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Introduction 

Numerical simulation of electromagnetic 
field, using the finite element method (hereinafter 
FEM), is currently used very widely. After building a 
finite element mesh, most of the computational work 
is required to solve the simultaneous linear algebraic 
equations (SLAE), arising in the discretization of the 
equations, describing the simulated physical 
processes. Solution of the corresponding SLAE in 
case of small order (up to 200), usually does not 
cause any difficulties when using the majority of both 
iterative and direct methods. However, increasing the 
order of the matrix and/or the conditioning number 
may cause complexity due to insufficient 
convergence rate of iterative methods [1] or a sharp 
increase in solution time, if based on direct solution 
methods due to their high computational complexity. 

The need to solve numerical problems using 
FEM requires partitioning the computational domain 
into a large number of finite elements and may occur 
in the simulation of electromagnetic and other fields 
in the computational domains, containing explicit 
geometric heterogeneity that leads to the need for 
local multiple condensation of a finite element mesh. 
The same technique may be used when 
approximating computational domain objects with 
very high accuracy. In such cases, the number of 
finite elements in a mesh of the computational 
domain may reach several tens of millions. Such 
values are typical for computational domains that are 
based on complex non-symmetric geometrical 
models. This requires the solution of SLAE of a 
specific order. In this case, simulation of 
electromagnetic fields may be accompanied by 
complications due to limitations in available 
computing resources. This is relevant to personal 

computers used by design engineers, even in the case 
of high-performance computing systems, so-called 
"workstations". 

High order SLAE is usually solved by 
iterative methods, because direct methods exhibit a 
high computational complexity and require a lot of 
random access memory (RAM). The efficiency of 
iterative methods for solving SLAE has been well 
studied, and areas of their effective application are 
well identified [1, 2]. However, in case of system 
matrices with a large conditioning number (of 6-8th 
order), the iterative methods may require the 
fulfillment of a very large number of iterations for 
providing a given accuracy when solving SLAE. This 
will require considerable time, which is especially 
true for system matrices of the order of several 
hundreds of thousands or even millions. In such cases 
it may be advisable to apply direct methods for 
solving SLAE or a combination of the direct method, 
as a preconditioning technique, and iterative method 
for solving SLAE. Efficiency and productivity of 
such problems solution, when using direct solution 
methods, significantly depends on the choice of 
mathematical methods, algorithms and proper 
software, used in the mathematical simulation. 
Further we consider special aspects when choosing 
mathematical methods and algorithms for solving the 
high resolution problems (based on the finite element 
mesh, containing several millions finite elements) 
using direct solution methods of SLAE on the 
example illustrating selection of a general 
environment for the treatment of discrete problems 
(GetDP) [3, 4]. 
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Main part.  
Environment for solving discrete problems 

of GetDP, if used the PETSc toolkit, provides the 
possibility of using direct methods for solving SLAE: 
LU - decomposition, QR-decomposition, and 
Cholesky decomposition. Besides, there is an 
opportunity to select appropriate software (solver) to 
implement these methods. In addition, direct methods 
for solving SLAE can be used as SLAE 
preconditioning methods with subsequent solution of 
SLAE using Krylov subspace methods, such as 
GMRES, CG, BiGGStab, MINRES, and other [5]. 
Next, we will consider the selection features of 
software components that implement the 
mathematical operations, required for solving SLAE 
using MUMPS solver. 

Using MUMPS involves the employment of 
LU-decomposition and the Cholesky decomposition 
as both direct solution methods and preconditioning 
techniques to be used with iterative methods for 
solving SLAE by means of PETSc tools. 

Direct methods of solving SLAE are 
characterized by a high computational complexity. 
The LU-decomposition is characterized by 
computational complexity, which is proportional to 
the cube of the input data volume: 

Cholesky decomposition is also 
characterized by the same computational complexity, 
proportional to the cube of the input data volume, 
though requires half the number of operations in 
comparison with LU-decomposition. Accordingly, 
the increase of computational complexity when 
increasing the scale of the numerical problem leads to 
a nonlinear increase in task-time. Furthermore, the 
use of direct solution methods for SLAE places high 
demands on the computer storage capacity, required 
to store data that is generated during the execution of 
the required operations. However, the solution of 
engineering problems often requires rapid results of 
concomitant numerical simulation of various 
processes, taking place in designed devices. This 
imposes a limit on the time, allowed for the 
numerical solution of the problems within the 
numerical simulation. 

