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Abstract: Heavy metals have been used by humans for thousands of years. Although several adverse health effects 
of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in 
some parts of the world, in particular in less developed countries, though emissions have declined in most developed 
countries over the last 100 years. Excessive levels of heavy metals can be damaging to the organism. Some of them 
are dangerous to health or environment (e.g. mercury, cadmium, lead, chromium), some may cause corrosion (e.g. 
zinc, lead), some are harmful in other ways (e.g. arsenic may pollute catalysts). Treating the polluted environment 
with these bioremediators is the most efficient and least costly method. As far as health effects of metals on aquatic 
flora and fauna is concerned, there are two categories of metals; one, which are nutritionally important but 
exceeding concentrations tend to be toxic and other category of metals have no role in the physiology of body and 
are toxic even at low levels. Cu, Zn, Fe, Ni, Co, Se, Mo and Cr are the metals belonging to the first category of 
metals having biological roles,while Ag, Al, Cd, Pb, Hg, As, Sr, and U belong to the second category. There are 
other toxic metals too but these are the major elements which have aroused lot of public sentiments and have been 
extensively studied by the researchers. Maintaining the optimal levels of the elements mentioned by pumping and 
treating is not only expensive but also less effective. Therefore, bioremediation is a viable option but the toxicity of 
contaminants to microorganisms and plants to be used for such purpose have to be considered. Another factor to be 
considered while using biological agents for cleanup is the bioavailability of the metals. Water pH affects the 
speciation and bioavailability to a considerable level, for example, at pH 7, 6811M of cobalt is predicted to exist in 
the free ionic form while only 4.1 iiM of nickel remains in this form. Hence, using a buffering system to maintain 
pH or using lime to increase pH or alum to reduce pH is advisable. 
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Introduction 

Our environment, and especially the aquatic 
environment, has been under focus within the past 
decades because of the large amount of chemical 
substances released into it. Thousands of synthetic 
chemical compounds are currently registered for use in 
industry and agriculture, and thousands of tons of these 
are produced annually.. In addition, several tons of 
more unintended byproducts accompany these 
synthetic compounds. Regardless of the source or 
original intended use, substantial amounts of these 
chemicals end up in the aquatic environment due to 
physico-chemical, hydrologic and atmospheric 
processes. Organic micropollutants such as metals and 
pesticides will only cause detrimental effects to 
organisms if they are taken up by the organism and can 
reach a target site where they can do harm (Escher & 
Hermens, 2004; Schwarzenbach et al., 2006). The 
processes of uptake, biotransformation, and 
elimination, also termed bioaccumulation or 
toxicokinetics, modify the concentration of organic 
chemicals in organisms, and kinetic rate constant 
models of these processes quantify and yield the time 

course of internal concentrations( Landrum et al., 
1992; Mackay & Fraser, 2000; Hendriks et al., 
2001). Bioaccumulation and biotransformation are key 
factors modifying toxicity (McCarty &Mackay, 1993; 
Escher& Hermens, 2002; Meador et al., 2008) and 
bioaccumulation itself is one of the assessment end 
points in risk assessment of chemicals (van Leeuwen 
et al., 2007). Bioaccumulation based on total 
radioactivity measurements of 14C-labeled compounds 
varies greatly among species (Rubach et al., 2010), 
and compounds (Ashauer et al., 2010), but the causes 
remain partially unresolved because the contribution of 
biotransformation cannot be quantified with these 
methods. 

Biotransformation in freshwater arthropods has 
been shown to greatly modify internal concentrations 
of organic chemicals for various biological species and 
chemical compounds (Akkanen& Kukkonen,2003; 
Nuutinen, et al., 2003; Ikenaka et al., 2006; Richter 
& Nagel, 2007). Differentiation between parent and 
metabolites increased accuracy of bioaccumulation 
parameters compared to total 14C measurements. 
Biotransformation dominated toxicokinetics and 
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strongly affected internal concentrations of parent 
compounds and metabolites. Many metabolites reached 
higher internal concentrations than their parents, 
characterized by large metabolite enrichment factors.( 
Roman et al., 2012). 
Microbial Bioremediation of Metals 

Living system requires special transport and 
handling mechanisms to keep them from toxic metals 
(Rehman et al., 2008). The toxicity occurs in humans 
due to environmental pollution via soil or water 
contamination or due to occupational exposure. Some 
of these metals are useful to us in low concentrations 
but are highly toxic in higher concentrations (Ge et al., 
2009). 

