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1. Introduction 

The singular IEs appear in many problems 
of mathematical physics and engineering, it 
considered to be of more interest than others cases of 
integral equations. In addition, the singular IEs 
appear in studies involving airfoil [1], fracture 
mechanics [2], contact radiation and molecular 
conduction [3], contact problems [4] and potential 
theory [5]. The solution of a large class of mixed 
boundary value problems of a great variety of contact 
and cracks problems in solid mechanics, physical and 
engineering with its numerical results can be founded 
in Kalandiya [6,7], Abdou [8,9], Erdogan et al. 
[10,11], Cuminato [12] and Theocaris et al. [13]. 

In this work, we considered the fundamental 
equations in the theory of elasticity, under certain 
condition. Then, using the Fourier integral 
transforms, we can obtain a mixed integral equation 
of type F-VIE in the space L�[−1,1]× C[0,T],0 ≤
t ≤ T < 1 . The Fredholm integral term is considered 
in position with Cauchy kernel (CK). While, the 
Volterra integral term is considered in time with 
continuous kernel. The existence of a unique solution 
of F-VIE will be discussed and obtained, under 
certain conditions. Then, we used quadratic method 
to obtain a system of Fredholm integral equations 
(SFIEs). Moreover, the existence of a unique 
solution of the integral system can be discussed. To 
discuss the solution of the system integral equations, 
we considered different ways. The first way is 

removing the singularity and using suitable 
orthogonal polynomial.  

Here, in the first way, we expand the 
solution in term of Legendre polynomials. The 
second way is using the two famous numerical 
methods TMM and PNM for solving the singular 
integral equations. These three methods reduce SFIEs 
to LAS, which can be solved numerically. Finally, 
numerical examples are computed and the error is 
compared between the three methods. 
 
2. Formulation of the Problem:  

Consider the plane strain problem for the 
bounded layer medium (see Fig.(2-1)) composed of 
three different materials. Let the medium material 
contains a crack on one of the interfaces. Without any 
loss in generality, the half-length of the crack is 
assumed to be unity. 

 

                                         2 2( , )II    
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                                             3 3( , )III    

Fig. (2 -1) 
 
We will consider with the effect of the ratio 

of the layer thickness to the crack length on the 
stress, intensity factors and the strain energy release 
rate. For interesting the disturbed stress state, whiles 
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is variable also with time, caused by the crack. We 
assume that the overall stress distribution 
σ��

(�)(x,y;t), in the imperfection free medium, is 

known. The stress state σ��
(�)(x,y;t), in the cracked 

medium, may be expressed as 

σ��
(�)(x,y;t)= σ ��

(�)(x,y;t)+ σ ��(x,y;t), 

   i,j = x,y,z,    (2.1) 
where, σ�� is the disturbed state which may be 
obtained by using the tractions 

P�(x;t)= −σ ��
(�)(x,0;t); 

P�(x;t)= −σ ��
(�)(x,0;t), 

 |x|< 1,   � ∈[0,T],          (2.2) 
which are the only external loads applied to the 

medium (the symmetry is considered with 0x  ). 
 The general problem can always be 

expressed as the sum of a symmetric component and 
an anti-symmetric component. The tractions P�(x;t),
(i = 1,2), have the following properties 

P�(x;t)= P�(−x;t),   P�(x;t)= −P �(−x;t), 
    |x|< 1,   � ∈[0,T]. (2.3) 

The solution of the anti-symmetric problem 
requires only a slight modification. 

Let u�, ��be the x,y components of the 
displacement vector in the ith materials and satisfy 
the field equations in the form 

μ�∇
�u�+ (λ�+ μ�)

∂

∂x
�
∂u�
∂x

+
∂v�
∂y

� = ρ 
d�u�
dt�

, (2.4) 

μ�∇
�v�+ (λ�+ μ�)

∂

∂y
�
∂u�
∂x

+
∂v�
∂y

� = ρ 
d�v�
dt�

. (2.5) 