When solving numerical problems, 
including the direct methods of solving SLAE, one 
can shorten task-time either by using hardware with 
more computing power, or by selecting the software 
that allows the best use of processing power of 
available hardware. 

To perform operations on matrices (for LU- 
decomposition and Cholesky decomposition), 
MUMPS uses instructions and a set of basic routines, 
available in the BLAS/LAPACK software (shared 
libraries) [6]. This allows the user to choose the 
alternative implementation of BLAS, which will 

provide the best performance on the available 
hardware. This remains pertinent for modern 
architecture of central processor units (CPU) of 
personal computers (PC), enabling the use of 
instructions that make it possible to increase 
significantly the processing speed of certain 
operations, inherent to the process of solving a 
numerical problem. Such procedures may include 
operations with vectors (set of AVX instructions) and 
mixed addition-multiplication of floating point 
numbers (set of FMA and FMAC instructions). Use 
of these instructions allows significant reduction in 
task-time when solving the numerical problems due 
to better use of available hardware resources.  

Thus, for example, the use of alternative 
implementations of BLAS, such as ATLAS, 
GotoBLAS, MKL, and others can reduce task-time of 
LU-decomposition by factor of 2-10 depending on 
the problem’s parameters, as well as related software 
and hardware [7]. The alternative implementation of 
the BLAS routines set, allowing for the application of 
AVX and FMA instructions, makes it possible to 
achieve even higher performance. 

The reult shows a functional connection 
between the calculating speed, when solving a test 
problem (3 iterations) by means of GetDP, using a 
variety of alternative implementations of BLAS and 
different hardware, and a number of execution 
threads of BLAS routines. Thus, the use of FMA4 
instructions reduced the whole task run-time by 12-
15%, as compared with the employment of routines, 
presented in OpenBLAS, providing the same 
performance as MKL and ACML without additional 
instructions [8]. 

 It should also be noted that to provide 
maximum performance one must consider the 
peculiarities of architecture of the processors used. 
For example, the architecture of Bulldozer (and Pile 
driver, which is its further development), embodied 
in the FX series of AMD processors, is characterized 
by modular installation of major functional block. 
Each module combines two blocks to operate with 
integers and one block to operate with floating-point 
numbers. Also, module includes one decoder with 
instructions to operate with floating point numbers. 
In this regard, the number of threads using FPU, 
which can efficiently utilize the available hardware 
resources, should not exceed the number of modules 
in the processor. Figure 2 shows the task-time of the 
test problem depending on the number of threads and 
used software components in the Pile driver-based 
triple core processor. It should be noted that when 
using OpenBLAS, a certain decrease in performance 
takes place with increasing a number of threads, 
when using more than three threads, as well as sharp, 
repeated slowdown, when using ACML with 
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supporting FMA4 instructions. Such a sharp loss in 
efficiency is due to the insufficient number of 
relevant functional blocks (including instructions 
decoders). Classical x86-compatible architectures 
(each physical core contains one major functional 
block) are deprived of such shortcomings and allow 
better use of the available hardware resources. 

Depending on the selected variation of 
BLAS implementation, user may also select a way to 
ensure execution of instructions in multiple threads. 
Such a way may involve parallel computing using 
MPI interface. Parallelization may be used not only 
for the whole process of numerical solution of the 
problem, for example, by means of its 
implementation through OpenMPI (in the case of 
using original BLAS), but in respect to directly the 
process factorization stages, as well as solution of the 
simultaneous equations using OpenMP. At that, the 
remaining steps of the solution process are performed 
in a single thread, which is important when using 
such BLAS implementations, as MKL, ACML, and 
OpenBLAS. One can also combine these techniques 
to achieve maximum performance in multiprocessor 
and distributed computing systems. Using OpenMPI 
leads to creation and transmission of redundant data 
between the threads. This involves using OpenMPI 
distributed-memory model for memory allocation 
between the threads. This model allows memory 
allocation to achieve high performance of distributed 
computing systems. 

The use of such a memory allocation model 
in the local computer systems will lead to a 
significant increase in the consumption of RAM and 
some loss of efficiency in comparison with the 
shared-memory model of memory allocation, used in 
OpenMP. Figure 3 shows dependence of the solution 
time of test problem on the number of threads when 
using OpenMPI and OpenMP. Solution of the test 
problem is performed using In-Core algorithm when 
employing the central processing unit of INTEL Core 
i7-870. 

