
 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

145

Lifecycle Effort Estimation for Component Based Software Engineering: A Model and its Soft Computing
Based Implementation

Jahanzaib Khan 1, Aasia Khanum 2

1, 2 College of Electrical & Mechanical Engineering, National University of Sciences and Technology (NUST),

Islamabad, Pakistan
aasia@ceme.nust.edu.pk

Abstract: Research in Effort Estimation for Component Based Software Engineering (CBSE) has so far focused on
component selection and integration effort. However, in order to get a fair idea of feasibility of a project full
lifecycle effort must be taken into account. This paper presents a lifecycle based effort estimation approach for
CBSE. A new CBSE lifecycle model called Circular Process Model (CPM) is presented with the novel idea of
rejuvenation of one lifecycle phase during the course of later phases, something which is inevitable in CBSE.
Quality assessment of CPM in light of the PQMM process measurement model reveals essential merit of the
process. Subsequently, CPM is used as a framework for introducing enhanced effort parameters that are employed
by an original soft computing approach to estimate lifecycle effort of a CBSE project. Validation with industrial data
shows high accuracy of the proposed system.
[Khan J, Khanum A. Lifecycle Effort Estimation for Component Based Software Engineering: A Model and its
Soft Computing Based Implementation. Life Sci J 2014;11(5):145-155]. (ISSN:1097-8135).
http://www.lifesciencesite.com. 20

Keywords: Component Base Software Engineering (CBSE), Project Management, Software Process Model, Effort
Estimation, Soft Computing.

1. Introduction

Trend to adopt Component Based Software
Engineering (CBSE) is on the rise. In this approach,
software is engineered by assembling components
[20], which essentially are stand-alone modules
created for easy re-use beyond the original
application. CBSE offers several advantages over
traditional software development approaches;
including flexibility in development, fast time-to-
market, better quality of software, and cheaper cost of
the product.

CBSE differs from traditional software
development approaches not only in terms of
advantages and challenges, but also with respect to
process lifecycle activities. Whereas in traditional
software engineering lifecycle the normal activities
include requirements specification, system design,
implementation, validation and maintenance, CBSE
extends these activities with component search,
selection, adaptation and integration.

Lifecycle process is the course of activities that
produces a new software product and continues from
its inception to maintenance. Software lifecycle is a
loosely defined concept [8] and in case of CBSE there
is no universally agreed upon lifecycle process model.
Although several attempts have been made to define
an effective process model for CBSE, still all the
proposed models have their own tradeoffs. Even the
IEEE Standard 1517 [20] which deals with software
reuse process does not enforce single lifecycle to

follow, rather it just tells a minimum set of attributes
that a software lifecycle must have.

Management of Information Technology or
Software Engineering projects is a unique challenge
[]. Effort estimation is an important concern in
software project management. Many techniques have
been proposed over the past two or three decades for
effort estimation in traditional software development
domain. Since CBSE is fundamentally different from
traditional development approaches, effort estimation
becomes a challenging problem in this framework. So
far, majority of the approaches to CBSE effort
estimation have focused on selection and integration
related activities of the process. However, for fair
analysis of cost-effectiveness of CBSE approach, it is
necessary that a comprehensive lifecycle approach
taking into account all activities of the process be
adopted [21].

This paper is a two-fold contribution to CBSE.
First, a new process model called the Circular Process
Model (CPM) is proposed with the novel provision of
rejuvenation of one lifecycle phase during later
phases, something which is inevitable in CBSE.
Second, a soft computing framework is presented for
effort estimation in CBSE. The proposed framework
employs enhanced effort parameters derived from
CPM to activate a Fuzzy Rule Based System (FRBS)
for estimating required effort of a component based
software engineering project. We present validation of
the proposed process model as well as the effort
estimation framework.

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

146

Rest of this paper is organized as follows.
Section 2 presents literature review of process models
for CBSE and effort estimation of CBSE. Section 3
describes the proposed CPM process model and the
fuzzy effort estimation framework. Section 4 presents
experimental validation of CPM and effort estimation
framework. Finally, section 5 concludes the paper.

2. Background
2.1. CBSE Process Models

One of the earliest process models for CBSE is
Evolutionary Process for Integrating COTS -Based
Systems (EPIC) [1] which is adapted from traditional
Rational Unified Process (RUP) [30]. EPIC rewrites
managerial, engineering and acquisition activities to
control COTS market in better way. It is a risk-based
spiral approach in which process phases are same as
those in RUP.

Process model of Qureshi and Hussain [28] is
inclined towards object-oriented software
development lifecycle. Component Repository is the
main contribution of this model but there are no
guidelines regarding the addition of components in the
repository. Furthermore, the exact stage when
components will be added to the repository is also
unclear.