Then, assume the displacement functions in 
the following 

u�(x,y,z)= U �(x,y)+ F(t), 
  v�(x,y,z)= V�(x,y)+ F(t),              (2.6) 

where F(t) is known function of t.  
Hence, using (2.6) in Eqs. (2.4) and (2.5), we have  

(λ�+ 2 μ�)
∂�U�
∂ x�

+ μ�

∂�U�
∂ y�

+ (λ�+ μ�)
∂�V�
∂x ∂y

= 0,  

 (2.7) 

(λ�+ 2 μ�)
∂�V�
∂ y�

+ μ�

∂�V�
∂ x�

+ (λ�+ μ�)
∂�U�
∂x ∂y

= 0,  

(2.8) 
and 

d�F(t)

d t�
=
μ�
ρ
 F(t).                    (2.9) 

The formula (2.9) has a solution 

F(t)= Bexp�− �
μ�
ρ
 t� ,(F(∞ )→ 0 ). (2.10) 

Also, for solving the two formulas (2.8) and (2.9), we 
use the following Fourier integral transform 

U�(x,y)=
2

π
� ϕ�(α,y)sinαx

�

�

 dα,   

( i = 1,2,3 ). (2.11) 

V�(x,y)=
2

π
� ψ�(α,y)cosαx

�

�

 dα.   (2.12) 

Then, we have 

−α �(λ�+ 2 μ�)ϕ�+ μ�

d�ϕ�

dy�
− α(λ�+ μ�)

dψ�

dy
= 0, 

              (2.13) 

−α �(λ�+ 2 μ�)ψ�+ μ�

d�ψ�

dy�
− α(λ�+ μ�)

dϕ�

dy
= 0, 

              (2.14) 
After solving the system of Eqs. (2.13) - 

(2.14), and then using the two formulas (2.11), 
(2.12), we get 

U�(x,y)=
2

π
�[(A��+ A ��y)e

����

�

�

  

�+ (A��+ A ��y)e
��] sinαxdα,        (2.15) 

V�(x,y)=
2

π
� ��A��+ A ���y +

k�
α
��e����

�

�

 

+ �A��+ A ���
k�
α
− y��e�� cosαxdα,(2.16) 

Where k� have physical meaning and k�= 3 − 4ν � 

for plane strain and k�=  
����

����
 for generalized plane 

stress,ν� are Poisson’s coefficients for each materials, 
and A�,�,j = 1,2,3,4, are functions of  α which can be 

determined from the boundary conditions. After 
obtaining the values of U� and V�, the stresses may be 
evaluated by Hook’s law.  

In particular, the components of the stress 
vector at the interfaces and boundaries may be 
expressed as  

1

2 μ�
σ��
� =

2

π
 

× � cosαx{−[α(A��+ A ��y)+ 2(1 − ν�)A��]
�

�

�

e��� 

�+ [−α(A��+ A ��y)+ 2(1 − ν�)A��]e
��}dα,(2.17) 

and 
1

2 μ�
σ��
� =

2

π
 

× � sinαx{−[α(A��+ A ��y)+ (1 − 2ν�)A��]e
����

�

�

 

+[α(A��+ A ��y)− (1 − 2ν�)A��]e
��dα.(2.18) 

On the boundaries, the medium may have formally 
any one of the following four groups of 
homogeneous boundary conditions 

(a) σ��
� = 0 = σ ��

� , (b) σ��
� = 0 = v �, 

(c) σ��
� = 0 = u �,          (d) u�= 0 = v �,    

   i = 1,2,3.  (2.19) 
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The continuity requires that on the interfaces 
the stress and displacement vectors in the adjacent 
layers be equal i.e. 
u���− u�= 0,   v���− v�= 0,     σ��

���− σ ��
� = 0, 

 σ��
���− σ ��

� = 0,   i = 1,2,3,    (2.20)  
Now, to obtain the IE, we first assume that 

at � = 0  the bond between the two adjacent layers is 
perfect except for the (symmetrically located) 
dislocations at y = 0, x = y defined by 

∂

∂x
(u�

� − u�
�)= f �(x,t),  

 
∂

∂x
(v�

� − v�
�)= f �(x,t),               (2.21) 

where the superscripts + and – refer to the limiting 
values of the displacement as y approaches zero from 
+ and – sides respectively. 

