 1997). Project
success relies heavily on how the team members work
together to achieve the organizational objectives
therefore forming and managing a project team
effectively is vital for accomplishing the project. The

principal members in a software development project
team are; the project manager, system analysts,
programmers and testers.
3.2. Team Structure

One of Appleton’s eleven criteria for successful
software project is that a single individual must have
responsibility and authority for the project success
(DeGrace, and Stahl, 1993). That is why the project
manager has a significant role in the software
development team. He is responsible for guaranteeing
that the project is completed in time, within budget and
the system’s functions meet the client’s requirements.
He also has to supervise the quality of the software
produced (Dennis, Wixom, 2003). Therefore, one of
the main roles of the project manager is to select and
manage the project team members. The project
manager is responsible for identifying and organizing
the tasks, roles, responsibilities and assigning human
resources appropriately to carry out these tasks because
correct task allocation improves the team productivity
and performance. In addition, his role includes
developing the project plan and monitoring work
schedule. The second team member is the system
analyst whose role is to design the new business
processes with the assistance of the business analyst
who has a business experience and represents the
interests of the project sponsors. The business analyst
analyzes the business requirements, identifies the
business values provided by the new system and helps
the system analyst in planning the new policies and
processes. The system analyst main interest is to design
the information system and makes sure that the new
system adheres to the information system principles
(Verma, 1997). The tasks of system developers or
programmers are to write the source codes and develop
the system modules. Testers or defect inspectors set
test plan and perform testing (unit testing and system
testing) using the software testing metrics and testing
techniques. Testers are responsible for the software
quality because quality is measured by the defects
found in the software therefore most organizations
devote money and time on testing to prevent failure
caused by the software bugs after the system is
installed (Marri, 2010).
3.3. Team Cultural and Personal Diversity

Software projects suffer from poor performance
despite the fact that they are provided with the
technological tools. Therefore, studies initiate focusing
on the human aspect of software development project
rather then the technological aspects to enhance the
project performance. Studies indicated that Size,
compatibility, adaptability, homogeneity are
determinants of team effectiveness (Dafoulas and
Macaulay, 2001). Hence, more importance is given to
personality composition of team members within a
software development project since it affects team

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

472

performance and productivity. Selecting team members
of appropriate personality types became a demanding
issue. One of the studies finding is that IS managers
should consider selecting human resources so there is
staff heterogeneity between team members and the
project manager. On the other hand, it is better to have
homogeneous personality among the team members
because some of the team members work together in
common tasks like system developers (Gorla and Lam,
2004). Cultural and personal differences affect
communication and team stability. Consequently, such
differences should be investigated carefully to find out
the most effective way to bring the right people
together in the same team because members should be
able to communicate effectively, cooperate, have same
work habits and have collaborative behaviors during
problem solving situations. Personality characteristics
affect role allocation. When selecting the team
members, the project manager should consider the
personal characteristics suitable for the allocated role to
select the most suitable candidates for effective team
performance.
3.4. Team Skills

“In information system development team, skill is
defined as the breadth of abilities team members
provide a group” (Guinan et.al., 1998)

Team skills are one of the factors that have an
effect on the cost, productivity and quality of the
software produces. Researches made on the importance
of the human factors in addressing the problems of
software development showed significant improvement
in team effectiveness when using developers with
advanced abilities (Guinan, et.al., 1998). Therefore, IS
managers are giving more attention to the process of
selecting highly skilled team members since it is an
element that affects project success. Team skills
influence internal processes that directly influence
performance. Hence, each team member should possess
specific skills depending on his role in the team and the
kind of tasks he performs.
3.4.1. Skills of Team Project Manager

Since the project manager is chiefly responsible
for managing the project and the team, he should have
the following skills and knowledge; leadership,
organizational structure, organizational behavior,
project planning, project tracking, cost management,
human resource management, schedule management,
change management, supplier/ subcontract
management, communication skills, meeting
management skills, negotiation skills, clear
understanding of the organization objectives, culture
and mission. Project managers usually work as system
analysts for many years before being assigned to
supervise a project thus they usually have experience of
alternative software lifecycles, software metrics,

measurement theories and Goal-Question-Metric
paradigm (Basili, V. et.al; 1994; Tockey, 2005).
3.4.2. Skills of System Analyst