Bioremediation processes are very attractive in 
comparison with physicochemical methods such as 
electrochemical treatment, ion exchange, precipitation, 
reverse osmosis, evaporation, and sorption for heavy 
metal removal techniques because they can have lower 
cost and higher efficiency at low metal concentrations 
(Bogdanova et al., 1992; Gadd and White,1993). 

There are a number of bio materials that can be 
use to remove metal from waste water, such molds, 
yeasts, bacteria, and seaweeds (Vieira and Volesky, 
2000; Waisberg et al.,2003). The ability of microbial 
stains to grow in the presence of heavy metals would 
be helpful in the waste water treatment where 
microorganisms are directly involved in the 
decomposition of organic matter in biological 
processes for waste water treatment (Prasenjit and 
Sumathi, 2005; Munoz et al., 2006), because often the 
inhibitory effect of heavy metals is a common 
phenomenon that occurs in the biological treatment of 
waste water and sewage (Filali et al.,2000). 
Mechanisms of metal resistance in microbes include 
precipitation of metals as phosphates, carbonates 
and/or sulfides; volatilization via methylation or 
ethylation; physical exclusion of electronegative 
components in membranes and extra cellular polymeric 
substances (EPS); energy-dependent metal efflux 
systems; and intra cellular sequestration with low 
molecular weight, cysteine-rich proteins (Gadd, 1990; 
Silver, 1996). 

There are some yeast like Rhodotorula 
mucilaginosa which is efficient in lead bioadsorption 
(Chatterjee et al.,2011). Hexavalent chromium (Cr 
(VI)) and trivalent chromium (Cr (III)) are the most 
prevalent species of chromium in the natural 
environment (Chung et al.,2006). 

These identified heavy metal resistant bacteria 
could be useful for the bioremediation of heavy metal 
contaminated sewage and waste water. 
Biotechnological approaches are recommended for 
extraction of metal forms can be grown in ponds where 
effluents (rich in heavy metals) are dis- charged. The 
microbes will extract the heavy metals and sequester 

them inside their cell membranes (Sabyasachi et al., 
2012). 

Organic compounds are detoxified or removed by 
the microbes by converting them into harmless water, 
carbon dioxide and other volatile gases but metals are 
just transformed by the microbes to less soluble or 
bioavailable form (Lovley and Coates, 1997). This 
generally is made possible by converting inorganic 
forms into organic forms by redox conversions and 
coupling in respiratory pathways (Lovley and Coates, 
1997; Tebo et al. 1997). Microbes have capabilities to 
immobilize metals by bioaccumulation and biosorption. 
The process of active uptake of metals by bacteria is 
termed as bioaccumulation while passive uptake is 
called biosorption (Unz and Shuttleworth, 1996). 
Bioaccumulation is an interaction between the 
microorganism and the metal ion in relation to 
metabolic pathways. Metal ions required for biological 
functions are actively taken up by the microbes and 
converted into organic forms. Accumulation of radio 
nucleotides through the pathways of their stable 
isotopes or of chemical homologous elements can be 
considered as bioaccumulation. One such example is of 
accumulation of cesium by potassium channels (Avery, 
1995). 
Biosorption is simply a physiochemical process of 
accumulating metal species by sorption, surface 
complexion, ion exchange and entrapment (Gadd, 
2004; Le Cloirec and Andre A, 2005). The biosorption 
qualities of Saccharomyces cerevisiae have a special 
mention. This is a by-product of fermentation and 
brewery industry and is hence quite cost effective to 
treat water bodies dissolving certain metals (Unz and 
Shuttleworth, 1996; Lovley and Coates, 1997). In 
fact, the dehydrated yeast Candida utilis demonstrated 
improved chromium sorption (Simmons et al., 1995). 
Micrococcus luteus, Pseudomonas aeruginosa and 
Escherichia coli have also been attributed with 
biosorption properties of metals like chromium, copper, 
nickel and cobalt (Churchill and Churchill, 1995). 