In addition to (2.21), on the interface y = 0,  
we have the following conditions 

σ��
� − σ ��

� = 0,σ��
� − σ ��

� = 0,  

   (0 ≤ x < ∞,� = 0 ).  (2.22) 
After some algebraic relations, the 

components of the stress vector at y = 0  and x > 0  
may be expressed as 

1 + K �

μ�
σ��
� (x,0,t)= �F(τ)f�(x,0,τ)dτ 

�

�

+ lim
�→� �

2

π
  

����a��A�(α,t)+ a ��A�(α,t)�
�� e�� cosαx

�

�

dα, 

(2.23) 
 

−
1 + K �

μ�
σ��
� (x,0,t)= �F(τ)f�(x,0,τ)dτ 

�

�

+
2

π
 

lim
�→� �

����a��A�(α,t)+ a ��A�(α,t)�
�� e�� sinαx

�

�

 dα, 

 (2.24) 
where A� are the Fourier transforms of f�defined as 
follows 

A�(α,t)= � f�(z,t)cosαz

�

�

 dz,                    

A�(α,t)= � f�(z,t)sinαz

�

�

 dz,      (2.25) 

The constants a�� depend on the elastic 
properties of the materials adjacent to the crack only 
and are given by  

a�� = −a �� =
(1 + λ�λ�)

λ�
,        

a�� = −a �� =
−(1 + 2 λ� − λ�λ�)

λ�
, 

λ� =
K�μ� − K �μ�
μ� + K �μ�

,    λ� =
μ� − K �μ�
μ� − μ�

,    (2.26) 

where μ� is the shear modulus and 's are Lame’s 
constants. 

The integrals of on the right hand side of 
(2.24), (2.25) are uniformly convergent; as a result, 
certain operations such as change of order of 
integration are permissible. Also, note that once the 
dislocations f�(x) on the interface are specified the 
formulas (2.23),(2.24) and (2.25) give the stresses for 
all values of x . The crack problem under 
consideration f�(x)  are zero for |x|> 1  and are 
unknown for |x|< 1 . On the other hand, the stress 
vector on the interface y = 0 is unknown for |x|> 1 
and is given by the following known functions for 
|x|< 1 , i.e. 

σ��
� (x,0,t)= P�(x,t),                

 σ��
� (x,0,t)= P�(x,t),   |x|< 1.   (2.27) 

From the above information and the 
symmetric properties and in presence of time, we 
have 
f�(x,t)= f �(−x,t),           f�(x,t)= −f �(−x,t).    

Hence, we obtain 

−
1 + K �

μ�
P�(x,t)= �F(τ)f�(x,τ)dτ 

�

�

+  

lim
�→� �

�
a��
π

� f�(z,t)dz�  e�� cosα(z − x)

�

�

�

��

� dα 

+
a��
π
� � f�(z,t)dz�  e�� sinα(z − x)dα

�

�

�

��

�,  

and 

−
1 + K �

μ�
P�(x,t)= �F(τ)f�(x,τ)dτ 

�

�

+  

lim
�→� �

�
a��
π

� f�(z,t)dz�  e�� sinα(z − x)

�

�

�

��

� dα 

+
a��
π
� � f�(z,t)dz�  e�� cosα(z − x)dα

�

�

�

��

�.  (2.28) 

Evaluating the infinite integrals in (2.28), 
passing to the Cauchy theorems in complex analysis, 
and adapting the coefficients with the aid of  (2.26),  
we have  

1 + K �

a��μ�
P�(x,t)= γ f�(x,t)+

1

π
�
f�(y,t)

y − x
dy

�

��

 

+
1

a��
�F(τ)f�(x,τ)dτ,

�

�

 

and 
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1 + K �

a��μ�
P�(x,t)=

1

π
�
f�(y, t)

y − x
dy

�

��

− γ f�(x,t)+  

1

a��
�F(τ)f�(x,τ)dτ 

�

�

, (2.29) 

where 

γ =
a��
a��

=
a��
a��

=
(μ� + μ�K�)− (μ� + μ�K�)

(μ� + μ�K�)+ (μ� + μ�K�)
. 