This moves us to the skills and knowledge to the
system analyst who is assigned to system specifications
and requirements definition. Consequently, he should
possess high analytical skills and the ability to adopt a
scientific approach to make decisions based on facts
finding and logical methods (Gorla and Lam, 2004).
System analyst must have the knowledge of; analysis,
requirements engineering, system design, human-
computer interaction, usability engineering, software-
software/ software-hardware integration, reuse
techniques, system analysis and design CASE tools.
Moreover, acquiring the knowledge of code
optimization, semantics preserving transformations,
specific programming languages and debugging
techniques help the system analyst performing multiple
tasks such as designing programming specifications
and programming activities especially in small teams.
3.4.3. Skills of System Programmers

This leads us to the programmer skills and
knowledge that he is supposed to acquire.
Programming language concepts, data structure
concepts, database system concepts, relational algebra,
operating system concepts, software architectures, Petri
nets, complexity theory, computer graphics, linguistics/
parsing theory, computability theory, set theory,
predicate logic, formal proofs and Turing machine
theory. In addition to the technical and theoretical
programming knowledge, programmers need to have
communication skills, experience in specific
programming language and domain. Research findings
indicate that when programmers can effective
communication skills, the team performance is
significantly enhanced because they need to
communicate with project manager, system analysts,
system designers, IT department, and data entry
operators and sometimes with system users when they
do system analysis tasks in small teams (Grola and
Lam, 2004). The programmers’ experience in specific
software domain and programming language have
potential improvements in the quality and cost of the
software produced. The programmers’ experience in
these areas is related to the decrease of the software
defects and increase of their ability to detect and debug
the errors in less time. Thus, higher level of the
programmers’ familiarity of the application domain and
programming language lead to reduction in rework and
cost of software development and maintenance and
increase in development productivity (Krishnan, 1998).
3.4.4. Skills of System Testers

The software testers’ knowledge and skills are
strongly associated with the software quality, too;
because they are the last group that reviews the product
to ensure it is defect free and meets the required

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

473

functionalities before it is delivered to the client.
Consequently, we can strongly argue that they are
responsible for the software quality assurance. Testers
should manifest high skills in previews, readiness
reviews, walkthroughs, inspections, software project
audits, requirements tracing, quality function
deployment, software testing techniques, software
testing CASE tools, proofs of correctness, process
definition/ improvement techniques, statistical process
control and technology innovation.

4.0 Results
4.1 Team Size Optimization

One of the factors affecting team productivity,
quality of the software produced, software cost
estimation and the software development project
success is team size. Selecting the optimum team size
for each stage of the waterfall software development
model is essential for the success of that stage that
leads to the success of the next stage because in the
waterfall model each phase is dependent on the
preceding one. Special programs were developed to
estimate the most suitable team size for each phase in
the waterfall model such as Costar 7.0. There are three
variables that affect the estimation of team size; project
size, application complexity and the degree of cost
constraints (Putnam, 1997). There are two methods of
measuring the project size; Function Points (FP) and
Lines of Codes (LOC). Function Points is a way of
measuring the system size through counting the amount
of functions from the requirements. This method was
developed by Albrecht to estimate the software size in
an early stage before development and coding stage by
identifying five logical components; internal logical
files (ILF), external interface files (EIF), external
inputs (EI), external outputs (EO) and external queries
(EQ) and applying a complexity scale on each
component (Flitman, 2003). The Lines of Code method
is another method measuring system size. There are
two points to be considered when counting the line of
codes; identifying the programming language used and
identifying and adhering to a counting rule like
counting only the Executable Lines of Code (ELOC).
4.1.1 Software Effort and Schedule Estimation
Method