The process of solving numerical problem in 
GetDP can be divided into several stages according 
to the use of hardware. The first stage consists in 
reading of preliminary preprocessed problem 
topology file, and loading geometry of the 
computational domain in the form of a finite element 
mesh from the corresponding file. It takes negligible 
time, depending almost entirely just on the read rate 
from the disk subsystem. The second stage consists in 
generation of matrices according to the problem 
topology and the rules of its allocation in RAM. 
Execution speed of this stage depends on the CPU 
performance and can be carried out just in one thread. 
The time required to complete this stage is also not 
great. After that the system matrix and its subsequent 

ordering are analyzed. Time to complete this stage 
largely depends on the selected software, algorithms, 
and ordering parameters of matrix and its inherent 
characteristics. Characteristics of the matrix itself 
largely determine the choice of ordering algorithm 
that is especially important when using the Out-Of-
Core algorithm. The algorithm chosen (as well as the 
software that implements this algorithm) affects 
directly on run-time of collating stage and 
factorization stage performances, as well as the 
subsequent solution of the matrix. Use of MUMPS as 
an SLAE solver allows one to select high 
performance hybrid sets of routines METIS and 
PORD for matrix ordering. Using these sets of 
routines in most cases allows one to reduce the time 
required for the matrix factorization by factor of 2 or 
3, as compared with the use of other sets of routines, 
such as AMD, QAMD [9] or AMF. Though for 
certain matrices, time required for ordering stage, 
may be magnified [10]. 

The next stage includes matrix factorization 
(decomposition). At this stage, either solution of the 
matrix is carried out by direct method, or matrix 
preconditioning, in the case of using direct methods 
as preconditioning techniques. Factorization stage, 
when using LU-decomposition and Cholesky 
decomposition, takes quite a long time, up to 70-80% 
of the iteration time, as it requires execution of a 
large number of operations with floating-point 
numbers. Required number of operations can be 
estimated by the expression (1) or by diagnostic 
messages of MUMPS upon completion of SLAE 
analysis [11]. The processing speed of current stage 
is largely dependent on the performance of the CPU. 
Run-time of factorization stage depends to some 
extent on the RAM bandwidth, and when using Out-
Of-Core algorithm, it slightly depends on recording 
performance of the disk subsystem. The next stage 
after factorization is a stage of solution of the 
resulting simultaneous equations (in form of a 
matrix). At this stage, in the case of using Out-Of-
Core algorithm for solving numerical problem, run-
time largely depends on the performance of the disk 
subsystem of a personal computer, rather than on the 
processor, though to a certain limit (usually up to the 
point where subsystem performance disc becomes 
commensurable with the RAM). After that the results 
of solving the equations system are stored in the 
memory. This stage is performed in a negligible time.  

During the FEM-based simulation of 
electromagnetic fields, when describing 
electromagnetic processes, one obtains usually square 
symmetric positive-definite SLAE. This allows use of 
both Cholesky decomposition, and LU- 
decomposition. Such SLAE properties allow 
successful application of any of the available 
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ordering algorithms. For symmetric matrices, we can 
employ hybrid methods of ordering; for example 
PORD shows a very high efficiency. Figure 4 
presents the run-time of solution stages and the total 
run-time required for solving SLAE when performing 
ordering by means of PORD, AMF, and subsequent 
LU-decomposition. 

It is worthwhile to note a threefold increase 
in execution time of ordering procedure, when using 
the hybrid PORD method instead of AMF, which, 
however, leads to a reduction in LU-decomposition 
run-time by 150% that accounts for about 90% of the 
total computational effort at solving SLAE by direct 
method. This ultimately reduces the SLAE solution 
time by 140%. 

Using Cholesky decomposition will also 
reduce the time for solving SLAE due to a significant 
reduction in the computational work on the 
factorization stage. Figure 5 shows the execution 
time per iteration in the iterative process, when 
solving a nonlinear problem simulating the 
electromagnetic field, depending on the order of the 
system matrix of solved SLAE. Solution of SLAE 
was performed employing LU-decomposition and 
Cholesky decomposition. 

 
Conclusions.  