Sommerville proposed sequential lifecycle
process model [3] in which component search phase is
included before the design phase. If any discrepancies
are encountered during design, modification of
requirements will be carried out. In this fashion,
requirements and design are based on the components
actually in hand.

Lau et al proposed the W-Model [12] which is
mainly focused on Verification and Validation (V&V)
in Component Development and Component Based
Software Development. They argue that V&V is
necessary in both lifecycles i.e. Component
Development lifecycle and Component Based
Software Development lifecycle. In this model
repository feature and maintenance phase are not
included.

Sharp et al [18] proposed a lifecycle model with
recommendations inspired by design science. They
discussed phases of component development and
system development separately. They did not include
the domain analysis phase in system development
lifecycle.

Kotonya et al proposed Classification Lifecycle
Model for CBSE [4], in which the center of attention
is CBSEnet knowledge Base. In this work, both short
and long term objectives of the process are
acknowledged, but the model addresses only short
term objectives.

M. Morisio et al [14] proposed COTS lifecycle
model in which emphasis is placed on the

involvement of vendor throughout the lifecycle. New
activities and roles related to vendor are also
identified. The model is limited in the sense that it
only focuses on development phase, whereas
important phases like the maintenance phase are
missing.

Kouroshfar et al [17] proposed Component
Based Software Development Process (CBSDP). It is
a generic process derived by reviewing seven CBSE
based methodologies like FORM, RUP, and CORBA
etc. One inherent limitation in the process is that due
to its generic nature none of the activities is
mandatory; thus, rendering it difficult to implement.

MyCL Process Model was proposed by Aris et al
[13]. It is an attempt to make the lifecycle process
very simple; however in doing so several phases have
lost necessary detail. Furthermore, requirements and
architecture are frozen before component availability
which makes the process very rigid and unrealistic.
Unit testing is also eliminated in this model.

Bassam et al [16] in their research focused on
reusability and proposed two lifecycle processes;
build-for-reuse and build- by-reuse. They discuss in
detail the transfer of build-for-reuse process to build-
by-reuse process. Central repository is also focused in
this study. This model treats maintenance process
independent of the lifecycle, which we argue, should
be treated as part of the lifecycle. Another limitation
of the model is that it deals only with in-house
development.

The Knot Model [5] was proposed by Chhillar et
al. In each phase of this model risk analysis and
feedback is performed which ultimately improves the
quality of the system. Reusability and estimation is
also used in each phase to reduce the cost. In addition,
the developed Component Base Software System
(CBSS) is also maintained in pool for later re-
utilization.

The Umbrella Model for CBSE [8] was proposed
by Dixit et al. This model mainly revolves around
testing or verification. The authors argue that testing
or verification must be included as an ongoing process
throughout lifecycle. In this model testing or
verification phase overlaps and repeats in every phase.

The Y Model [7] proposed by Capretz supports
iteration and overlapping. It allows both top-down and
bottom-up approach of CBSE software development.
However, definition of component model is
overlooked by this model.

The V Model for CBSE [10] proposed by
Crnkovic et al. is an adaptation of conventional V
Model. This model also focuses on verification and
validation. However, important steps like Domain
Engineering and System Deployment are missing
from the model.

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

147

The Elite Model [11] proposed by Nautiyal et al.
also concentrates on testing or verification as
continuous activities. During development and
maintenance, this model promotes software
reusability.

The X Model [6] proposed by Gill et al focuses
on software reusability for large software systems.
Besides being quite complex, the model ignores best
practices like feedback and risk analysis

The above described models have their
individual strengths and weaknesses. Some of the
strong features include support for reusability,
component repository, and provision for testing.
However, one common limitation of all these models
is that there is no broad-based reflection of complete
lifetime phases encountered during real CBSE
operation. As an example, deployment and
maintenance phases which are indispensable for any
software lifecycle process are missing in almost all the
models. Moreover, the models work in a strictly
sequential fashion such that one phase must be
completed before starting the next one. In actual
practice however there is often a need to loop back to
earlier phases on basis of conditions encountered in a
later phase. For instance, after component acquisition
one may find that all requirements are not directly
satisfied by the acquired components and may need to
revert back to requirement analysis stage. This
allowance of reverting back to an earlier phase is not
provided by current CBSE lifecycle models.
2.2. CBSE Effort Estimation

Although a lot of work has been done on effort
estimation for traditional software development
approaches, not many approaches exist for CBSE
effort estimation. Below, we briefly survey the most
up-to-date approaches specifically designed for CBSE
effort estimation:

One of the earliest models on CBSE effort
estimation was developed at Science Applications
International Corporation (SAIC) in early 1990s [22].
The model is mainly focused on end-user cost of
integrating the components into rest of the system. As
a consequence, the model misses important effort
parameters like the effort expanded on component
search and selection, or the effort required for
component validation and testing etc.