   (2.30) 
The two formulas of (2.29) represent a 

system of mixed IEs with Cauchy kernel. For one 
layer.  
 
3. Fredholm-Volterra Integral Equation:  

Consider the following F- VIE   

μ ϕ(x,t)+ λ �k(x − y) ϕ(y,t)dy

�

��

 

+λ �F(�t − τ�) ϕ(x,τ)dτ

�

�

= f (x,t).   (3.1) 

under the dynamic conditions 

�ϕ(x,t) dx

�

��

= N �(t),�x ϕ(x,t) dx

�

��

= N �(t).  

(3.2) 
In order to guarantee the existence of a 

unique solution of Eq. (3.1), under the conditions 
(3.2), we assume through this work the following 
conditions: 
(1) The time function  �(�� − � �), �, � ∈[0,�],0 ≤ � ≤
� ≤ 1 , is positive continuous function with its 
derivatives belong, to the class �[0,�], i.e. 

  �(�� − � �)< � � (�� is a constant). 
(2)The kernel of position satis�ies 

 � � � k�(x − y)  dx dy

�

��

�

��

�

�
�

= B < ∞,  

 (B is a constant). 
(3)The given function f(x,t)is continuous with its 
derivatives with respect to the position and time in 
the spaceL�[−1,1]× C[0,T],t ∈[0,T],T ≤ 1.  
(4)The unknown function ϕ(x,t) satisfies Lipschitz 
condition for the first argument and Hölder condition 
for the second argument. 
The reader can prove that: the integral operator 

  K ϕ(x,t)= � k(x − y) ϕ(y,t) dy

�

��

, 

for all t ∈[0,T],T ≤ 1 is  bounded and continuous  
in the space L�[−1,1]× C[0,T]. 
 
 

4. The system of Fredholm integral equations:   
As an important way to obtain the solution 

ϕ(x,t) of the F- VIE is representing it as a SFIEs in 
position, see Abdou and Raad [14,15].  

For this, we divide the interval [0,T], 
0 ≤ t ≤ T < 1  as 0 = t� < t� < ⋯ < t � < ⋯ < t� =

T , where t = t�, l = 1,2,…,p, using the quadrature 
formula, we get 

μ�ϕ �(x)+ λ � k(|x − y|)ϕ �(y)dy 

�

= ψ �(x),(4.1) 

with      ψ�(x)= f �(x)− λ�u� F�,� ϕ�(x)

���

���

,  

μ� = μ + λ u� F�,�.                  (4.2) 
where we used the following notations  

ϕ �(x)= ϕ (x,t�),      F�,�= F�t�,t��, 

 f�(x)= f (x,t�),   l = 0,1,2,…,p       

and      u�= �
h� 2⁄               j = 0, l       
h�                0  <  � < �     

� 

For this, let E be the set of all continuous 
functions  ϕ�(x) in the space L�(Ω), where Φ(x)=
{ ϕ�(x),  ϕ�(x),…,ϕ�(x),… } and we can define the 
norm in the Banach space E  by ‖Φ‖� =
max�‖ϕ�(x)‖��(�).  When the function ψ �(x) has a 
unique representation, the SFIEs (4.1) has a unique 
solution in the space E. 

 
5. Fredholm equation:   

Consider the FIE, in the interval [-1, 1],  
takes the form: 

μ ϕ(x)+ λ �
ϕ(y)

y − x
dy

�

��

= f (x),   λ  is a constant. 

