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Abstract: A new four-stage sixth order  Runge-Kutta method for direct integration of special third order ordinary 
differential equations (ODEs) is constructed. The method is proven to be zero-stable. Stability polynomial of the  
method for linear special third order ODE is given. A set of test problems consisting of ordinary differential 
equations is tested upon. The problems  are solved using the new method and numerical comparisons are made when 
the same problems are reduced to a first order system of ODEs and solved using the existing Runge-Kutta methods  
of different orders. Numerical results have clearly shown the advantage and the efficiency of the new method in 
terms of accuracy and computational time.  
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1. Introduction 
Generally speaking, a special third order differential 
equations (ODEs) of the form : 
 

y���(t) = f�t, y(t)� ,                t ≥ t�,                    (1) 
 

with initial conditions 
y(t�) = α ,  y�(t�) = β,  y��(t�) = γ,    

 
where  f ∶R × R → R  which are not explicitly 
dependent on the first derivative ��(�) and the second 
derivative ���(�) of the solution are frequently found 
in many physical problems such as electromagnetic 
waves, thin film flow and gravity driven flow [1]. 
Most researchers, scientists and engineers used to 
solve (1) by converting the third order differential 
equations to a system of first order equations three 
times the dimension. However, it is more efficient if 
the problem can be directly solved using numerical 
methods. Such a type of work can be seen in 
Awoyemi and Idowu [2], Waeleh et al. [3], Zainuddin 
[4] and Jator [5]. All methods previously discussed 
are multistep methods; hence they need the starting 
values when used to solve ODEs (1). In this paper, we 
are concerned with the one-step method particularly 
the Runge-Kutta method of order six for directly 
solving third order ordinary differential equations. 
Accordingly, we have developed a direct Runge-
Kutta(RKD) method which can be directly used to 
solve (1). The advantage of the new method over 
multistep methods is that it is self starting. 

Stability polynomial of the method when applied to 
linear third order ODE is also presented. Numerical 
results on a set of problems consisting of ordinary 
differential equations is given and compared with the 
numerical results when the problems are reduced to a 
system of first order ODEs and solve using Runge-
Kutta methods. 
 
2. Derivation of RKD Method 
 
The general form of RKD method with �-stage for 
solving initial value problem (1) can be written as  
 

y��� = y� + hy�
� +

��

�
y�

�� + h� ∑ b� k�,                          (2)�
�� �   

 
y���

� = y�
� + hy�

�� + h� ∑ b�
� k�  ,                                            (3)�

�� �   
 
y���

�� = y�
�� + h ∑ b�

�� k�
�
�� � ,                                                    (4)   

 
where 
 
k� = f(t�, y�)                                                                            (5) 

k� = f �t� + c�h, y� + hc�y�
� +

(c�h)�

2
y�

��

+ h� � a��k�

�� �

�� �

�                                     (6) 

 for  i=2,3,...,s. The parameters of  RKD method are 
c�, a��, b� ,  b�

� , b�
�� for   �= 1,2, … , �  and  j=1,2,...,s   

are assumed to be real. If  a��= 0  for  i< j,  it is an 
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explicit method and otherwise implicit method. The 
RKD method can  be expressed in Butcher notation 
using the table of coefficients as follows. 
 

C A 
 ��  

�′�  
�′′� . 

 
To determine the coefficients of the RKD method, the 
expressions given in (2)-(6) are expanded using 
Taylor's series expansion. After some algebraic 
manipulations this expansion is equated to the true 
solution which are given by Taylor's series expansion.  
General order conditions for the RKD method can be 
found from the direct expansion of the local truncation 
error. The order conditions can be found in Mechee et 
al. [1] which introduced the three-stage fifth-order 
Runge-Kutta Method for directly solving special 
third-order ODEs with application to thin film flow 
problem. 
 
3.The Order Conditions of the Method 

From Mechee et al. [1] we derived the order 
conditions of RKD method up to order six. In this 
paper using the same technique, we derive the seventh 
order conditions. The order conditions for four-stage 
sixth-order RKD method can be written  as follows: 
 
Order conditions for  � 
 
 Order 3 
 

� �� =
1

6
                                                                                  (7) 

 
Order 4 
 

� ���� =
1

24
                                                                             (8) 

 
Order 5 
 

∑ b� c�
� =

�

��
                                                                             (9)    

 
Order 6 
 

� b� c�
� =

1

120
, � b� a�� =

1

720
                                   (10) 

 
Order 7 
 

� �� ��
� =

1

210
, � �� ����� =

1

1260
 , 

 

� �� ��� �� =
1

5040
                                                             (11) 

Order conditions for  �� 
 
Order 2 

 
∑ ��

� =
�

�
                                                                                   (12)  

 
Order 3 

 
∑ ��

��� =
�

�
                                                                                (13)  