Stutzke’s model [23] was introduced by SAIC to
determine additional cost of adopting a component.
This additional cost is treated as a function of the
component’s volatility and architectural coupling with
rest of the system. The model still does not consider
effort of searching and selecting the desired
components.

Aoyama’s CBSE effort model [24] introduced
detailed phases like component acquisition,

compositional design, and integration. The model
however suffers from unrealistic assumptions. For
instance, it assumes that unit testing costs are not
relevant to CBSE. In actual practice component
testing may have significant implications on glue code
development, particularly in case of faulty
components or components with unexpected behavior.

The most well-known model for CBSE effort
estimation is the Constructive Commercial off the
Shelf (COCOTS) model [25]. This model is an
extension of the conventional Constructive Cost
Model (COCOMO) with consideration of post-
development activities, most importantly
maintenance. COCOTS, however, focuses on
integration-centric activities and ignores other
important aspects.

Adjustable Cost Model [26] enhanced COCOTS
by combining its effort parameters with
communication overheads, concepts from system
dynamics to simulate software process. The model
inherits the basic shortcoming of COCOTS in that it
misses important phases of lifecycle. In fact,
according to [21] while COCOTS covers 55.56% of
CBSE lifecycle the adjustable model covers only
33.3%.

An analysis of the above approaches indicates
that one common limitation is the lack of full lifecycle
coverage in effort parameterization. Most of the
models cover only integration-centric activities.
Moreover, majority of the models are algorithmic in
nature and require hard calculations.

3. Proposed Approach

In this section, we first present our
comprehensive CBSE lifecycle model called CPM,
and then present an approach for CBSE effort
estimation in CPM framework.
3.1. Circular Process Model (CPM)

The proposed Circular Process Model (CPM),
shown in Figure 1, is derived by embracing the
strengths of the above reviewed process models and
eliminating their weaknesses. The main focus of this
model is to address the rejuvenation of earlier phase(s)
during the execution of subsequent phase(s), which is
certain in CBSE. CPM comprises eight (08) phases
which are further divided into sixteen activities as
shown in Table 1. In an idealized CBSE process one
phase follows another in sequential fashion. Phases
start from Domain Engineering and continue till
Maintenance, in clockwise direction. In Idealized
CBSE process no phase repeat itself as all phases
execute sequentially. In reality however, one often
needs to resort back to earlier phases for adaptation.

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

148

Figure 1: Proposed Circular Process Model

For instance, when required components cannot

be found during Component Assurance phase the
development team has to revisit the requirement
analysis step to adjust the requirements. In actual
CPM, phases are represented with circles. The inner
most circle represents the Domain Engineering phase
and the outer most represents the Maintenance phase.
Phases in the proposed model are executed in
clockwise direction from Domain Engineering to
Maintenance. Outermost circle in each phase
represents the currently executing phase while inner
circles in a phase express that they may re-occur
during the executing phase. This rejuvenation is
certain in CBSE because there are very rare chances
that you may find your required components hence
requirement analysis phase will have to be executed
again. And if requirement analysis will be executed
again then component analysis will be carried out on
new requirements. Similarly, in Maintenance phase
revisiting of previous phases are indispensable.
Clouds in Figure 1 show the decisions to be taken in
respective phases. In center, the Component
Repository with labels external and internal is shown.
By internal we mean in-house component repository
of the software developing organization. External
repository represents the open COTS (Commercial
Off-the-shelf) market.

Unidirectional and bidirectional arrows in Figure
1 depict the relation of the phases with the repository.

Arrow direction towards repository represents that
components are being stored in internal repository as
component are the assets for an organization. Arrow
directions opposite to the repository show that
components are analyzed or retrieved from both
internal and external repository. We now discuss the
phases of the proposed CPM in detail:
3.1. 1. Domain Engineering

In Domain Engineering identical areas across
different applications in a domain are recognized as
having common understanding on the basis of
application domain analysis [7]. Domain Engineering
is the also an important phase of IEEE Std. 1517
which specifies cross project processes. Cross project
processes facilitate software reuse in CBSE. At the
end of this phase expert judgment is required for the
decision whether the specified requirements can be
accomplished using CBSE approach. If not then it
would be wise to adapt traditional approach. It is
understandable that this decision is very daunting and
only expert judgment can decide it.
3.1.2. Requirement Analysis

In Requirement Analysis phase, software
requirements are first elicited and then specified. The
final outcome of this phase is Software Requirements
Specification (SRS) document. This phase is not a
one-time activity, especially in CBSE where it iterates
again and again till the successful completion of the
component assurance phase (See Figure 1).

