
Life Science Journal 2014;11(2s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 141

Efficiency upgrade of different desktop-type computers when solving numerical problems

Artem Sergeevich Khoroshev, Vladimir Sergeevich Puzin, Denis Aleksandrovich Tchoutchkin, Ekaterina
Viktorovna Shevchenko, Denis Vladimirovich Batishchev, Andrey Arturovich Gummel

Platov South-Russian State Polytechnic University (Novocherkassk Polytechnic Institute), Novocherkassk, Russia

Abstract. The article deals with the problems of direct solution methods for ill-conditioned systems of higher order
linear equations when simulating electromagnetic fields by finite difference method, using computer systems with
limited hardware resources, such as personal computers. Author gives recommendations on selection of direct
solution techniques and ordering methods, as well as the software for implementing these methods to ensure the
effective use of available hardware resources and increase the speed of numerical problems solution.
[Khoroshev A.S., Puzin V.S., Tchoutchkin D.A., Shevchenko E.V., Batishchev D.V., Gummel A.A. Efficiency
upgrade of different desktop-type computers when solving numerical problems. Life Sci J 2014;11(2s):141-
145] (ISSN:1097-8135). http://www.lifesciencesite.com. 24

Keywords: Ill-conditioned systems, simulating electromagnetic fields, selection of direct solution techniques and
ordering methods.

Introduction

Numerical simulation of electromagnetic
field, using the finite element method (hereinafter
FEM), is currently used very widely. After building a
finite element mesh, most of the computational work
is required to solve the simultaneous linear algebraic
equations (SLAE), arising in the discretization of the
equations, describing the simulated physical
processes. Solution of the corresponding SLAE in
case of small order (up to 200), usually does not
cause any difficulties when using the majority of both
iterative and direct methods. However, increasing the
order of the matrix and/or the conditioning number
may cause complexity due to insufficient
convergence rate of iterative methods [1] or a sharp
increase in solution time, if based on direct solution
methods due to their high computational complexity.

The need to solve numerical problems using
FEM requires partitioning the computational domain
into a large number of finite elements and may occur
in the simulation of electromagnetic and other fields
in the computational domains, containing explicit
geometric heterogeneity that leads to the need for
local multiple condensation of a finite element mesh.
The same technique may be used when
approximating computational domain objects with
very high accuracy. In such cases, the number of
finite elements in a mesh of the computational
domain may reach several tens of millions. Such
values are typical for computational domains that are
based on complex non-symmetric geometrical
models. This requires the solution of SLAE of a
specific order. In this case, simulation of
electromagnetic fields may be accompanied by
complications due to limitations in available
computing resources. This is relevant to personal

computers used by design engineers, even in the case
of high-performance computing systems, so-called
"workstations".

High order SLAE is usually solved by
iterative methods, because direct methods exhibit a
high computational complexity and require a lot of
random access memory (RAM). The efficiency of
iterative methods for solving SLAE has been well
studied, and areas of their effective application are
well identified [1, 2]. However, in case of system
matrices with a large conditioning number (of 6-8th
order), the iterative methods may require the
fulfillment of a very large number of iterations for
providing a given accuracy when solving SLAE. This
will require considerable time, which is especially
true for system matrices of the order of several
hundreds of thousands or even millions. In such cases
it may be advisable to apply direct methods for
solving SLAE or a combination of the direct method,
as a preconditioning technique, and iterative method
for solving SLAE. Efficiency and productivity of
such problems solution, when using direct solution
methods, significantly depends on the choice of
mathematical methods, algorithms and proper
software, used in the mathematical simulation.
Further we consider special aspects when choosing
mathematical methods and algorithms for solving the
high resolution problems (based on the finite element
mesh, containing several millions finite elements)
using direct solution methods of SLAE on the
example illustrating selection of a general
environment for the treatment of discrete problems
(GetDP) [3, 4].

Life Science Journal 2014;11(2s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 142

Main part.
Environment for solving discrete problems

of GetDP, if used the PETSc toolkit, provides the
possibility of using direct methods for solving SLAE:
LU - decomposition, QR-decomposition, and
Cholesky decomposition. Besides, there is an
opportunity to select appropriate software (solver) to
implement these methods. In addition, direct methods
for solving SLAE can be used as SLAE
preconditioning methods with subsequent solution of
SLAE using Krylov subspace methods, such as
GMRES, CG, BiGGStab, MINRES, and other [5].
Next, we will consider the selection features of
software components that implement the
mathematical operations, required for solving SLAE
using MUMPS solver.