 
Order 4 

 
∑ ��

���
� =

�

��
                                                                             (14)  

 
Order 5 

 

� ��
���

� =
1

20
, � ��

����=
1

120
                                         (15) 

 
Order 6 

 

� ��
���

� =
1

30
, � ��

������ =
1

720
 ,   

 
∑ ��

������ =
�

��� 
                                                                      (16)   

 
Order 7 

∑ ��
���

� =
�

��
, ∑ ��

������
� =

�

����
 ,               

 

� ��
���

����=
1

252
                                                                 (17) 

 

Order conditions for  ��� 
 
Order 1 

 
∑ ��

�� = 1                                                                                  (18)     
 
Order 2 

 
∑ ��

���� =
�

�
                                                                               (19)    

 
Order 3 

 
∑ ��

����
� =

�

�
                                                                              (20)     

 
Order 4 

 

� ��
����

� =
1

4
, � ��

����� =
1

24
                                           (21) 

 



Life Science Journal 2014;11(3)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  401

Order 5 

 

� ��
����

� =
1

5
, � ��

������� =
1

120
 ,             

 

� ��
���� ��� =

1

30
                                                                  (22) 

 
 
Order 6 
 

� ��
����

� =
1

6
, � ��

����
� ���=

1

36
 ,             

 

� ��
�� �����

� =
1

360
, � ��

���� ����� =
1

144
    

 
                                                                                                 (23) 
Order 7 
 

� ��
����

� =
1

7
, � ��

����  ��� ��
� =

1

420
 ,            

 

� ��
�� ��� ��� =

1

252
                                                           (24)  

 
 
All  indices are from 1 to �. 
 
4. Zero Stability of the Methods  

Next, we will discuss the zero-stability of the 
method it is one of the criteria for the method to be 
convergent. Zero-stability is an important tool for 
proving the stability and convergence of linear 
multistep methods. The interested reader is referred to 
the textbooks by Lambert [6] and Butcher [7] in 
which zero-stability is discussed. Zero-stability has 
been discussed in Hairer et al. [8] where it is used to 
determine an upper bound on the order of 
convergence of linear multistep methods. In studying 
the zero stability of RKD method, we can write 
method (2)-(4) as follows 
 

�
1 0 0
0 1 0
0 0 1

� �

����

ℎ����
�

ℎ�����
��

�

= �
1 1

1

2
0 1 1
0 0 1

� �

��

ℎ��
�

ℎ���
��

�                                               

 
�(�) = |�� − �| 

 

�(�) = �
� − 1 −1 −

1

2
0 � − 1 −1
0 0 � − 1

�  

 
Thus the characteristic polynomial  is  

 
�(�) = (� − 1)�                                        

 
 Hence, the method is zero-stable  since the roots are ε 
=1,1,1, are less or equal to one. 
 

5. Derivation of RKD Methods 
The RKD method of �-stage and ��� order 

can be derived by solving the order conditions of the 
method. The system of nonlinear equations(order 
conditions) of the method depend on �. The existence 
of the solutions of this system depends on the number 
of coefficients of the method. Which depends on the 
stage of the method in addition to the number of 
independent order conditions of the method. 
 
5.1 Derivation of four-Stage Sixth-Order RKD 
Method 

To derive the four-stage and sixth-order 
RKD method, we use the algebraic conditions  up to 
order six in the equations of order conditions in �, �� 
and ��� (7)-(10), (12)-(16) and (18)-(23) respectively. 
The resulting system of equations consists of 26 
nonlinear equations with 21 unknowns variables to be 
solved. To get sixth-order RKD method, the 
simplifying assumption  ��

� = ��
��(1 − ��), for i=1,…,4 

is used in order to reduce the number of equations to 
be 22 nonlinear equations. Consequently, there is a 
solution with one free parameter ���, however the 
arbitrary parameter can be chosen using minimization 
of the truncation error. Accordingly Dormad and 
Prince [9] the free parameters can be chosen by 
minimizing the global error of the seventh order 
conditions. The technique is as follows; 
 
First: we find the error coefficients of  y, y�, and   y��  

respectively  as the following:  

���(�)��
�

= � � ��
�

(�)
�

�
����

�� �

 , ����(�)��
�

= � � ��
�
�(�)

�
�

��
� ��

�� �

, 

 

�����(�)��
�

= � � ��
�
��(�)

�
�

��
����

�� �

.                                              (25) 

Second: we find the global error norm as the 
following: 
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���(�)
���

�

= � � ��
�

(�)
�

�
+ � ��

�
�(�)

�
�

+ � ��
�
��(�)

�
�

��
����

�� �

��
� ��

�� �

����

�� �

 , (26) 

Finally, we minimize the four truncation errors in 
(25)-(26) with respect to the free parameter a�� =
0 leads to the error norms for  y� ,   y�

�    and y�
��  are 

given by 

 
���(�)��

�
= 1.2097961976× 10� �, 

����(�)��
�

= 1.390534737× 10� �, 

���′′(�)��
�

= 1.150474161× 10� �, 

respectively and the global error is 

���(�)
���

�
= 2.172736637× 10� � 

 
where  τ(�) , τ�(�)  and  τ′′(�)  are error terms of the 
seventh-order conditions for  y� , y�

�    and  y�
��   

respectively. The four-stage six-order  RKD method is 
denoted by RKD6  which can be expressed in the 
following Butcher tableau  in  table1. 
 