(5.1) 

The sign  denotes integration with Cauchy 

principal value sense. For this aim, the singularity of 
the integral term of Eq. (5.1) will be weakened by the 
following methods: 

  
5.1 Legendre polynomials method:  

In this section, we will use the removing 
singularity method to rewrite the integral term of 
(5.1) and adapting it in the form: 

μ ϕ(x)+ λ �
ϕ(y)− ϕ (x)

y − x
dy

�

��

− λ ϕ(x)log
1 + x

1 − x
 

= f (x), −1 ≤ x ≤ 1.                   (5.2) 
The integral term in the right hand side of 

(5.2) is regular and will be evaluated. So, assume 
that, the unknown function can be expanded in term 
of Legendre polynomials form, i.e. 
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ϕ(x)= �a�P�(x)

�

���

,                (5.3) 

Here, a� are constants and P�(x) are the Legendre 
polynomials. Substituting from (5.3) in (5.2), we get 
 

f(x)= � μ − λ log
1 + x

1 − x
��a�P�(x)

�

���

 

+λ�a� �
P�(y)− P�(x)

y − x

�

��

�

���

dy.      (5.4) 

The value of a�  in (5.4) can be obtained. 
After using the following orthogonal relation of the 
Legendre polynomial and the Rodriguez formula of 
the Legendre polynomial P�(x) of degree j,  

P�(x)= �b�

�
�
�
�

���

x����,  

 b� =
(−1)�(2j − 2k)!

2� k! (j − k)! (j − 2k)!
,   (5.5) 

            we have  γ�,�,�=
1 − (−1)���

j − 2k − l
, and 

 a� =
1

2
� ϕ(x) dx

�

��

,we obtain 

�μ − λ log
1 + x

1 − x
��a�P�(x)

�

���

 

+λ� � � a�b�γ�,�,�

������

ℓ��

x�

�
���
�
�

���

�

���

= f (x).        (5.6) 

Multiply both sides of (5.6) by x��� for 
i =  1, 2,…,N and then integrating  the result over the 
interval 

[−1,1],�log
1 + x

1 − x
≅ 2 �

x�

α

�

���,�,…

,� �| x |< 1)),and 

using the formula, see [16]        

�x�P�(x) dx

�

��

= 2 �
b�δ�,�

(j − 2k + i + 1)

�
�
�
�

���

, 

 δ�,�= �
1          i + j  even  
0         otherwise  

       (5.� 7) 

The formula (5.6), after truncating the 
infinite series to the first N terms yields 

�D��a�

�

���

= d�, (1 ≤ i ≤ N)         (5.8) 

where 

D��=
�

⎩
⎪
⎨

⎪
⎧

�2b� �
μ δ���,�

(j − 2k + i)
�

�
�
�
�

���

�� 

�−2λ�
δ�,�

(j − 2k + 2α + i − 1)(2α − 1)

�

���

� 

+ �λ�� � b�
2 δ�,����1 − (−1)����

(j − 2k − l)(l + i)

������

ℓ��

�
���
�
�

���

�

⎭
⎪
⎬

⎪
⎫

, 

  d�= � x��� f(x)

�

��

 dx + 2a� �
2 λ δ�
i + 1

−
δ���
i
�.(5.9) 

 
5.2. The Toeplitz matrix method 

Consider the system of Fredholm integral 
equations (4.1), which can be reduced, by using the 
Toeplitz matrix method,(see Abdou, et al., [17,18]), 
to a system of linear algebraic equations:  

μ ϕ(mh)+ λ � G��� ϕ(nh)= ψ (mh).   (5.10)

�

����

 

where 
  G��� = A �(mh)+ B ���(mh), 

A�(x)=
[(nh + h)I(x)− J (x)]

h
,   

 B�(x)=
[ J(x)− nh I(x)]

h
,       

        I(x)= � k(|x − y|)  dy,              

����

��

 

J(x)= � y k(|x − y|)  dy,     

����

��

      (5.11) 

the solution of the formula (5.10) will be in the form 
ϕ(mh)= [μ I − λ YG���]

��ψ(mh),     
�μ I − λ G��,�� ≠ 0,          (5.12). 

I is the identity matrix, G  and the Toeplitz 
matrix, it's elements are given by 

G��� = (n + 1 −m )ln|n −m + 1 |
− 2(n − m)ln|n −m| 

+(n − 1 − m )ln|n −m − 1 |.  (5.13) 
The algebraic system in (5.12), has a unique 

solution in Banach space ℓ�. 
 