In order to specify the team size needed for the
project, it is essential to estimate the effort and time
needed for developing the project. Therefore, to solve
the effort estimation problem, in 1970s, Boehm
developed a Constructive Cost Model (COCOMO)
using information on cost database of software projects
built by an American company considering the
economics and engineering perspectives. In the last few

years, Boehm developed COCOMO ll model but this
study tackles the original COCOMO model only.
COCOMO is an algorithmic effort estimation method
using the project size measured in thousands of
delivered lines of code (KDL) (Pfleeger, 1998). The
COCOMO model exists in three stages; basic,
intermediate and advanced. In this study, the
intermediate stage is used for the effort estimation. The
first step is to calculate the initial effort in terms of
person-months (PM) using the equation: Ei = a*(KDL)b

where a and b are constants for the different project
types. In the intermediate stage of the COCOMO
model, there are three categories for software projects;
organic mode, semi-detached mode and embedded
mode. An organic project is developed in the
organization, uses a small team, who is familiar with
the development environment, has an experience of the
applications developed and there is no constraints on
the requirements. Organic project are characterized of
being easy. Semi-detached project is harder, the
organization uses some outsourcing, the team has less
familiarity with the applications, has mixture of
experience of the software developed and the
requirements have more constraints than the organic
project. In embedded projects, there are tight
requirements constraints and the team has little
experience of the applications developed. Embedded
projects are very hard to develop in the organization.
The constants ‘a’ and ‘b’ for the different project types
are provided in Table 1.

Table 1. Constants for Project Types

System Type A B
Organic 2.4 1.05
Semi-detached 3.0 1.12
Embedded 3.6 1.20

The second step is to calculate the effort

adjustment factors (EAF). EAF is a multiplication of
fifteen different attributes called cost drivers. Cost
driver variables influence the project cost estimation
and they vary from project to project. Cost drivers are
included in estimating the development effort because
projects of the same size do not require the same effort
because of other non-technical factors that depend on
product, computer, personnel and project attributes.
Each attribute has a rating scale and a multiplying
factor is provided for each cost driver. Cost drivers and
its multiplying factors are usually assumed by the
project manager. A list of the cost drivers and its
multipliers is provided in Table 2 (Faghih F. 2003).

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

474

Table 2. Multipliers for Different Cost Drivers

Cost Drivers
Rating
Very low Low Nominal High Very high Extra high

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 *
AEXP Application experience 1.29 1.13 1.00 0.91 0.82 *
CPLX Product complexity 0.79 0.85 1.00 1.15 1.30 1.65
DATA Database size * .94 1.00 1.08 1.16 *
LEXP language experience 1.14 1.07 1.00 0.95 * *
MODP Modern programming Practice 1.24 1.10 1.00 0.91 .82 *
PCAP Programmer capability 1.42 1.17 1.00 0.86 .70 *
RELY Required software reliability 0.75 0.88 1.00 1.15 1.4 *
SCED Required development schedule 1.23 1.08 1.00 1.04 1.10 *
STOR Main storage constraint * * 1.00 1.06 1.21 1.56
TIME Execution time constraint * * 1.00 1.11 1.30 1.66
TOOL Use of Software tools 1.24 1.10 1.00 0.91 0.83 *
TURN Computer turnaround time * 0.87 1.00 1.07 1.15 *
VEXP Virtual machine experience 1.21 1.10 1.00 0.90 * *
VIRT Virtual machine volatility * 0.87 1.00 1.15 1.30 *

The third step is to calculate the total effort by

multiplying the initial effort by effort adjustment
factor: E= EAF * Ei. Estimating the total effort needed
for system development enables the project manager to
estimate the project overall cost but managers usually
need more detailed estimation for planning and
checking purposes. COCOMO provides a distribution
of the percentage of total effort for each phase in the

waterfall model depending on the type and size of the
system. The phase effort is estimated by multiplying
the total effort by the phase effort percentage. Table 3
shows the phase-wise distribution percentage of effort
of an organic mode, Table 4 shows effort distribution
of semidetached mode and Table 5 shows effort
distribution of embedded mode (Faghih F. 2003).