0 
 
0.10125422 3  
 
0.193823319 
 
0.88591296 0  
 

0 
 
 0.000173018 
 
-0.014304529   0.024538837 
 
 0                       0.080405561    0.035478021 
 

  
 -0.00715226 1   0.114340881  0.057618019  0.001829997 
 
 - 0.014304528   0.25444544 5 0.2277783711 0.032080713 
 
 -0.0113015280  0.283111997  0.1199977573 0.281195071 
 

Table 1: Butcher tableau for RKD6 method. 
 
6. Absolute Stability of the method when applied  
    to third order ODE 
 
In studying the linear stability of the method , we 
apply the test equation y��� = −α�y. We consider 
formula (2)-(4) which can be written as follows: 

���� = �� + ℎ��
� +

ℎ�

2
��

�� + ℎ� � ��( −����)              (27)

�

�� �

 

    
����

� = ��
� + ℎ��

�
�

+ ℎ� ∑ ��
�( −����)                         (28)�

�� �   

   
����

�� = �′�
� + ℎ ∑ ��

��( −����)�
�� � ,                                     (29)   

 
where 

�� = �� + ��ℎ��
� +

ℎ�

2
��

���
�� + ℎ� � ��� 

�

�� �

( −����))      (30) 

       
for i = 1,2, … , s     and by multiplying equations (28) 
and (29) by h  and  h�  respectively we obtain 
 

���� = �� + ℎ��
� +

ℎ�

2
��

���
�� + ℎ� � ��( −����)         (31)

�

�� �

 

    
ℎ����

� = ℎ��
� + ℎ���

�
�

+ ℎ� ∑ ��
�( −����)                  (32)�

�� �   

   
ℎ�����

�� = ℎ��′�
� + ℎ� ∑ ��

��( −����)�
�� �                           (33)  

 
where 

 

�� = �� + ��ℎ��
� +

ℎ�

2
��

���
�� + ℎ�� � ��� 

�

�� �

��                   (34) 

� = 1,2, … , � .     
 
We can write equations (31)-(33) in the following 
matrix form: 
 

���� = �
1 1

1

2
0 1 1
0 0 1

� �� + �ℎ� �

�� �� ��

��
� ��

� ��
�

��
�� ��

�� ��
��

� �
��

��

��

� 

 
where 

 

�� = �

��

ℎ��
�

ℎ���
��

� 

 
 
 
and equation (34) can be written in the following form 
: 
 

⎝

⎜
⎛

��

��

..

.
�� ⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

1 0 0

1 ��

��
�

2. . .. . .
. . .

1 ��

��
�

2 ⎠

⎟
⎟
⎟
⎞

�� + �

⎝

⎜⎜
⎛

0 … 0
��� … 0

. . .

. . .

. . .
��� . . . ���⎠

⎟⎟
⎞

�
��

⋮
��

�, 

 
where 

� = (�ℎ)�. 
 
Hence 

���� = �(�)�� 

 
where 
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�(�)

= �
1 + ��� �� �� 1 + ��� �� ��

1

2
+ ��� �� ��

���� �� �� 1 + ���� �� �� 1 + ���� �� ��

����� �� �� ������� �� 1 + ������� ��

� 

                                                                                   (35) 
 

e = (1 1 … 1)�, c = (0 c� … c�)�, 
 

                             d = �0 
��

�

�
 

��
�

�
…  

��
�

�
�

�

 

and                     N� � = I − HA 

 

A =

⎝

⎜
⎛

0 0 0
a�� 0 0

. . .. . .
. . .

a�� a�� a��⎠

⎟
⎞

, 

 

B = �

b� … b�

b�
� … b�

�

b�
�� … b�

��
� , 

 
and 
 

C =

⎝

⎜
⎜
⎜
⎜
⎛

1 0 0

1 c�

c�
�

2. . .
. . .
. . .

1 c�

c�
�

2 ⎠

⎟
⎟
⎟
⎟
⎞

. 

 
The stability function associated with this  
 
method is given  by 
 

φ(ϑ, H) = |ϑI − D(H)| 
 
where D(H) defined in (35) is a stability matrix and its 
characteristic equation can be written as 
 

P(ϑ, H) = p�(H)ϑ� + p�(H)ϑ� + p�(H)ϑ + p�(H). 
 
