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1. Introduction 

A lot of physical processes can be modelled 

in terms of the motion of curves, including the 

dynamics of vortex filaments in fluid dynamics [1], 

the growth of dendritic crystals in a plane [2], and 

more generally, the planar motion of interfaces [3]. 

The Subject of how space curves evolve in time is of 

great interest and has been investigated by many 

authors. Pioneering work is attributed to Hasimoto 

who showed in [1] the non-linear Schrؤodinger 

equation describing the motion of an isolated non-

stretching thin vortex filament. Lamb [4] used the 

Hasimoto transformation to connect other motions of 

curves to the mKdV and sine-Gordon equations. 

Nakayama, et al [5] obtained the sine-Gordon 

equation by considering a non-local motion. Also 

Nakayama and Wadati [6] presented a general 

formulation of evolving curves in two dimensions 

and its connection to mKdV hierarchy. Nassar, et al 

[7]-[12] have studied evolution of manifolds and 

obtained many interesting results. R. Mukherjee and 

R. Balakrishnan [13] applied their method to the sine-

Gordon equation and obtained links to five new 

classes of space curves, in addition to the two which 

were found by Lamb [4]. For each class, they 

displayed the rich variety of moving curves 

associated with the one-soliton, the breather, the two-

soliton and the soliton-antisoliton so-lutions. 

In this paper, Time evolution equations for a 

general helix curve are derived from applying the 

first compatibility conditions for dependent variables 

( time and arc length) as well as general helix space 

curve is reconstructed from its curvature. 

Here, we consider the motion of curves in 

three-dimensional Euclidean space. Let r  denote a 

point on a space curve. As usual, time is denoted by 

t . The conventional geometrical model is specified 

by velocity fields, 

 

332211= eeert                            (1) 

 Here, 21,ee  and 3e  are the unit tangential, normal 

and binormal vectors along the curve, and 21,  

and 3  are the tangential, normal and binormal 

velocities. velocities fields are functionals of the 

intrinsic quantities of curves, for example, curvature,

,  torsion, ,  metric, ,g  etc. Time evolution 

equations for such quantities are derived from (1) and 

the geometrical relations. As applications to physics, 

these models are useful to describe the motion of 

vortex filaments in inviscid fluid, motion of fronts in 

viscous fingering in a Hele-Shaw cell, and kinematics 

of interfaces in crystal growth. 

Consider a curve in 3-D represented by the 

parameter u  i.e., ).(= urr  Let ),( tur  be the 

position vector of any point moves on the curve at the 

time t  such that ).(=,0)( uu rr  We define the 

metric of the curve, ),,( tug  and arc length 

),,( tus  as  

,),(=),(,:=
0

dvtvgtus
uu

g
u








 rr
 

and then the unit tangent vector of the curve, 1e  is 

defined by  

.=:= 2

1

1
u

g
s 





  rr
e  

With this definition of the unit tangent vector one can 

canonically define a unit normal vector ,2e  and 

binormal vector ,3e  according to the well-known 

Serret-Frenet relations  
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   is the curvature of the curve and   its torsion. 

In the same spirit one can also consider 

describing the time evolution of the curve. First we 

note that the FSE Eq. (2) can be written compactly as  

1,2,3.=;= iisi ee                       (3) 

Where the Darboux vector ,= 13 ee    or 

simply ),,0,(   in the ,ie  basis. 

The dynamics of the triad can be described 

by defining a new vector ),,(= 321   such 

that, similar to Eq. (3),  

1,2,3.=;= iiti
ee                         (4) 

 which can be written in matrix form as 

 

E
E

B
t

=



                                                (5) 

 where  























0

0

0

=

12

13

23

B  

 

2. Reconstruction of curve from its curvature and 

torsion 

Consider the Serret-Frenet relations  

EA
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dE
=                                                 (6) 
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   is the curvature of the curve and   its torsion. 

Now, let  

,=(0),=(0),=(0) 033022011 eeeeee          (7) 

 Basic existence and unique result for systems of 

linear ODEs guarantees the following fundamental 

theorem:  

Theorem 1 If )(s  and )(s  are given smooth 

functions on an interval ),,(= baI  where I0

and 0>)(s  then, given 030201 ,, eee , (6) has a 

unique solution on Is  satisfying (7). Moreover  

,)((0)=)( 1
0

dttersr
s

                         (8) 

 We have noted that knowledge of   and 

  essentially fixes a space curve and we here list 

some simple functions for   and   and the 

corresponding curves they generate.   

(i) If 0,=)(=)( ss   the curve is an ( untwisted) 

straight line.  

 (ii) If 0,=)(s  and =)(s  constant 0  the 

curve is a circular arc.  

(iii) If 0,=)(s  but 0)( s  the curve is 

twisted) straight line.  

(iv) If =)(s  constant and =)(s  constant, the 

curve is a circular helix. The curve winds around a 

circular cylinder.  

(v) If =
)(

)(

s

s




 constant, the curve is a generalized ( 

not necessarily circular ) helix. The curve winds 

around a generalized circular cylinder.  

We will use a powerful method called 

eigenvalue method to solve the homogeneous system 

(6)in the case (v) 



=

)(

)(

s

s
 ,i.e., we solve  

EBs
ds

dE
)(=                                          (9) 

 with  

,
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=






















B  

 

The idea is to find solution of form  

.)(=)(=)( )( dsssvesE s 
                   (10) 

 Now taking derivative on ),(sE  we have  

)()(=
)( sesv

ds

sdE                                        

(11) 

 Put (10) and (11) into the homogeneous equation (9), 

we get  
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 So 

,= vBv   

 which indicates that   must be an eigenvalue of 

B  and v  is an associate eigenvector. 