Table 3. Phase Distribution of Effort: Organic Mode
 Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plan & requirements 6% 6% 6% 6%
Product design 16 16 16 16
Detailed design 26 25 24 23
Code & unit test 42 40 38 36
Integration & test 16 19 22 25
Total 100 100 100 100

Table 4. Phase Distribution of Effort: Semidetached Mode
 Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plan & requirements 7% 7% 7% 7%
Product design 17 17 17 17
Detailed design 27 26 25 24
Code & unit test 37 35 33 31
Integration & test 19 22 25 28
Total 100 100 100 100

Table 5. Phase Distribution of Effort: Embedded Mode
 Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plan & requirements 8% 8% 8% 8%
Product design 18 18 18 18
Detailed design 28 27 26 25
Code & unit test 32 30 28 26
Integration & test 22 25 28 31
Total 100 100 100 100

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

475

In order to calculate the number of team members
needed for each phase, we need to estimate the duration
for each phase. The first step is to estimate the total
project duration or time of development in terms of
months using COCOMO schedule equations. For
organic mode, the equation is D=2.50(E)0..38, for
semidetached mode, the equation is D=2.50(E)0..35 and
for embedded mode, the equation is D=2.50(E)0..32.
Tables 6, 7 and 8 display the phase distribution of

schedule under these three modes respectively. The
second step is to calculate each phase duration by using
the percentages for the different phases of the waterfall
model provided in Table 4. In this table, the detailed
design, coding and unit test are combined into the
programming phase because these activities are done
by the programmers. The final step is to estimate the
number of members in each phase by dividing the
phase effort by the phase duration (Faghih F. 2003).

Table 6. Phase distribution of Schedule: Organic Mode

Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plans & requirements 10% 11% 12% 13%
Product design 19 19 19 19
Programming 63 59 55 51
Integration & test 18 22 26 30
Total 100 100 100 100

Table 7. Phase distribution of Schedule: Semidetached Mode
 Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plans & requirements 16% 18% 20% 22%
Product design 24 25 26 27
Programming 56 52 48 44
Integration & test 20 23 26 29
Total 100 100 100 100

Table 8. Phase distribution of Schedule: Embedded Mode

 Size
Phase Small 2KDL Intermediate 8KDL Medium 32KDL Large 128KDL
Plans & requirements 24% 28% 32% 36%
Product design 30 32 34 36
Programming 48 44 40 36
Integration & test 22 24 26 28
Total 100 100 100 100

4.2 Example of Using COCOMO Metrics

An example to apply the COCOMO model is to
estimate the effort and time needed to design and
develop a registration system in a college. According to
the requirements analysis, the system will consist of
seven modules: data input, data output, data update,
query, schedule, transcript and report. Depending on
the requirements, the system is regarded to be organic.
The size of the system is estimated according to the
sizes of the modules: data input.75 KDL, data output
3.5 KDL, data update 1.6 KDL, query 3.4 KDL,
schedule 2.5, transcript 10 KDL, report 5.5 KDL and
the total size is 27.25 KDL. So it is a medium size
system. The project manager assessed the cost drivers
attributes and their ratings based on the requirements as
the following: database size is high 1.16, software
reliability requirement is high 1.15, analyst capability
is very high.71, use of SW tools is low 1.10 and the

rest of the cost drivers are set to nominal. The effort
adjustment factor (EAF) is EAF= 1.16 * 1.15 *.71 *
1.10 = 1.04. Using the previous data, we can estimate
the initial effort: Ei = 2.4 * (27.25)1.05 = 77.15 PM.
Using the two values, we can estimate the total effort:
E= 1.04 * 102.86= 80.24 PM. Using the total effort
estimate, we can get the effort in each phase by using
values in table 3. Since the project size is 27.25 KDL,
interpolation is used to estimate the percentage for this
project size and the end two values for interpolation are
the percentages for 8 KDL and 32 KDL. The
percentages for this project phases: plans &
requirements 6%product design 16%, detailed design
24.197%, code & unit test 38.396%, integration & test
16.59%. The effort estimates for the different phases:
Plans & requirements.06 * 80.24 = 4.82 PM, Product
design.16 * 80.24 = 12.84 PM, Detailed design.24197

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

476

* 80.24 = 19.42 PM, Code & unit test.38396 * 80.24 =
30.81 PM, Integration & test.1659 * 80.24 = 13.31 PM.