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

149

Table 1: Phase-wise Distribution of Activities in CPM
Phases Activities Description Output
Domain

Engineering
Domain Engineering Provides understanding regarding the application

domain and help in taking the decision of
following CBSE or Traditional approach.

Business Idea

1st Decision: CBSE or Traditional Development

Requirement
Analysis

Requirement
Assessment

Deals with finalization of requirements with
consultation of end-user and domain experts, and

refinement of requirements for specification.

System Requirements
Specification (SRS)

Document
Requirement
Specification

Preparing requirement specification document
from the requirements finalized in requirement

assessment activity.

Component
Analysis

Component
Identification

Determining required components, by analyzing
the SRS.

Requisite
Components
Specification

Document
Component

Specification
Identified components are completely specified

(i.e. interfaces, member functions etc.)
2nd Decision: Build Vs. Buy

Component
Assurance

Component
Searching

Needed components are searched first in
organization’s internal repository then from
external vendor’s repository (if not found in

internal repository).

Requisite
Components (COTS)

Component
Selection

Best components are selected from the
components found (if more than one) in search

activity.
Component
Acquisition

Process of acquiring selected components from
the vendor, if not present in organization’s

internal repository.
Tailoring To set component for application irrespective of

integrated system [15].
Unit Test Ensure component functioning in isolation

Architectural

Design

Component
Architectural

Comprehension

Each component’s architecture is realized in
detail to ensure best possible architecture.

System Architecture

Application Design System Architecture is finalized on the basis of
available components.

Integration

Component
Adaptation

Each component is adapted for integration into
the system by writing glue code.

Component Based
Software System

CBSS Integration Test Ensure that system works well after integration
of each component.

Deployment

Deployment Kit
Preparation

User manual, training guide or other relevant
material is prepared to ensure user

understandability of the product along with
preparation of executable copy of the product.

User Manual,
Training Guide,

CBSS

Maintenance Substitution Required if new version of COTS is available. Component Based
Software System

CBSS
Evolution Required when new/changed requirements are

demanded.

3.1.3. Component Analysis

Component Analysis phase encompasses the
process of identification of components from the
specified requirements and then specification of the
identified components. In this phase, requirement
specification document is reviewed for component
identification and specification. Outcome of this

phase is requisites component specification
document.

At the end of this phase another decision is
required. Here, expert decides on the basis of his/her
experience and the identified components whether
component development from scratch is better or use
of COTS would be beneficial? This decision is
necessary because if we plunge directly into the next

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

150

phase, .i.e. Component Assurance, then it would be
very difficult to meet the schedule in case of wrong
decision. It is so because Component Assurance is a
time consuming activity and if components are
unavailable in the market then all the exercise of this
phase will be futile.
3.1.4. Component Assurance

This phase is an important and distinct phase of
CBSE lifecycle. It is distinct because major activities
of this phase are not the part of traditional software
development approach. In this phase requisite
components are searched from the repository. If one
fails in finding the requisite component then
Requirement Analysis phase is re-executed that in
turn re-calls Component Analysis phase. Component
assurance phase continues till all required
components become available. At the end of this
phase, the development team has all the requisite
components in hand.
3.1.5. Architectural Design

At this stage, final requirements and requisite
components are in developers’ hands so it is the right
time to design architecture of the application. In this
phase, component interactions are analyzed to shape
the software architecture. Output of this phase is
System Architecture description.
3.1.6. Component Integration

In Component Integration phase, the
components are integrated one by one into the
system. After integration of each component the
system is tested to ensure smooth functioning. To
accomplish the task of component integration glue
code [15] is required, which works as interface
between the component and the system under
development.
3.1.7. Deployment

Deployment is the process of transferring the
system to the customer in a fashion that customer
feels comfortable with the product; and may be able
to enjoy the maximum benefits from it. To ensure
successful deployment, training and documentation
must be a provided to customer [7].
3.1.8. Maintenance

Maintenance is a system support activity which
ensures smooth running of the system and increased
lifetime of the product. As far as CBSE is concerned,
maintenance may be required due to two reasons.
First, change in requirement and second, component
up-gradation. Change in requirements is also very
common cause of maintenance in traditional software
but maintenance due to component up-gradation is
specific to Component Based Software Systems. It
may occur due to the availability of new version of
the utilized components in market which must
replace the existing ones.
3.2. Proposed Effort Estimation Framework

The proposed CBSE lifecycle Effort Estimation
model is based around CPM. Effort
parameters/drivers are identified for each CPM and
applied in a bottom-up manner. Effort for each
activity is estimated on the bases of identified effort
parameters using Fuzzy Logic. Then, combined effort
of all activities is calculated to obtain the Lifecycle
effort. Figure 2 illustrates the framework. Below we
discuss implementation of the proposed framework in
detail.