When using direct methods of solving 
SLAE, required RAM is directly proportional to the 
amount of computational effort spent at the 
factorization stage. Therefore, when solving SLAE 
by direct method, one has to use hybrid methods of 
ordering that enable to reduce the amount of required 
RAM. This is especially important for personal 
computers, having a very limited amount of RAM, or 
low performance disc subsystem, which does not 
allow effective use of Out-Of-Core algorithm due to 
a significant increase in SLAE solution time because 
of the low read rate of matrix decomposition results 
from the disk. 

Despite the high computational complexity 
of direct methods for solving SLAE, when combined 
with modern hybrid methods of ordering, they are 
capable of providing a sufficiently high speed at 
solving SLAE, which are formed when dealing with 
numerical problems, arising in the simulation of 
electromagnetic fields by the finite element method. 

Using high-performance software along with 
CPUs that support modern operating instructions for 
computations with the floating-point numbers enables 
one to solve SLAE or carrying out their 
preconditioning by direct methods in a reasonable 
time. This is especially important in cases where the 
iterative methods for solving SLAE provide an 
extremely low rate of convergence. 

 

 
Acknowledgments.  

This article was prepared based on the 
results obtained in the framework of the project #SP-
201.2012.2 on "Development of scientific and 
technical solutions to create a system for monitoring 
the status of steel ropes of polar cranes at nuclear 
power stations", supported by the scholarship of the 
President of the Russian Federation for young 
scientists and graduate students, engaged in advanced 
research and design in priority areas of the Russian 
economy, as well as the project #7.1604.2011 
"Theory of creation and research of resource and 
energy saving electromechanical devices, systems, 
and complexes", carried out within the framework of 
the state assignment for 2013 and the planning period 
of 2014 and 2015. 

 
Corresponding Author: 
Dr. Khoroshev, 
Platov South-Russian State Polytechnic University 
(Novocherkassk Polytechnic Institute), 
Russia, 346428, Rostovskaya oblast, Novocherkassk, 
Prosvescheniya street, 132. 
 
 
References 
1. Marchevskiy I. K. and V.V. Puzikova, 2013. 

Analysis of the effectiveness of iterative 
methods for solving systems of linear algebraic 
equations, implemented in the package 
OpenFOAM. Proceedings of the Institute for 
System Programming RAS. 24. pp: 71-85. 

2. Saad, Y., 1996. Iterative Methods for Sparse 
Linear Systems. Pws Pub Co. 

3. GetDP: a General Environment for the 
Treatment of Discrete Problems. Date Views: 
21.12.20013. www.geuz.org/getdp/  

4. Horoshev A.S., Pavlenko A. V., Batishev D.V., 
Puzin V.S., Shevchenko E.V. and I.A. 
Bolshenko, 2013. Verification of complex 
programs GMSH + GETDP for the finite 
element modeling of electromagnetic fields. 
News of higher educational institutions. North 
Caucasus region.Technicheskie nauki. 6. pp:74 
– 78 

5. PETSc: Summary of Sparse Linear Solvers 
Available from PETSc. Date Views: 
21.12.20013. 
www.mcs.anl.gov/petsc/documentation/linearsol
vertable.html. 

6. Lawson C. L., R. J. Hanson, D. Kincaid, and F. 
T. Krogh, 1979. Basic Linear Algebra 
Subprograms for FORTRAN usage. ACM 
Trans. Math. Soft., 5: 308—323. 

7. Eddelbuettel, D., 2010. Benchmarking single-



Life Science Journal 2014;11(2s)                                                             http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  145

and multi-core BLAS implementations and 
GPUs for use with R. Mathematica.  

8. Faq. xianyi/OpenBLAS Wiki GitHub 
github.com. Date Views: 21.12.20013. 
www.github.com/xianyi/OpenBLAS/wiki/faq#
wiki-sandybridge_perf. 

9. Amestoy P., T. A. Davis and I. S. Duff, 2004. 
Algorithm 837: AMD, An approximate 

minimum degree ordering algorithm. ACM 
Transactions on Mathematical Software, 30 (3), 
pp: 381-388. 

10. Gregoire, R., 2002. Coupling MUMPS and 
ordering software., CERFACS. 

11. MUltifrontal Massively Parallel Solver Users’ 
guide. 2011, 10.  

 
2/9/2014 