We find that 

2

321 1=0,=,=,=   ii  

are the eigenvalues of B  with associated 

eigenvectors  
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sEsEsE  are 3  linearly 

independent ( as vectors) solution of the 

homogeneous system (9).Then the general solution 

)(sEh  of can be written as 

  

)(
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 which can be written in matrix form as 
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                                                                               (12) 

 

If (0,1,0),=(1,0,0),= 0201 ee  and 

(0,0,1)=03e  are the standards unit vectors then 

1,=1c  1,=2c  and 1=3c  

Hence  

.,)(sin,)(cos(0)=)(
00






  sdtdtrsr

ss



                                                                               (13) 

 

3. Equations of motion 

It is important to notice that u  and t  are 

independent but s  and t  are not independent. As a 

consequence, wile u  and t  derivatives commute, 

s  and t  derivatives in general do not commute;  
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 Applying the first compatibility condition ( 

(14)) to the matrix E  and vector r  respectively, 

yields the following equations:  
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 Written explicitly, Eq. (15) reads  
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 From the above equation  
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Theorem 2 If the dynamics of the curve ),,( tur  is 

given by  

332211= eeert    

Then the motion of the curve is described by  
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                                                                               (18) 

For a given g  and ,i  1,2,3,=i  the 

motion of the curve is determined from these 

equations. 

 

4. Helix Case 

Here we restrict ourselves to arc length 

parameterized general helix curves. That is .=   

which implies that the motion of the curve is 

described by  
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 If we set s =  and t=3  then from the 

compatibility condition (14), (19)leads to 0=2  

and .= 31    which implies that the motion of 

the helix curve is described by  
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 which leads to  
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312=   sssst         (21) 

 To reduce it to the two-dimensional case, set  

0,=0,= 3  

in which implies (20)is reduce to  

2

2

12=   ssst                              (22) 

 

We can deal with the motion of helix curves 

(  = ) in a different way from that in the 

previous sections. In terms of the components of the 

tangent, normal and bi-normal vectors 321 ,eee  of 

helix curve of the curve is expressed as (see (12)) 
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Applying the first compatibility condition ( 

(14)) to the vector ,r  yields the following equations  
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 This set of equations is essentially equivalent to (20). 

The equation of motion for three-

dimensional curves is represented by components 

explicitly in (23). To reduce it to the two-dimensional 

case, set  

0,=0,= 3  

in which implies (23)is reduce to  
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 which is equivalent to (21). 
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5. Application mkdv equation   

In the above equation (21)if we take 

 332211 =,=,= aaa s   we get 

the known mkdv equation  
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According to Lie’s algorithm [15]-[17], the 

infinitesimal generator of the maximal symmetry 

group admitted by (25) is given by 
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 is the prolongation of the vector field (26). The 

variables   s are given by the formulae :  
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 Executing the Lie’s algorithm, we obtain the Lie 

point symmetries of (25) given by 
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(30)  

We look for solutions invariant under the 

linear combination 21 XX   where 21 XX   

is a constant. Solving the characteristic system for the 

invariants of the linear combination, we obtain  

),(=),(,=  stts               (31) 

 where   is an arbitrary function of  . The 

substitution of (31) into (25) yields  

0=)(

)()()()()(
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



a
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    (32) 

 where a prime denotes differentiation with respect to 

  and   represents the wave speed. Integration of 

(31) once leads to  

.=
32

12

3321 ka
aa

                   (33) 

 Multiplying both sides of (33) by   and integrating 

once more we obtain  

.=)(
21262
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2243312 kk
aaa

 


                                                                               (34) 

 Finally, from (34) we have  
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
d
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kk
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=
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22 43312
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  (35) 

 where 1k  and 2k  are arbitrary constants. 

Integrating both sides of this last equation we obtain 

the general traveling wave solution to (25) in implicit 

form  
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       (36) 

5.1  First particular case 

Setting 0== 311 aaa   in (25)we 

obtain the following KdV of higher order  

0,=2

32 sssst aa                     (37) 

 If we assume that 0,  0, 0,  

when ,  in the analysis presented in the 

previous section, then (36) reduces to 
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                          (38) 

 for an arbitrary constant 3k . 

With the substitution 


 sech
a3

6
=  

finally we obtain the following soliton solution to 

(38)  
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
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 where 4k  is a constant of integration. 
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Figure  1:  Surface corresponding to (39)  

 

[0,0.3]10,10],[6,=2,== 2

2  tsa    

5.2  Second particular case 

 If we set 0=  in the above case then the 

equation (37) reduces to  

0,=2

2 sssst a                         (40) 

 and (39) reduces to  

,)(6=),( 4

2






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
 kts

a
sechst 


        (41) 

 If we set 0=6,== 42 ka   then  

 ,)6(6=),( tssechst                                   (42) 

 

In this case we can construct the curve from 

its curvature  








 dssdsssr
ss

))((sin,))((cos=)(
00

        (43) 

 where 

)6((6=)6(6= tssinharctandstssech   

 
  [ Curve corespponding to (43) at 0=t ]  

 

 
 

 [ Curve corespponding to (43) at 0.5=t ]  

 

 
 [ Curve corespponding to (43) at 1=t ]  

Figure  2:  Curves of second case with 

0.8,0.8][s  

5.3  Third particular case 

 If we set 0,=0,= 2a  then the equation 

under study (25) reduces to  

0,=21 sssst aa                        (44) 

 which is the generalized KDV equation. Proceeding 

as in the first case,then (36) reduces to 
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 Using substitution 


 sech
a1

3
=  finally we 

obtain the following soliton solution to (45)  
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Figure  3:  Surface corresponding to (46)  
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[0,0.05]],,[3,=1,=4= 12  tsaa    
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