Using MUMPS involves the employment of
LU-decomposition and the Cholesky decomposition
as both direct solution methods and preconditioning
techniques to be used with iterative methods for
solving SLAE by means of PETSc tools.

Direct methods of solving SLAE are
characterized by a high computational complexity.
The LU-decomposition is characterized by
computational complexity, which is proportional to
the cube of the input data volume:

Cholesky decomposition is also
characterized by the same computational complexity,
proportional to the cube of the input data volume,
though requires half the number of operations in
comparison with LU-decomposition. Accordingly,
the increase of computational complexity when
increasing the scale of the numerical problem leads to
a nonlinear increase in task-time. Furthermore, the
use of direct solution methods for SLAE places high
demands on the computer storage capacity, required
to store data that is generated during the execution of
the required operations. However, the solution of
engineering problems often requires rapid results of
concomitant numerical simulation of various
processes, taking place in designed devices. This
imposes a limit on the time, allowed for the
numerical solution of the problems within the
numerical simulation.

When solving numerical problems,
including the direct methods of solving SLAE, one
can shorten task-time either by using hardware with
more computing power, or by selecting the software
that allows the best use of processing power of
available hardware.

To perform operations on matrices (for LU-
decomposition and Cholesky decomposition),
MUMPS uses instructions and a set of basic routines,
available in the BLAS/LAPACK software (shared
libraries) [6]. This allows the user to choose the
alternative implementation of BLAS, which will

provide the best performance on the available
hardware. This remains pertinent for modern
architecture of central processor units (CPU) of
personal computers (PC), enabling the use of
instructions that make it possible to increase
significantly the processing speed of certain
operations, inherent to the process of solving a
numerical problem. Such procedures may include
operations with vectors (set of AVX instructions) and
mixed addition-multiplication of floating point
numbers (set of FMA and FMAC instructions). Use
of these instructions allows significant reduction in
task-time when solving the numerical problems due
to better use of available hardware resources.

Thus, for example, the use of alternative
implementations of BLAS, such as ATLAS,
GotoBLAS, MKL, and others can reduce task-time of
LU-decomposition by factor of 2-10 depending on
the problem’s parameters, as well as related software
and hardware [7]. The alternative implementation of
the BLAS routines set, allowing for the application of
AVX and FMA instructions, makes it possible to
achieve even higher performance.

The reult shows a functional connection
between the calculating speed, when solving a test
problem (3 iterations) by means of GetDP, using a
variety of alternative implementations of BLAS and
different hardware, and a number of execution
threads of BLAS routines. Thus, the use of FMA4
instructions reduced the whole task run-time by 12-
15%, as compared with the employment of routines,
presented in OpenBLAS, providing the same
performance as MKL and ACML without additional
instructions [8].

 It should also be noted that to provide
maximum performance one must consider the
peculiarities of architecture of the processors used.
For example, the architecture of Bulldozer (and Pile
driver, which is its further development), embodied
in the FX series of AMD processors, is characterized
by modular installation of major functional block.
Each module combines two blocks to operate with
integers and one block to operate with floating-point
numbers. Also, module includes one decoder with
instructions to operate with floating point numbers.
In this regard, the number of threads using FPU,
which can efficiently utilize the available hardware
resources, should not exceed the number of modules
in the processor. Figure 2 shows the task-time of the
test problem depending on the number of threads and
used software components in the Pile driver-based
triple core processor. It should be noted that when
using OpenBLAS, a certain decrease in performance
takes place with increasing a number of threads,
when using more than three threads, as well as sharp,
repeated slowdown, when using ACML with

Life Science Journal 2014;11(2s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 143

supporting FMA4 instructions. Such a sharp loss in
efficiency is due to the insufficient number of
relevant functional blocks (including instructions
decoders). Classical x86-compatible architectures
(each physical core contains one major functional
block) are deprived of such shortcomings and allow
better use of the available hardware resources.

