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1. Introduction 

The dynamics of population growth is one of the 
most important areas of research in the field of 
mathematical biology. In fact the research in this area 
is being conducted for the past few decades. There are 
several papers where analytical and numerical results 
are reported. Additionally, there are other forms of 
mathematical analysis that are seen in several other 
papers in the context of population growth models [1-
20]. 

It is about time to focus the issue of population 
growth in a slightly generalized tone. So, the burning 
question is "What happens when the evolution term is 
made fractional?" This question will be answered in 
this paper after considering the model equation in 
(2+1)-dimensions with temporal evolution term being 
fractional. 

Jumarie [8] presented a modification of the 
Riemann-Liouville definition which appears to provide 
a framework for a fractional calculus. This 
modification was successfully applied in the 
probability calculus, fractional Laplace problem, exact 
solutions of the nonlinear fractional differential 
equation and many other types of linear and nonlinear 
fractional differential equations. Lu [9] applied the 
modified Riemann-Liouville derivative with properties 
and first integral method to obtain exact solutions of 
some fractional nonlinear evolution equations. In this 
present paper, we apply the first integral method to 
study the nonlinear time fractional biological 
population model by using the first integral method. 

The paper is arranged as follows. In Section 2, we 
describe briefly the modified Riemann-Liouville 
derivative with properties and first integral method. In 

Section 3, we apply this method to the nonlinear time 
fractional biological population model. 
 
2. Jumarie's Modified Riemann-Liouville Derivative 
And First Integral Method 

Jumarie's modified Riemann-Liouville derivative 
of order is defined by the following expression [8] 
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which are direct consequences of the equality 

( ) (1 ) ( )d x t dx t    . 
The main steps of the first integral method [9] are 

summarized as follows. 
Step-I: We first consider a general form of the time 
fractional differential equation 
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To find the exact solution of Eq. (7) we introduce 

the variable transformation 
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where l  and   are constants to be determined 

later. 
Using Eq. (8) we can write Eq. (7) in the folowing 

nonlinear ordinary differentia equation (ODF): 

2( ) ( )
( ), , , ... 0, (9)

2

dU d U
Q U

d d

 


 

 
  
 
   

where ( )U   is an unkown function, Q  is a a 

polynomial in the variable ( )U   and its derivative. If 
all terms contain derivatives, then Eq. (9) is integrated 
where integration constants are considered zeros. 
Step-II: We assume that Eq. (9) has a soution in the 
form 
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Step-III: By using the Division Theorem for two 

variabes in the complex domain C  which is based on 
the Hilbert-Nullstensatz Theorem [12], we can obtain 
one first integral to Eq. (11) which can reduce Eq. (9) 
to a first-order integrabe ordinary differential equation. 
An exact solution to Eq. (7) is then obtained by solving 
this equation directly. 

Division Theorem: Suppose that ( , )P v  and ( , )Q v  

are poynomial in [ , ]C v ; and ( , )P v is irreducibe in 
[ , ]C v . If ( , )Q v  vanishes at all zero points of 
( , )P v  , then there exixts a poynomial ( , )G v  in 
[ , ]C v

 such that 
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3. Application To Population Growth Model 
We consider the nonlinear time fractional 

biolgical population model [8, 13] : 
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where h, r are constant. 
Uunder the traveling wave transormation 
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implies 
| 0(18)

dQ

d


 . According to the Division 
Theorem, there exists a polynomial g(X)+h(X)Y  in the 
complex domain C such that 

. .

( ( ) ( ) ) ( ) (20)

0

dQ dQ dX dQ dY

d dX d dY d

N
ig X h X Y a X Yi

i

  
 

 




 
Suppose that N=1 in (19). By comparing with the 

coffecients of ( 2,1, 0)iY i   on both sides of (20), we 
have 
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Substituting (24) int (22), we obtain 
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 and ( )g X into (23) 
and setting all the coefficients of power X to be zero, 
then we obtain a system of nonlinear algebraic 
equations and by solving it we obtain 

1 1
2 , 2 , 3 2 (26)0 1

4 4
B hr B h hr     

 
and 

1 1
2 , 2 , 3 2 (27)

4 4
0 1B hr B h hr        

 
where h and r are arbitrary constants. 
Using the conditions (26) and (27) in Eq. (19), we 

obtain 
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Combining this first integral with system (18), the 

second order differential Eq. (15) can be reduced to 
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where 0  is arbitrary constant. 
Thus, we have an exact peaked wave solution of 

nonlinear time fractional biological population model 
in the following form 
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The domain restrictions or constraint conditions 

for (31) are r>0 and h<0. 
 
4 Conclusions 

In this paper, we extended the first integral 
method to construct the exact solution of the population 
growth model with fractional temporal evolution. The 
result shows that this method is efficient in finding the 
exact soliton solutions of some nonlinear fractional 
differential equations. We predict that the first integral 
method can be extended to solve many systems of 
nonlinear fractional PDEs in mathematical and physical 
sciences. These results will be reported in future. 
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