Figure 2: Proposed Effort Estimation Model

3.2.1. Effort Parameters

In the proposed framework, 64 effort parameters
are used, which are categorized under activities,
phases and lifecycle. Out of these 64 effort
parameters, 07 parameters are taken from COCOTS
model [25], 03 parameters are taken from scale
factors of COCOMO-II [29], 02 parameters are taken
from [27] and rest are added according to CPM
details. Complete list of effort parameters under CPM
activities/phases is shown in Table 2.
3.2.2. Fuzzy Inference

For the implementation of the effort estimation
we use soft computing paradigm of Fuzzy Logic
because it is based on intuition and judgment and
does not require rigid mathematical model.
Furthermore, fuzzy sets provide smooth transition
between members and non-members which makes
them less sensitive to system fluctuations. Fuzzy
inference is made using the following functional
modules for each activity:

Circular
Process
Model

Effort
Parameters

Fuzzification

Fuzzy Inference

Defuzzification
Estimated

Effort

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

151

Table 2: Proposed Effort Parameters Using CPM
CPM

Phases
CPM Activities

Effort Parameters
Activity Level Phase Level Lifecycle Level

Domain
Engineering

Domain
Engineering

NOADA - No. of available Domain
Applications

OC-Organization
Culture [25]

PM-Process
Maturity[24]

LS-Leadership
Skills[25]

TC- Team Cohesion
[24]

SC- Stakeholder
Cohesion

TSK- Team Skills

TE- Team Experience

TSZ- Team Size

TC- Team
Consistency

PS-Project Size

PC-Project
Complexity

PP-Project
Precedence [24]

UOST-Use of
Standard Tools

RW- Rework

Requirement
Analysis

Assess
NORS - No. of Requirement Sources

LOEUI- Level of End-
User Interest

OD - Organizational Diversity
UD - User Diversity

Specify

NOFR - No. of FRs (Functional
Requirements)

NONFR - No. of NFRs (Non-functional
Requirements)

NOC - No. of Constraints
RC - Requirement Clarity

Component
Analysis

Identification
NOFR - No. of FRs

RT –
Reuse Type

NONFR - No. of NFRs

Specification

NOIC - No. of Identified Components
NOII - No. of Identified Interfaces

NOIMF - No. of Identified Member functions
COH - Cohesion

Component
Provision

Search
RS - Repository Size

NOIC- No of Identified
Components

SS - Search Strategy

Select

NOFR - No. of FRs
NONFR - No. of NFRs

NOADA - No. of available domain
applications

Acquire

ACPTD - COTS Supplier Provided Training
and Documentation[15]

ACSEW - COTS Supplier Product Extension
Willingness[15]

ACPPS - COTS Supplier Product
Support[15]

Tailoring

NOPTBS - No. of Parameters to be
Specified[15]

IGS - Input/GUI screen[15]
ORL - Output report layout[15]

SPS - Security protocols set-up[15]

Unit Test
TM - Testing Methodology

SC - Success Criteria

Architectural
Design

Component
Interaction

NOCF - No. of Components Fashioned

CAM - Components Architectural mismatch
NOIAMF - No of Interfaces and Membership

Functions
IC - Interface Complexity

Cou –Coupling

Application Design
RF - Requirements Flexibility

SF - Schedule Flexibility
RA - Resources Availability

Integration
Adaptation

FP - Function Points

NOIAMF - No of Interfaces and Membership
Functions

AC - Architectural Constraints

Integration Testing
TM - Testing Methodology

 SC - Success criteria

Deployment
Document. / User

Training

NOSTBD - No of Sites to be Deployed

TE - Targeted End-user

UMDC - User Manual/ Documentation
Comprehensiveness

Maintenance
Substitution

NOCTBR - No. of Components to be
substitute.

Evolution SOC - Size of Change

3.2.3. Fuzzifier

The fuzzifier fuzzifies the values of input
parameters of an activity using fuzzy sets. All input
parameters are normalized to [0,1] interval before

fuzzification. Gaussian membership functions have
been employed for implementation of the fuzzy sets
in the fuzzifier. An example of Fuzzification using
three fuzzy sets is shown in Figure 3.