Depending on the selected variation of
BLAS implementation, user may also select a way to
ensure execution of instructions in multiple threads.
Such a way may involve parallel computing using
MPI interface. Parallelization may be used not only
for the whole process of numerical solution of the
problem, for example, by means of its
implementation through OpenMPI (in the case of
using original BLAS), but in respect to directly the
process factorization stages, as well as solution of the
simultaneous equations using OpenMP. At that, the
remaining steps of the solution process are performed
in a single thread, which is important when using
such BLAS implementations, as MKL, ACML, and
OpenBLAS. One can also combine these techniques
to achieve maximum performance in multiprocessor
and distributed computing systems. Using OpenMPI
leads to creation and transmission of redundant data
between the threads. This involves using OpenMPI
distributed-memory model for memory allocation
between the threads. This model allows memory
allocation to achieve high performance of distributed
computing systems.

The use of such a memory allocation model
in the local computer systems will lead to a
significant increase in the consumption of RAM and
some loss of efficiency in comparison with the
shared-memory model of memory allocation, used in
OpenMP. Figure 3 shows dependence of the solution
time of test problem on the number of threads when
using OpenMPI and OpenMP. Solution of the test
problem is performed using In-Core algorithm when
employing the central processing unit of INTEL Core
i7-870.

The process of solving numerical problem in
GetDP can be divided into several stages according
to the use of hardware. The first stage consists in
reading of preliminary preprocessed problem
topology file, and loading geometry of the
computational domain in the form of a finite element
mesh from the corresponding file. It takes negligible
time, depending almost entirely just on the read rate
from the disk subsystem. The second stage consists in
generation of matrices according to the problem
topology and the rules of its allocation in RAM.
Execution speed of this stage depends on the CPU
performance and can be carried out just in one thread.
The time required to complete this stage is also not
great. After that the system matrix and its subsequent

ordering are analyzed. Time to complete this stage
largely depends on the selected software, algorithms,
and ordering parameters of matrix and its inherent
characteristics. Characteristics of the matrix itself
largely determine the choice of ordering algorithm
that is especially important when using the Out-Of-
Core algorithm. The algorithm chosen (as well as the
software that implements this algorithm) affects
directly on run-time of collating stage and
factorization stage performances, as well as the
subsequent solution of the matrix. Use of MUMPS as
an SLAE solver allows one to select high
performance hybrid sets of routines METIS and
PORD for matrix ordering. Using these sets of
routines in most cases allows one to reduce the time
required for the matrix factorization by factor of 2 or
3, as compared with the use of other sets of routines,
such as AMD, QAMD [9] or AMF. Though for
certain matrices, time required for ordering stage,
may be magnified [10].

The next stage includes matrix factorization
(decomposition). At this stage, either solution of the
matrix is carried out by direct method, or matrix
preconditioning, in the case of using direct methods
as preconditioning techniques. Factorization stage,
when using LU-decomposition and Cholesky
decomposition, takes quite a long time, up to 70-80%
of the iteration time, as it requires execution of a
large number of operations with floating-point
numbers. Required number of operations can be
estimated by the expression (1) or by diagnostic
messages of MUMPS upon completion of SLAE
analysis [11]. The processing speed of current stage
is largely dependent on the performance of the CPU.
Run-time of factorization stage depends to some
extent on the RAM bandwidth, and when using Out-
Of-Core algorithm, it slightly depends on recording
performance of the disk subsystem. The next stage
after factorization is a stage of solution of the
resulting simultaneous equations (in form of a
matrix). At this stage, in the case of using Out-Of-
Core algorithm for solving numerical problem, run-
time largely depends on the performance of the disk
subsystem of a personal computer, rather than on the
processor, though to a certain limit (usually up to the
point where subsystem performance disc becomes
commensurable with the RAM). After that the results
of solving the equations system are stored in the
memory. This stage is performed in a negligible time.

During the FEM-based simulation of
electromagnetic fields, when describing
electromagnetic processes, one obtains usually square
symmetric positive-definite SLAE. This allows use of
both Cholesky decomposition, and LU-
decomposition. Such SLAE properties allow
successful application of any of the available

Life Science Journal 2014;11(2s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 144

ordering algorithms. For symmetric matrices, we can
employ hybrid methods of ordering; for example
PORD shows a very high efficiency. Figure 4
presents the run-time of solution stages and the total
run-time required for solving SLAE when performing
ordering by means of PORD, AMF, and subsequent
LU-decomposition.

It is worthwhile to note a threefold increase
in execution time of ordering procedure, when using
the hybrid PORD method instead of AMF, which,
however, leads to a reduction in LU-decomposition
run-time by 150% that accounts for about 90% of the
total computational effort at solving SLAE by direct
method. This ultimately reduces the SLAE solution
time by 140%.