For schedule and staff requirement estimation, we
have to obtain the total duration in terms of months and
the duration for each phase. Using the total effort, we
can estimate the total duration: D = 2.50(80.24)0.38 =
13.23 M. To get the duration for each phase, we will
use the values in table 4 and again we will use
interpolation to get the percentage for this project size.
The percentages for this project phases: plans &
requirements 11.80%, product design 19%,
programming (includes both detailed design and code
phases) 55.79%, integration and test 25.21%. The
duration estimation for each phase: plans &
requirements.1180 * 13.23 = 1.56 M, Product
design.19 * 13.23 = 2.51 M, Programming.5579 *
13.23 = 7.38 M, Integration & test.2521 * 13.23 = 3.34
M.

Now we can estimate the staff needed for each
phase: plans & requirements 4.82/1.56 = 3 P, Product
design 12.84/2.51 = 5.1 P, Programming (19.42 +
30.81) /7.38 = 6.8 P, Integration 13.31/3.34 = 3.9 P.
4.3 Advantages of Optimal Team Size

A research study was conducted on medium-sized
information system projects to find the optimum team
size. The outcomes of the research were that small
teams consisting of 5 to 7 persons were more
productive, had best schedule performance, used fewer
person-months and of course required less cost than
larger teams consisting of more than 8 people (Putnam
and Mayers, 1998). One of small team advantages is
communication simplicity. As the size of team grows,
the communication paths increase and there are more
chances for communication errors. Communication
paths increase multiplicatively and the formula for
computing the number of possible interactions (I) is: I
= K (K-1)/2 where K is the number of people in the
team. For example, using this formula, a team of 10
persons has 45 paths; I= 10(10-1)/2= 45 (Fried, 1991).
When communication interactions increase,
communication time increases and team productivity
decreases. Large teams use massive quantity of formal
documents as a means of streamlining communication
and at the same time to keep records on the project
developed whereas for small teams e-mail records is
sufficient alternative for formal documentation
(McConnell, 1997).

5. Discussion
Project Team Management: In order to complete a
software development project successfully, the project
team must be managed effectively. Hence the project
manager administering technique has an influence on
the team performance and productivity. Listed below a
number of the most important success factors that the

project manager need to consider when managing the
project team:
Role Assignment: A project manager must assign
specific role to each team member and clearly define
tasks and responsibilities. Role assignment allows each
team member to focus on his work and identify his
share of responsibility in the developed product. It also
allows the manager to monitor and measure each
member’s performance and interfere in the right time to
make the suitable corrective decisions to improve the
performance of the whole team (Fried, 1991).
Schedule Development and Assigning Realistic
Deadlines: In order to avoid missing deadlines and
milestones, the project manager should set realistic
objectives, expectations and deadlines. He or she must
make sure that all the team members are clearly aware
of the commitments made to users and stakeholders
(Reel, 1999). To protect the project from schedule slips
and overruns, a project manager must plan and control
schedule activities by estimating how long each
activity will take and strictly abide to the allocated time
frame.
Communication: Effective communication among
team members is an important factor of project success.
A project manager should make sure that his team
members communicate with each other to resolve their
mutual problems. Therefore, he must establish
appropriate communication channels to distribute
information and make it available in a timely manner.
Despite the usefulness of information technology
communication tools such as e-mail, a project manager
should not rely on them. Moreover, he must work on
removing communication obstacles and barriers to
build open and effective communication by frequently
organizing meetings among team members themselves
and between the project team and users. Efficient
communication promotes cooperation and better
understanding of the users’ requirements hence
producing software that actually meets their needs
(Verma, 1997).
Workload Distribution: A project manager should be
able to divide the work load into small manageable
tasks and distribute them on the team members in a
way not to overload or stress them giving each member
a space to be creative.
Motivation: The project manger ability to motivate his
team members throughout the project is vital to sustain
high level of team performance. A good motivation act
is to make people feel that their work is appreciated
and recognized. A project manager should involve his
team members in making decisions that affect them.
Also the project manager should create comfortable
work environment for his team providing them with
lighting, desk space and any technological equipments
they need to finish their work (Dennis and Wixom,
2003).