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

152

Figure 3: Fuzzification of Constraints

3.2.4. Fuzzy Rules

Fuzzy rules are simple IF-THEN relationships
involving fuzzy linguistic variables as input and
output. There are total 64 input variables
corresponding to input parameters and one output
variable for the estimated effort. These variables are
distributed across 8 fuzzy inference systems
corresponding to 8 phases of the CPM. Figure 4
illustrates the rule surface corresponding to effort of
Requirements specification activity of requirements
analysis phase of CPM.
3.2.5. Fuzzy Inference Engine

The Fuzzy Inference Engine uses the Fuzzy
Rules to map current input parameters to output
fuzzy effort value.

Figure 4: Rule Surface for Requirement
Specification Effort

3.2.6. Defuzzifier

The defuzzifier converts fuzzy effort estimate
into a crisp value in normalized interval.

4. Evaluation and Results

In this section we present an evaluation of the
proposed approach including both the CPM process
model and the effort estimation framework.
4.1. CPM Evaluation

CPM Evaluation is done along two aspects.
First, the model is compared with an existing state-
of-art model for CBSE. Second, model quality is
assessed using a well-known process quality
measurement approach.
4.1.1. Comparison with Existing Process Model

Without comparison it is difficult to say that one
thing is better than the other. We chose a state-of-art
model, the MyCL Process Model [13] for comparison
as this model is also based on integrating the
strengths and removing the weaknesses of the
existing models.

In MyCL Process Model, requirements are
finalized at Requirement Analysis phase in a
waterfall fashion, and later in the Component
Development phase, components are adapted to
comply with requirements. There is no recourse to
requirement analysis phase if the requisite component
could not be found. The model’s only provision in
such a case is development of component from
scratch, which is not the essence of CBSE. This is not
the case in the proposed CPM where you can build
new component, or you can modify your
requirements, as desired.

Secondly, in MyCL the Architectural Design
phase is placed right after the Requirement Analysis
Phase which is again very troublesome because when
there is no component in hand it is not feasible to
freeze the architecture. Second there is also no
recourse to Architectural Design phase if the
components assumed in architecture could not be
found. This problem is resolved by CPM in which
architectural design phase is placed after the
Component Assurance phase.

Further, in MyCL Unit testing has been
removed from the lifecycle by arguing that
components are already tested. In CPM Unit testing
is included because component tailoring is required
which is to set the component to be used irrespective
of the integrated system [13]. Thus, unit test is
necessary.
4.1.2. Process Quality Assessment

We have validated the proposed Circular
Process Model using Process Quality Measurement
Model (PQMM) of Guceglioglu et al [19]. The
PQMM provides a set of quality metrics that can be
used to evaluate static quality of a software
development process. Each of these metrics lies in
value range between 0 and 1. We have used a subset
of these metrics for process evaluation, using only
those metrics that were relevant to the process and
could be calculated from the process definitions.
Table 3 shows the metrics (with definitions re-
phrased or adapted from [19]).

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

153

Table 3: PQMM [19] Quality Attributes values for the proposed model.

Quality
Attributes of

PQMM

Quality Sub-
Attribute

Explanation Metric Value

Reliability

Failure Avoidance
Number of failure avoidance
techniques

X = A / B
A = Number of activities in which review,
inspection, checkpoint or similar techniques are
applied
B = Number of activities

0.2

Restoration
Proportion of recorded activities
which can be restored in case of some
abnormal event

X = A / B
A = Number of activities which are recorded on
paper or computerized environment
B = Number of activities

0.8

Restoration
Effectiveness

It examines efficiency of restoring
recorded activities

X = A / B
A = Number of activities which can be restored
B = Number of activities

0.8

Functionality

IT Usage
Use of IT applications in the process
activities

X = A / B
A = Number of activities in which IT applications
are used for preparation, deletion, updating or
searching purposes
B = Number of activities

0.8

IT Density

It is the ratio between the number of
forms, reports, archival records or
similar other documents that are
prepared, updated, deleted or searched
by using IT applications and total
number of forms, documents, archival
records or similar other documents in
the process.

X = A / B
A = Number of forms, reports, archival records or
similar other documents that are prepared, updated,
deleted or searched by using IT applications
B = Number of forms, documents, archival records
or similar other documents in the process

1.0

Access
Auditability

This attributes identify the person for
auditablity who have access to data
source.

X = A / B
A = Number of activities which have access to the
data and this access can be audited with its actor
B = Number of activities which have accesses to the
data sources

0.7

Usability

Functional
Understandability

Understandability of process activities

X = A / B
A = Number of activities in which staff do not
encounter difficulties in understanding the tasks to
be performed,
B = Number of process activities

1.0

Existence in
Documents

This attributes checks the presence of
process activities in documents.