5.3. The product Nystrom method: 
The integral equation (4.1) can be reduced 

by the product Nyström method (see 19-20) to a 
system of linear algebraic equations 

μ ϕ(ih)− λ�w�,�k���x�− y���ϕ(jh)

�

���

= ψ (ih), 

 (5.14) 
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where 

w�,�=
h[2 χ�(z)− 3 χ�(z)+ χ �(z)]

2
=
1

2
 

[ln|2 − z|− ln|z|]{–z − 4 + (z − 2)(z − 1)}, z = i 

w�,����= h[2 χ�(z)− χ �(z)]= {2(1–z)� 

+z(z − 2)�ln|2 − z|− ln|z|}, z = i − 2j 

w�,��= h[χ�(z)− χ�(z)+ 2 χ�(z − 2)
� 

�−3 χ�(z − 2)+ χ �(z − 2)]2⁄  

=
1

2
{ 4 (z − 2)+ (z − 3)(z − 4)� ln|4 − z| 

+6(z − 2)ln|2 − z|�−z(z − 1)ln|z|}, 

 z = i − 2j + 2 

w�,�=
h[χ�(z)− χ�(z)]

2
=
1

2
{2z + z(z − 1)� 

�ln|2 − z|− ln|z|}, z = i − N + 2.   (5.15) 

which has the solution 
Φ = [μ I − λ W]��Ψ,|μ I − λ W|≠ 0.  (5.16) 

The algebraic system in (5.21), has a unique 
solution in Banach space ℓ� 

 
6. Numerical Results: 
Consider the Fredholm - Volterra integral equation  

μ ϕ(x,t)+ λ �
ϕ(y,t)

(x − y)
 dy

�

��

  

+λ �F(t,τ) ϕ(x,τ) dτ

�

�

= f (x,t).   (6.1) 

We solved this equation numerically, by maple 8 
program, at the times t = 0.001, 0.05 and 0.009, 
with λ = .7857 and 3.5045, the parameter μ = 1 . 
The exact solution is ϕ(x,t)= x�t�. 
 
1- When �(�, �)= � � �� 

 

Case 1-1:   � = 0.7857,   � = 0.001 
x Exact Error Top. Er. Nys. Error Leg. 
-1 1.0E-06 3.7613E-08 5.0E-15 7.2098E-09 

-0.6 3.6E-07 4.0734E-09 1.0E-15 1.6285E-08 
-0.2 4.0E-08 2.8388E-09 3.1E-16 1.3292E-08 
0.2 4.0E-08 2.8388E-09 2.9E-16 1.3292E-08 
0.6 3.6E-07 4.0734E-09 6.0E-16 1.6285E-08 
1 1.0E-06 3.7613E-08 5.5E-15 7.2098E-09 

 

Case 1-2:   � = 3.5045,   � = 0.001 
x Exact Error Top. Er. Nys. Error Leg. 
-1 1.0E-06 3.9742E-08 5.0E-15 7.2098E-09 

-0.6 3.6E-07 4.1843E-09 1.0E-15 1.6285E-08 
-0.2 4.0E-08 2.9128E-09 3.1E-16 1.3292E-08 
0.2 4.0E-08 2.9128E-09 2.9E-16 1.3292E-08 
0.6 3.6E-07 4.1843E-09 6.0E-16 1.6285E-08 
1 1.0E-06 3.9742E-08 5.5E-15 7.2098E-09 

 

Case 1-3:   � = 0.7857,   � = 0.9 
x Exact Error Top. Er. Nys. Error Leg. 
-1 0.81 0.0292925 8.336E-04 9.652E-03 

-0.6 0.2916 0.0034167 1.387E-04 1.604E-02 
-0.2 0.0324 0.0022912 6.034E-06 8.268E-03 
0.2 0.0324 0.0022912 6.034E-06 8.268E-03 
0.6 0.2916 0.0034167 1.387E-04 1.604E-02 
1 0.81 0.0292925 8.336E-04 9.652E-03 

 

Case 1-4:  � = 3.5045,     � = 0.9 
x Exact Err. Top. Er. Nys. Error Leg. 
-1 0.81 0.030933 9.915E-04 1.5760E-02 