Using Cholesky decomposition will also
reduce the time for solving SLAE due to a significant
reduction in the computational work on the
factorization stage. Figure 5 shows the execution
time per iteration in the iterative process, when
solving a nonlinear problem simulating the
electromagnetic field, depending on the order of the
system matrix of solved SLAE. Solution of SLAE
was performed employing LU-decomposition and
Cholesky decomposition.

Conclusions.

When using direct methods of solving
SLAE, required RAM is directly proportional to the
amount of computational effort spent at the
factorization stage. Therefore, when solving SLAE
by direct method, one has to use hybrid methods of
ordering that enable to reduce the amount of required
RAM. This is especially important for personal
computers, having a very limited amount of RAM, or
low performance disc subsystem, which does not
allow effective use of Out-Of-Core algorithm due to
a significant increase in SLAE solution time because
of the low read rate of matrix decomposition results
from the disk.

Despite the high computational complexity
of direct methods for solving SLAE, when combined
with modern hybrid methods of ordering, they are
capable of providing a sufficiently high speed at
solving SLAE, which are formed when dealing with
numerical problems, arising in the simulation of
electromagnetic fields by the finite element method.

Using high-performance software along with
CPUs that support modern operating instructions for
computations with the floating-point numbers enables
one to solve SLAE or carrying out their
preconditioning by direct methods in a reasonable
time. This is especially important in cases where the
iterative methods for solving SLAE provide an
extremely low rate of convergence.

Acknowledgments.

This article was prepared based on the
results obtained in the framework of the project #SP-
201.2012.2 on "Development of scientific and
technical solutions to create a system for monitoring
the status of steel ropes of polar cranes at nuclear
power stations", supported by the scholarship of the
President of the Russian Federation for young
scientists and graduate students, engaged in advanced
research and design in priority areas of the Russian
economy, as well as the project #7.1604.2011
"Theory of creation and research of resource and
energy saving electromechanical devices, systems,
and complexes", carried out within the framework of
the state assignment for 2013 and the planning period
of 2014 and 2015.

Corresponding Author:
Dr. Khoroshev,
Platov South-Russian State Polytechnic University
(Novocherkassk Polytechnic Institute),
Russia, 346428, Rostovskaya oblast, Novocherkassk,
Prosvescheniya street, 132.

References
1. Marchevskiy I. K. and V.V. Puzikova, 2013.

Analysis of the effectiveness of iterative
methods for solving systems of linear algebraic
equations, implemented in the package
OpenFOAM. Proceedings of the Institute for
System Programming RAS. 24. pp: 71-85.

2. Saad, Y., 1996. Iterative Methods for Sparse
Linear Systems. Pws Pub Co.

3. GetDP: a General Environment for the
Treatment of Discrete Problems. Date Views:
21.12.20013. www.geuz.org/getdp/

4. Horoshev A.S., Pavlenko A. V., Batishev D.V.,
Puzin V.S., Shevchenko E.V. and I.A.
Bolshenko, 2013. Verification of complex
programs GMSH + GETDP for the finite
element modeling of electromagnetic fields.
News of higher educational institutions. North
Caucasus region.Technicheskie nauki. 6. pp:74
– 78

5. PETSc: Summary of Sparse Linear Solvers
Available from PETSc. Date Views:
21.12.20013.
www.mcs.anl.gov/petsc/documentation/linearsol
vertable.html.

6. Lawson C. L., R. J. Hanson, D. Kincaid, and F.
T. Krogh, 1979. Basic Linear Algebra
Subprograms for FORTRAN usage. ACM
Trans. Math. Soft., 5: 308—323.

7. Eddelbuettel, D., 2010. Benchmarking single-

Life Science Journal 2014;11(2s) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 145

and multi-core BLAS implementations and
GPUs for use with R. Mathematica.

8. Faq. xianyi/OpenBLAS Wiki GitHub
github.com. Date Views: 21.12.20013.
www.github.com/xianyi/OpenBLAS/wiki/faq#
wiki-sandybridge_perf.

9. Amestoy P., T. A. Davis and I. S. Duff, 2004.
Algorithm 837: AMD, An approximate

minimum degree ordering algorithm. ACM
Transactions on Mathematical Software, 30 (3),
pp: 381-388.

10. Gregoire, R., 2002. Coupling MUMPS and
ordering software., CERFACS.

11. MUltifrontal Massively Parallel Solver Users’
guide. 2011, 10.

2/9/2014