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

477

Teamwork: In order to avoid having team members
working as separate individuals, the project manager
must encourage teamwork. Through good
communication and interpersonal skills, the tam
manager should be able to understand the feelings and
sentiments of each individual in his team to develop the
appropriate strategies so that he could create effective
teamwork to accomplish project objectives
successfully.

6. Conclusions

Software Engineers realized the advantages of
using small teams in software development projects
therefore there is a growing tendency of developing
methods and software to estimate the most optimum
team size. This paper investigated the relationship
between team size and successful project management
exploring the factors that can contribute to diminishing
team size such as team skills, selecting team members
with the right personality attributes and team
experience. It suggested that highly skilled team shows
more production and relationship oriented processes.
Advanced personnel capability of the team is
associated with increased productivity and quality and
decreased development and maintenance cost and time
and effort. Experienced team stabilizes project quickly
with less coordination. It was found out that increasing
team size diminishes productivity whereas a small team
requires less time schedule, less communication
complexity, uses less development effort, requires less
management overhead and uses less formal
documentation. In addition, this paper demonstrated
one of the software metrics COCOMO used to estimate
software effort and schedule as a means to estimate
team size and software cost for the waterfall model.
Selecting the optimal tam size for each stage of the
waterfall model is a key element to a successful
software project (on time, on budget, with good
quality) using waterfall as a software development
method. Team size affects team dynamics, team
productivity, software quality and cost estimation. In
short team size optimization is in fact a management
solution. Software development is a human endeavor
so it is the efforts of the software development team
that make it possible to deliver a reliable quality
system. Hence, further research studies need to be done
to find out methods that help in deciding the optimal
team size and better software project team
management.

7. Acknowledgements

The author expresses his deep sense of gratitude
to the Department of Industrial Engineering and the
Faculty of Engineering, King Abdulaziz University,
Jeddah for extending their whole hearted support to this
research.

References
1. Als A, Greenidge C. Waterfall Model (2003);

Available at:
http://scitec.uwichill.edu.bb/cmp/online/cs22l/wat
erfall_model.htm. Accessed on 28 August 2005.

2. Basili V., Caldiera G., Rombach H.D. The Goal
Question Metric Approach (1994); Encyclopedia
of Software Engineering; John Wiley & Sons, Inc.
pp. 528-532.
ftp://ftp.cs.umd.edu/pub/sel/papers/gqm.pdf.
Accessed on 12 November 2008. Also available
at
http://www.cs.umd.edu/~basili/publications/techn
ical/T87.pdf

3. Dafoulas G, Macaulay L. Facilitating Group
Formation and Role Allocation in Software
Engineering Groups. ACS/IEEE International
Conference on Computer Systems and
Applications (2001); pp.25-29 June, IEEE
Computer Society Beirut, Lebanon (TCSE &
TCCA), ISBN 0 7695 1165 1.

4. DeGrace P, Stahl L. The Olduvai Imperative The
Olduvai Imperative: Case and the State of
Software Engineering Practice (1993); Yourdon
Press Computing Series Englewood Cliffs, N.J.
ISBN-10: 0131611003; ISBN-13: 978-
0131611009

5. Dennis A, Wixom B. System Analysis & Design
(2003); John Wiley & Sons, Inc. United States of
America.

6. Faghih F. Software Effort and Schedule
Estimation. (2003)
http://www.enel.ucalgary.ca/People/Smith/619.94
/prev689/1997.94/reports/farshad.htm. Accessed
on 28 March 2005.

7. Flitman, A. Towards meaningful benchmarking of
software development team productivity.
Benchmarking: An International Journal (2003);
10(4), pp. 382-399.

8. Fried, L. Team size and productivity in systems
development. Information Systems Management
(1991); 8(3), pp. 9-27.

9. Ghezzi C, Jazayeri M, Mandridi D. Fundamentals
of Software Engineering. 2nd Ed. (2003); Prentice
Hall/Pearson Education, International, Upper
Saddle River, New Jersey. ISBN-
10: 0133056996; ISBN-13: 978-0133056990

10. http://encyclopedia.thefreedictionry.com/waterfall
+model. Accessed on 24 March 2005.