7. Numerical Results 
       In this section a set of third order ordinary 
differential equations are solved using RKD6  method 
of order six and numerical results are compared with 
the existing RK methods of the orders four, five and 
six.  
 
The following notations are used in Figures (1)-(4): 

 h        : Stepsize used. 

 RKD6: The Direct Rung-Kutta method of  
            order six derived in section 6. 

 RK4  :  Existing Runge-Kutta method order   

            four as  given in [6] 

 RK5   : Existing Runge-Kutta method five as 
given in Dormand [9]. 

 RK6    : Existing Runge-Kutta method six as    
             given in  [7 ]. 

 Total time  : The total time in second to 
solve the problems.  

 MAX ERROR:  Max | y(x)-��| Absolute value 
of the true solution minus the computed 

solution. 
Problems of ODEs 
Problem 1(Homogenous linear) 
 
y���(t) = −y(t)                              0 < � < �       
Initial conditions 
y(0) = 1, y�(0) = −1, y�′(0) = 1, 
Exact solution   y(t) = �� �, � = 1. 

 
Problem 2(Non homogenous linear) 
 
y���(t) = −e� �                               0 < � < �        
Initial conditions 
y(0) = 1, y�(0) = −1, y��(0) = 1, 
Exact solution   y(t) = �� �, � = 1. 
 
Problem 3(Homogenous non linear) 
 

y���(t) =
�

���(�)
,                        0 < � < �       

Initial conditions 

y(0) = 1, y�(0) =
1

2
, y��(0) = −

1

4
, 

Exact solution   y(t) = √1 + � , � = �. 
Problem 4(Non homogenous linear) 
y���(t) = −6y�,                            0 < � < �        
Initial conditions 
y(0) = 1, y�(0) = −1, y��(0) = 2, 

Exact solution   y(t) =
�

���
 , � = �. 

 
Figure 1: log Max Errors versus computational 

time for Problem1. 
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Figure 2: log Max Errors versus computational time 
for Problem 2. 

 
Figure 3: log Max Errors versus computational 

time for Problem3. 

 
Figure 4: log Max Errors versus computational time 
for Problem4. 

 
8. Discussion and Conclusion  

In this paper, we derived RKD method of 
four stage, sixth order. The zero-stability of the 
method is proven. Stability polynomial of the method 

when applied to linear third order ODE is also given. 
We used the method for solving special third order 
ODEs. Numerical results show that the RKD method 
is more accurate and requires less computational  time 
compared to the existing RK methods when used to 
solve special third order ordinary differential 
equations. 
 
Corresponding Author: 
Mohammed Mechee  
Department of Mathematics,  
Faculty of Mathematics and Computer 
Science, Kufa university, Najaf, Iraq 
E-mail: mohsabd@yahoo.com 
 
References 
1. M. Mechee, N. Senu, F. Ismail, B. Nikouravan 

and Z. Siri, "A Three-stage Fifth-order Runge-
Kutta Method for Directly Solving Special Third 
Order Differential Equation with Application to 
Thin Film Flow Problem", Mathematical 
Problems in Engineering, vol. 2013, Article ID 
795397,2013. 

2. D. O. Awoyemi, O. M. Idowu, "A Class  of 
Hybrid Collecations  Methods for Third-Order 
Ordinary Differential Equations", International 
Journal of Computer Mathematics, vol. 82,  
pp.1287--1293, 2005. 

3. N. Waeleh, Z. A. Majid, F. Ismail, " A New 
Algorithm for solving Higher Order IVPs of 
ODEs",  Applied mathematical Science, 
vol. 5, pp. 2795--2805., 2011. 

4. N. Zainuddin, "2-point Block Backward 
Differentiation formula for solving Higher Order 
ODEs", PhD Thesis, Universiti Putra Malaysia, 
2011. 

5. S. N. Jator, "Solving Second Order Initial Value 
Problems By A Hybrid Multistep Method without 
Predictors", Applied Mathematics and 
Computation, vol. 217, pp. 4036--4046, 2011. 

6. J. D. Lambert, "Numerical Methods for Ordinary 
Differential Systems, The Initial Value Problem", 
John wiley & Sons Ltd., England, 1991. 

7. J. C. Butcher, "Numerical Methods for Ordinary 
Differential Equations", John Wiley and Sons, 
Ltd., England, 2008. 

8. E. Hairer, S. P. Norsett, G. Wanner, "Solving 
Ordinary Differential Equations I: Nonstiff 
Problems",  Springer, 2nd edn., Berlin, 2010. 

9. J. R. Dormand, "Numerical Methods for 
Differential, A computational Approach",  CRC 
Press, Inc., Florida, 1996.  

 
9/2/2013 