-0.6 0.2916 0.003508 1.648E-04 1.7163E-02 
-0.2 0.0324 0.002350 7.153E-06 7.2824E-03 
0.2 0.0324 0.002350 7.153E-06 7.2824E-03 
0.6 0.2916 0.003508 1.648E-04 1.7163E-02 
1 0.81 0.030933 9.915E-04 1.5760E-02 

 

2- When �(�, �)= � ��     

 

Case 2-1: � = 0.7857,   � = 0.001 

x Exact Error Top. Er. Nys. Error Leg 
-1 1.0E-06 3.7613E-08 2.0E-15 7.2284E-08 

-0.6 3.6E-07 4.0734E-09 7.0E-16 3.0903E-08 
-0.2 4.0E-08 2.8388E-09 3.4E-16 4.7030E-10 
0.2 4.0E-08 2.8388E-09 2.7E-16 4.7030E-10 
0.6 3.6E-07 4.0734E-09 7.0E-16 3.0903E-08 
1 1.0E-06 3.7613E-08 6.7E-15 7.2284E-08 

 

Case 2-2:  � = 3.5045,   � = 0.001 
x Exact Error Top. Er.Nys. Error Leg. 
-1 1.0E-06 3.9742E-08 2.0E-15 7.22837E-08 

-0.6 3.6E-07 4.1843E-09 7.0E-16 3.09031E-08 
-0.2 4.0E-08 2.9128E-09 3.4E-16 4.70301E-10 
0.2 4.0E-08 2.9128E-09 2.7E-16 4.70301E-10 
0.6 3.6E-07 4.1843E-09 7.0E-16 3.09031E-08 
1 1.0E-06 3.9742E-08 6.7E-15 7.22837E-08 

 

Case 2-3:  � = 0.7857,   � = 0.9 
x Exact Error Top. Er. Nys. Error Leg. 
-1 0.81 0.02921016 8.7916E-04 0.05465367 

-0.6 0.2916 0.00344625 1.4198E-04 0.02431504 
-0.2 0.0324 0.00229461 5.8936E-06 0.00100934 
0.2 0.0324 0.00229461 5.8936E-06 0.00100934 
0.6 0.2916 0.00344624 1.4198E-04 0.02431504 
1 0.81 0.02921017 8.7917E-04 0.05465367 

 

Case 2-4:  � = 3.5045,   � = 0.09 
x Exact Error Top. Er. Nys. Error Leg. 
-1 0.81 0.03085053 1.0458E-03 0.05276037 

-0.6 0.2916 0.00353868 1.6866E-04 0.02396688 
-0.2 0.0324 0.00235362 6.9856E-06 0.00131471 
0.2 0.0324 0.00235362 6.9855E-06 0.00131471 
0.6 0.2916 0.00353868 1.6866E-04 0.02396688 
1 0.81 0.03085053 1.0458E-03 0.05276037 
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In the previous tables, we used shorthand 
words, Error Leg. (the error when we find an 
approximate solution by using Legendre 
polynomials), Er. Nys. (the error when we used 
Product Nystrom method), Error Top. (the error when 
we used Toeplitz matrix method).  
  
7. Conclusion: 

1- The solution�(�, �) is symmetric with respect tox. 

2- The error takes maximum values at the ends when 

� = −1, 1, while it is minimum at the middle when 

� =  0. 

3- The approximation function has the best values by 

using Product Nystrom method, then by Toeplitz 

matrix, and then by Legendre method. 

4- For λ = 0.7857 ¸ the error is smaller than the error 

when,  λ = 3.5045. 

5- The error is increasing by increasing the time. 

6- By Legendre polynomials method, the maximum 

value of the error is 0.05465367, when λ =

0.7857,   T = 0.9,F(t,τ)= t� τ�. 

7- By Toeplitz matrix method, the maximum value of 

the error is 0.03093284, when λ = 3.5045,   T =

0.9, F(t, τ)= t τ�.   

8- By product Nystrom method, the maximum value 

of the error is 1.0458E-03, when λ = 3.5045,   T =

0.9, F(t, τ)= t τ�.   
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