Peptidoglycan carboxylic groups of the Gram-
positive bacteria phosphate groups in gram-negative 
bacteria (Beveridge and Doyle, 1989; Schultze-Lam 
et al., 1996; McLean, et al., 2002), chitin in fungal cell 
walls, chitosan and other chitin derivatives (Simmons 
et al., 1995) have been attributed with metal adsorptive 
propertig. Fungal phenolic polymers and melanins 
possess many potential metal binding sites with 
oxygen-containing groups such as carboxyl, phenolic 
and alcoholic hydroxyl, carbonyl and methoxyl groups 
(Gadd and White, 1993). Due to its cost effectiveness 
and easy availability of raw material, this technology is 
being widely appreciated and accepted. This method 
not only remediates effluents and water in the water 
bodies but recovery of soluble metals is also possible 
(Gavrilescu, 2004). This technology is being used as 
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immobilized living biomass mainly in the form of 
bacterial biofilms on inert supports in a variety of 
bioreactor configurations such as rotating biological 
contactors, fixed bed reactors, trickle filters, fluidized 
beds and air-lift bioreactors (Macaskie and Dean, 
1989; Gadd and White, 1993; Schiewer and 
Volesky, 2000; Gadd, 2001). 

Not only microorganisms but also other 
biosorbent substrates like tamaring shell, rice husk, 
cottonseed hull, corncobs, almond and peanut hulls 
have been shown to remove heavy metal ions (Johnson 
et al. 2002; Shen and Duvnjak, 2005; Kumar and 
Bandyoadhyay, 2006; Rao Popuri et al., 2007). 

Bioremediation of certain metals by microbes can 
be affected by mobilization (Gadd, 2004). 
Microorganisms can affect dissolution of metals by 
leaching, chelation while they are metabolized by 
action of siderophores. Once leached or chelated, the 
metals become unavailable for biological functions in 
water. Processes such as methylation of certain metals 
can also volatilize them facilitating the removal from 
water. In general, mobilization is affected by various 
methods like chemoorganotrophic leaching, 
autotrophic leaching, siderophores, biomethylation and 
redox transformations. 
Chemoorganotrophic Leaching (Heterotrophic) 

Microorganisms maintain their charge balance 
through H+ efflux through H+-ATPase pumps so as to 
neutralize metabolic carbon dioxide. This proton efflux 
causes the microenvironment surrounding thebiofilm to 
get acidic and lead to metal release from the soil 
(Gadd, 2004). There is a dynamic equilibrium between 
the metals adsorbed in the soil and metal ions dissolved 
in water. Acidification of water shifts the equilibrium 
and causes the release of ions into water from soil. 
Microbes also release some organic acids that are 
formed during metabolic processes which supply water 
with protons and metal-complexing anions 
(Burgstaller and Schinner, 1993; Gadd, 1999). 
Citrate and oxalate ions have the ability to form 
complexes with a wide variety of elements (Gadd, 
2001). 