X = A / B
A = Number of activities which are described in the
available documents,
B = Number of activities

1.0

Input Validity
Checking

Implementation of input parameter
checking in process activities

X = A / B
A = Number of activities in which validity checking
can be performed for input parameters
B = Number of activities

0.6

Undo-ability
Undoability of the recorded process
activities is examined after they are
completed.

X = A / B
A=Number of activities which can be undone,
B= Number of activities

0.8

Attractive
Interaction

Usage and Design of prepared
documents in the process activities.

X = A / B
A = Number of activities in which staff can prepare,
delete or update forms, reports, archival records or
similar other documents with no difficulties
B = Number of activities

0.8

It can be seen that only failure avoidance

attribute of the CPM process requires improvement.
Overall validation, however, shows that the model
efficiently fulfills PQMM characteristics, implying
that the model is very much maintainable, reliable,
functional and usable. Model assessment according to
PQMM is illustrated in Figure 5.

We also performed a chi-square test of
independence to test whether there is any difference

between conventional practices of CBSE and
proposed model with respect to expectations of the
development team and management. A survey of 30
software developers/managers was conducted to find
the number of expectations of project managers and
developers that are addressed in conventional
approach versus the proposed CPM. We set the null
and alternate hypotheses as follows:

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

154

Figure 5. PQMM Evaluation Graph of CPM

Null Hypothesis (H0): Independence (i.e. no

association between process model and team
satisfaction)

Alternate Hypothesis (Ha): Dependence (i.e.
validated association between process model chosen
and team satisfaction)

We use the chi-square (χ2) test statistic to
validate the H0. The value of this statistic is calculated
as:

χ2 =

where and are observed and expected
frequencies at index i and j respectively of a
contingency table of size i×j. We have a contingency
table of size 2x2 where rows represent the choice of
process model and the columns represent the number
of satisfied and dissatisfied survey respondents in
each case. The survey results are represented by
contingency table in Table 4.

Table 4: Contingency Table of Observed

Frequencies (survey results)
 Satisfied Not Satisfied Total

Conventional 6 9 15
CPM 10 5 15
Total 16 14 30

The value of chi-square statistic for the above

data is 2.143 with a p-value of 0.143. This leads to
rejection of the null hypothesis and conclude that
there is association between choice of process model
(Conventional or CPM) and satisfaction of software
team’s requirement.
4.2. Validation of Effort Estimation

The proposed CBSD Lifecycle Effort Estimation
Model is validated by conducting an industrial survey.
Survey is designed on the basis of Effort

Parameters/Drivers used in the proposed model.
Around 48 questions were asked from the participants.
Questions were arranged in CPM lifecycle phases and
activities. Participants were asked to answer on the
basis of their experience. Twelve (12) participants
from different organizations (public and private
sectors) participated in the survey. The answers
provided by the experts were then analyzed and
compared with system’s output. Accuracy (i.e.
percentage of correct answers) of the model results is
shown in Figure 6, demonstrating the viability of the
approach.

Figure 6. Lifecycle Effort Estimation Accuracy of
the Proposed Approach

5. Conclusions and Future Work

In this study, Circular Process Model (CPM) for
Component Based Software Engineering (CBSE) has
been proposed by keeping in view the strengths and
weaknesses of the process models proposed in
literature. Main focus of CPM is rejuvenation of any
phase during the execution of later lifecycle phases.
The model has been validated using PQMM method,
which shows that circular model is pragmatic and
applicable in industry for achieving better results.
Moreover, a fuzzy based effort estimation approach
for CBSE lifecycle phases is presented, and validated
with industrial survey. In future we intend to test the
model thoroughly in practical industrial settings.

References
1. C. Albert and L. Brownsword, “Evolutionary

Process for Integrating COTS-Based Systems
(EPIC): An overview,” Technical Report
CMU/SEI-2002-TR-009 ESC-TR-2002-009, July
2002.

2. K. Kaur and H. Singh, “Candidate process models
for component based software development,”
Journal of Software Engineering, 4(1):16–29, 2010.

3. Sommerville, Software Engineering, 7th Edition,
Pearson Education.

4. G. Kotonya, I. Sommerville, and S. Hall, “Towards
a classification model for component-based
software engineering research,” In Proc. 29th

 Life Science Journal 2014;11(5) http://www.lifesciencesite.com

155

EUROMICRO Conference, pp. 43–52. IEEE
Computer Society, 2003.

5. R. S. Chhillar, P. Kajla, “A New Knot Model for
Component Based Software Development,” Int’l
Journal of Computer Science Issues vol: 8 issue: 3
pp.: 480-484, 2011.