11. Jalote P. An Integrated Approach to Software
Engineering with 86 Illustrations. (1991); New
Delhi: Narosa Publishing House.

12. Kang K.C, Levy L.S. Software Methodology in
the Harsh Light of economics. Information and
Software Technology (1989); 31(5), June Pp.

 Life Science Journal 2014;11(6) http://www.lifesciencesite.com

478

239-250. http://www.sciencedirect.com/scince.
Accessed on 21 March 2005.

13. Krishnan M. The role of team factors in software
cost and quality: An empirical analysis.
Information Technology & People, (1998); 11(1),
pp. 20-35.

14. Marri K.K. Models for evaluating reviewz
effectiveness (2010); Proceedings, The Third
International Conference on Software Testing,
Verification and Validation, ICST 2010, Paris,
France, April 7-9, 2010; IEEE Computer Society.
ISBN 978-0-7695-3990-4.

15. McConnel S. Less is More: Jump-Start
Productivity with Small Teams (1997); Software
Development, October 1997, pp. 28-34. Also
available at:
www.stevemcconnell.com/articles/art06.htm

16. Parekh, N. The Waterfall Model Explained.
(2005); www.buzzle.com/editorials/1-5-2005-
63768.asp Accessed on 30June, 2010.

17. Putnam D. Team Size Can Be the Key to a
Successful Project: Perspectives. Quantitative
Software Management (1997); 20(1), pp. 1- 4.

18. Reel J.S. Critical Success Factors in Software
Projects. (1999); IEEE Software Volume 16 Issue
3, May-June 1999 Page 18-23. IEEE Computer
Society Press Los Alamitos, CA, USA DOI:
10.1109/52.765782

19. Gorla, Narasimhaiah., Lam, Yan. Building
Effective Software Project Teams (2004);
Communications of the ACM, 47(6), pp. 1-8.

20. Guinan, Patricia, Cooprider, Jay, Faraj, Samer.
Enabling Software Development Team
Performance During Requirements Definition: A
Behavioral Versus Technical Approach. (1998);
Information Systems Research, 9(2), pp. 101-125.

21. Pfleeger, S.L. Software Engineering: Theory and
Practice 2nd Edition. (2001); Prentice Hall, Upper
Saddle River, New Jersey. ISBN:0130290491

22. Pfleeger, S. L. Software Engineering: Theory and
Practice 1st Edition. (1998); Prentice Hall, Inc.
Prentice Hall, Upper Saddle River, New Jersey.
ISBN:0-13-624842-X

23. Plant R.T, Rigorous Approach to the development
of Knowledge-Based System. Knowledge-Based
Systems (1991); 4(4), December, pp. 186-196.
http://www.scincedierct.com/science. Accessed
24 March 2005.

24. Putnam, L, Mayers W. Selecting the Right Team
Size: Small is Beautiful. (1998);
http://www.cutter.com/research/1998/crb981222.
html visited 2006-05-05. Accessed on 11 July
2005.

25. Team Technology. The Basics of Team Building
(2005); http://www.teamtechnology.co.uk/tt/h-
articl/tb-basic.htm Accessed on 13April 2005

26. Team Technology. Team Building - A Complete
Guide (1995);
http://www.teamtechnology.co.uk/tt/h-articl/tb-
basic.htm Accessed on 24 March 2014.

27. Tockey, S. Recommended Skills and Knowledge
for Software Engineers. 3rd Edition. (2005);
Software Engineering. Volume 1. The
Development Process.

28. Thayer R.H. Christensen M.J. Software
Engineering, The Development Process, Vol. 1.
3rd Edition. (2005); Wiley, John & Sons ISBN:
0471684171, ISBN-13: 9780471684176

29. Verma, V. Managing the Project Team: The
Human Aspect of Project Management, Vol. 3.
(1997); Project Management Institute, Inc.,
United States of America. ISBN-10: 1880410427;
ISBN-13: 978-1880410424.

5/10/2014