Metallocitrate ions are very stable and hard to 
break thereby removing many metals from water 
(Francis, et al., 1992). Oxalate forms stable complexes 
with Al, Li, Mn and Fe (Strasser, et al., 1994). Acid 
producing fungi is a better appThach for 
bioremediation as they can tolerate a wider fluctuation 
in pH than bacteria (Burgstaller and Schirmer, 1993). 
Some of the acid producing fungi are Yarrowia 
lipolytica (citric), Mucor spp.(fumaric and gluconic), 
Rhizopus spp. (lactic, fumaric and gluconic), 
Aspergillus niger (citric, oxalic, gluconic), Aspergillus 
spp. (citric, tartaric, malic, a-ketoglutaric, itaconic, 
aconitic), Penicillium spp. (citric, tartaric, malic, α--
ketoglutaric, gluconic) and Scliizophyllum coyqune 

(malic) (Burgstaller and Schirmer, 1993). 
Autotrophic Leaching 

Some bacteria oxidize ferfous ions or reduce 
sulphur so as to obtain energy. Such a chemical change 
results in solublization of metals as the end product is 
usually Fe(III) or H2SO4 which are soluble (Rawlings, 
1997; Schippers and Sand, 1999). Such bacterial are 
called chemoautotcohic, chemolithotrophic and 
acidophilic bacteria which fix carbon by obtaining 
energy from such chemical reactions (Gadd, 2001). 
Organic acids act as carbon substrates which are 
oxidized completely to CO2 or to some other organic 
intermediates. The ATPs are produced through electron 
transport chain with sulphur as terminal electron 
acceptor which is reduced to sulphide (Hansen, 1993; 
Peck Jr, 1993). The sulphide so generated form metal 
sulphide and gets precipitated. Sulphur reducing 
bacteria are essentially anaerobic (White, et al., 1998). 
Some of the bacterial species used in 13ioremediation 
are: sulphur oxidizing Thiobacillus thioxidans, Iron and 
sulphur oxidizing T. ferroxidans, Iron oxidizing 
Leptospirillum ferroxidans (Ewart and Hughes, 1991; 
Bosecker, 2006). Autotrophic reduction of sulphuric 
acid causes metag to soublize from sewage and sludge 
(White et al., 1998). Both sulphate and iron reducing 
bacteria have been used to treat the mine waste water in 
artificial wet, lands (Harnmack and Edenborn, 
1992). 
Siderophores 

Siderophores (from the Greek: "iron carriers") are 
defined as relatively low molecular weight, ferric ion 
specific chelating agents released by bacteria and fungi 
growing under low iron stress (Neilands, 1995). 
Bacteria producing siderophores have been used to 
treat metal contaminated sandy soils. 

Alcaligenes eutrophus is used to solublize metal 
from contaminated soils which can be removed by 
biosorption techniques as mention earlier. This method 
has been used effectively for reduction of Cd, Zn.and 
Pb from contaminated soils (Diels, et al.,1999). 
Biomethylation 

Microbes can methylate metals so as to yield 
volatile derivatives such as dimethylselenide and 
trimethylarsine (Brady, et al., 1996; Dungan and 
Frankenberger, 1999; Gadd, 1993). Selenium 
methylation has been widely discussed and the 
probable mechanism is by transfer of methyl group to 
selenium by S-adenosyl methionine system (Gadd, 
1993). Mediation of Hg, As, Se, Sn, Te and Pb by 
bacteria has been discussed by Gadd, (2004). 
Bioremediation of Petroleum Contaminants 

Petroleum and its components drive the present 
civilization and are the major energy sources. But, 
where there is use there is a chance for abuse too. 
Hence, being the prime source of energy, petroleum is 
also a major environment pollutant. Since 1992, there 
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have been 21 major oil spills causing huge economic 
and immeasurable non-economic losses (Cedre, 2012. 
http:/www.endgame.org/oilspills.htm). Petroleum 
contamination is quite harmful for the higher 
organisms (Lyons, et al., 1999; Janjua et al, 2006; 
Cheong et al., 2011) but it is fortunate that micf6 
organisms can thrive on it and assimilate (Atlas, 1995; 
de Oliveira et al., 2012). Soon after major oil spill 
incident is reported, the efforts are concentrated at 
physical removal of oil but they rarely achieve 
complete clean up. As per Office of Technology 
Assessment (OTA; USA), such mechanical methods 
are efficient at removing no more than 10-15 per cent 
of oil after a major spill. In such cases, bioremediation 
has a major role to play in neutralizing the harmful 
effects of oil in the open environment. The basic 
principle is to use organisms that can use petroleum as 
carbon source and hence, break them down to harmless 
end products. 