6. N. S. Gill and P. Tomar , “X Model: A New
Component- Based Model”, MR International
Journal of Engineering and Technology, vol. 1, no.
1 - 2, pp. 1-9, 2008

7. L. F. Capretz, " Y: A new Component-Based
Software Life Cycle Model ", Journal of Computer
Science1 (1): pp.76-82, 2005.

8. A. Dixit and P.C. Sexena, "Umbrella: A new
Component- Based Software Development Model",
International Conference on Computer Engineering
and Applications IPCSIT, Singapore, vol.2, 2011.

9. K. Kaur et al, "Towards a suitable and systematic
approach for Component Based Software
Engineering", World Academy of Science,
Engineering and Technology, 27, 2007.

10. Crnkovic, “Component Based Development
Process and Component Life Cycle,” 27th
International Conference on IT Interfaces, IEEE,
2005.

11. L. Nautiyal et al, "Elite: A New Component-Based
Software Development Model", Int. J. Computer
Technology & Applications,vol 3 (1),119-124,
JAN-FEB, 2012.

12. K. Lau et al, “The W Model for Component-based
Software Development”, EUROMICRO-SEAA
2011: 47-50.

13. H. Aris and S. S. Salim, “The Development of a
Simplified Process Model for CBSD,” International
Arab Journal of Information Technology, vol. 4,
no. 2, April 2007.

14. M. Morisio et al, “COTS-based software
development: Processes and open issues,” Journal
of Systems and Software 61, 189–199, 2002.

15. C. Abts, M.S. et al, “COCOTS: A COTS Software
Integration Lifecycle Cost Model - Model
Overview and Preliminary Data Collection
Findings”, USC Center for Software Engineering,
2000.

16. Bassam, A. Badareen,et al, “Reusable Software
Component Life Cycle”, International Journal of
Computers, issue 2, vol. 5, 2011.

17. E. Kouroshfar et al, “Process Patterns for
Component-Based Software Development”, G.A.
Lewis, I. Poernomo, and C. Hofmeister (Eds.):
CBSE 2009, LNCS 5582, pp. 54–68, 2009.

18. J. H. Sharp and S. D. Ryan, “Component-Based
Software Development: Life Cycles and Design

Science-Based Recommendations”, Proc
CONISAR, v2 (Washington DC), 2009.

19. Selcuk Guceglioglu et al, “The Application of a
New Process Quality Measurement Model for
Software Process Improvement Initiatives ", IEEE
11th International Conference on Quality Software,
2011.

20. IEEE 1517, Standard for Information
Technology—Software Life Cycle Processes—
Reuse Processes, IEEE, Piscataway, N.J., 1999.

21. T. Wijayasiriwardhane, R.Lai, K.C.Kang, “Effort
estimation of component-based software
development–a survey”. IET Software, Vol.5, Iss.
2, pp.216–228, 2011.

22. Karpowich, M., Sanders,T., Verge, R.:‘An
economic analysis model for determining the
custom versus commercial software tradeoffs,’ in
Gulledge, T.R., Hutzler, W.P.(Eds): ‘Analytical
methods in software Engineering
economics’,(Springer-Verlag,1993),pp.237–252

23. Stutzke, R. “Costs impact of COTS volatility’.
Proc. Knowledge Summary: Focused Workshop on
COCOMO2.0, Los Angeles, CA,1995

24. Aoyama, M.:‘A component-based software
development methodology’, IPSJ SIG Notes,1996,
96,(84),pp.33–40

25. Abts, C. “Extending the COCOMOII software cost
model to estimate Effort and schedule for software
systems using commercial-off-the-Shelf (COTS)
software components: the COCOTS model”. PhD
thesis, University of Southern California, 2004

26. Naunchan, P., Sutivong,D.:‘Adjustable cost
estimation model for COTS-based development’.
Proc. 18th Australian Software Engineering Conf.,
(ASWEC2007), Melbourne, Victoria, April 2007,
pp. 341–348

27. Khaled Hamdan et al, “The Influence of Culture
and Leadership on Cost Estimation”, UAE
University, Al Ain, UAE and University of
Sunderland, Sunderland, UK

28. M. Rizwan Jameel Qureshi, S. A. Hussain. “A
reusable software component-based development
process model”. 88-94

29. Center for Systems and Software Engineering,
http://csse.usc.edu/csse/research/COCOMOII/coco
mo_main.html

30. IBM Rational Unified Process http://www-
01.ibm.com/software/rational/rup/

31. Navid Hamrahi, Nasir Modiri, “Presenting an
Approach for Establishing Information Security
Project Management Based on PMBOK Standard”,
Life Science Journal, 10(8s), pp. 146-152, 2013.

32. 3/11/2014