Like any other technology that uses biological 
agents, success of bioremediation of petroleum 
contamination also depends on establishing and 
maintaining conditions that favour proliferation of 
petroleum scavenging microorganisms. 
Bioaugmentation and Biostimulation are the two main 
approaches followed in this regard. Bioaugmentation 
refers to inoculating the affected area with degrading 
microorganisms while biostimulation would require 
favouring growth of such microorganism through 
addition of nutrients or by providing other growth-
limiting substrates (e.g. oxygen, surf washing etc.). As 
petroleum is hydrophobic in nature, its bioavailability 
becomes a major constraint in the process of 
bioremediation. Use of biosurfactants is a common 
approach to increase the bioavailability. Requirements 
of a successful bioremediation process of petroleum 
contamination are as follows: 

The very first requirement is the availability of 
microorganisms that can utilize oil as a metabolic 
substrate. Finding and transplanting such an organism 
to the site of contamination would be the first 
approach. Jones et al. (1983) reported for the first time 
biodegraded petroleum byproducts in marine sediments 
(Das and Chandran, 2010). Enzymatic degradation of 
petroleum can be achieved by bacteria, algae or fungi. 
Different organisms have varied degradation 
capabilities and act on different substrates. As 
petroleum is an assortment of different components, it 
is advisable to use a cocktail of organisms to effect 
remediation. Bacteria are the most efficient of all 
organisms that can degrade hydrocarbons (Rahman et 
al., 2003; Brooijmans 2009. Floodgate, (1984) 
mentioned 25 genera of hydrocarbon degrading 
bacteria" and 25 genera of hydrocarbon degrading 
fungi which were isolated from marine environment. 

Some of the bacteria recognized as hydrocarbon 

degrading are Arthrobacter, Burkholderia, 
Mycobacterium, Pseudomonas, Sphingomonas, 
Rhodococcus, Pseudomonas fluorescens, P. 
aeruginosa, Bacillus subtilis, Bacillus sp., Alcaligenes 
sp., Acinetobacter lwoffi, Flavobacterium sp., 
Micrococcus roseus, and Corynebacterium sp. (Jones 
et al., 1983; Adebusoye et al., 2007). Some fungal 
genera utilized for this purpose are A-inorphoteca, 
Neosartorya, Tal aromyces, Graphium, Candida 
lipolytica, Yarrowia, Pichia, Aspergillus, 
Cephalosporium, Rhodotorula mucilaginosa, 
Geotrichum sp, Trichosporon mucoides and Pencillium 
(Boguslawska-Was and Dabrowski, 2001; Chaillan 
et al., 2004; Singh, 2006). Alter the potential 
scavengers have been identified, the conditions for 
their survival and proliferation have to be ascertained. 

Among the physical factors temperature is most 
important one determining the survival of 
microorganisms and composition of the hydrocarbons 
(Das and Chandran, 2010). At higher temperature 
some fraction may get evaporated and the oil would 
tend to spread while in low temperature the slick would 
be more viscous and retention of otherwise volatile 
fractions thereby delaying the bioremediation process. 
For freshwater bioremediation process 20-30°C is the 
ideal temperature while for marine 15-20°C is 
recommended. For high molecular weight polycyclic 
hydrocarbons, which are otherwise difficult to degrade, 
higher temperatures may be required (Bartha and 
Bossert, 1984; Cooney, 1984). As temperature has 
effect on enzymafic turnover rate "Q10" hence, higher 
temperature would favour bioremediation. It was 
reported that the rate of hydrocarbon remediation was 
maximum in the range of 30-40°C in general and above 
this, the membrane toxicity effect of hydrocarbons was 
found to inhibit the survival of microorganisms 
(Bartha and Bossert, 1984). As there is a close 
relationship between temperature and oil 
bioremediation, it is easy to understand why an oil leak 
disaster would be dangerous in polar regions. 
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