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Abstract: Landing trajectory generation scheme is one of the most important technologies for future lunar or 
planetary exploration mission. To achieve a precise trajectory of landing, an advanced guidance scheme is 
necessary. This research outlines a comparison of different methods of solution of trajectory generation scheme of 
lunar descent and proposes an novel solution that allows a full depiction of a descent vehicle motion from orbital 
states down to the final landing event. In the conventional method of solution there exist some poor assumptions 
such as, during descent a constant vertical gravitational acceleration is the only other force acting on the descent 
vehicle. This inadequate postulation limits the validity of the solutions to system with in very low altitude terminal 
descent area i.e., close to the lunar surface. In this research Note, an advanced descent solution is proposed where 
centrifugal acceleration term is retained along with the gravitational acceleration term. It allows a complete 
representation of the descent module motion from orbital speed conditions down to the final landing state. 
Mathematical derivations of new scheme are verified in terms of conventional scheme and the comparative 
simulation results for full integrated solution, conventional schemes and a proposed advanced scheme are 
demonstrated to test the performance.  
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1. Introduction 

Lunar landing is an exigent issue. A lot of 
scientists and engineers confirmed considerable 
interests in the past couple of decades [1-5, 12-16]. It is 
essential for a lunar lander to land vertically and softly 
on the lunar surface [6]. Gravity-turn descent is one of 
the solutions for this purpose and this type of descent 
technique which entails that the lander thrust vector is 
oriented opposed to the velocity vector along the 
complete flight path of the vehicle.7) Using inertial 
measurement unit, the information about the velocity 
vector can be identified to insert as an input of attitude 
control system that can maintain thrust  vector parallel 
to the velocity vector instantaneously but in  opposite 
direction as shown in Fig.1. The great benefit of using 
gravity-turn descent is to have guaranteed upright 
landing, and fuel consumption is optimal [8]. 

The equations of motion are solved in conventional 
descent solution considering a fixed thrust to mass ratio 
and assuming that a constant and vertical gravitational 
acceleration is the only other force acting on the 
descent vehicle ignoring the centrifugal acceleration 
term [7]. Also the lunar surface is imagined a plane flat 
surface. The conventional method of solution limits the 
validity to regimes where the descent vehicle velocity 
is very small relative to the local orbital velocity since 
centrifugal forces are unnoticed and therefore, it is only 
be used to describe terminal descent, when the vehicle 
has braked from orbital velocity and close to the lunar 
surface. Consequently the authors demonstrate an 

advanced method of descent solution for a spherical 
homogeneous lunar surface where the centrifugal 
forces are retained and descent can be initiated from its 
orbital speed condition. In this research, some logical 
values are examined to determine a better 
approximation for centrifugal acceleration term without 
ignoring it, but the gravity is assumed to be constant in 
magnitude. These assumptions are reasonable while the 
descent starts from vehicle’s orbit [3]. The proposed 
advance solution over conventional descent method 
allows a full representation of descent module motion 
from orbiting condition down to final vertical landing 
situation. To represent the significant improvement in 
the new solutions, three steps are performed in this 
study and these are full integrated solution, 
conventional solution and advanced solution. 
2. Fundamentals of Lunar Descent 

Fundamental three dimensional equations of 
motion to describe the spacecraft proposition 
concerning a uniform sphere-shaped lunar body [9] are 
divided into two parts. One is the equations of 
spacecraft motions for dynamic states as follow: 
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Fig. 1.  Lunar descent technique 

 
Where u  is spacecraft velocity vector magnitude or 

spacecraft speed, lg  is lunar gravitational acceleration, 

N is ratio of thrust F and vehicle mass m,    is the 
pitch angle of the vehicle velocity vector relative to the 
local vertical,   is angle of thrust vector relative to 

reverse direction of spacecraft velocity, y is vehicle 

altitude from lunar surface, ly  is lunar radius, and   

is cross range angle. 
The remaining part to describe the fundamental 
equations of motion for kinematics states are 
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where x and c are horizontal span and cross range 
distance respectively. 
To facilitate the simplification of mathematical 
operation, roll control states are held at zero 0)(( t  
and )0)( t . To activate the system as a plane motion, 
the initial states are initialized to zero ,0)0(( c  

,0)0(   and )0)0(  . Consequently the above 
governing equations are reduced to their two-
dimensional form where Eqs. (1) and (4) remain same. 
Only the changes are observed as follow: 
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It is reasonable to assume that 
lyy   in order that

1 ll yyy . Then the equation for horizontal span 

becomes 
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3. Complete Numerical Solution 
To get a full integrated solution, right hand 

sides of the equations are reduced to function of 
velocity vector pitch angle . For this purpose some 
reasonable assumptions are made regarding thrust to 
mass ratio, thrust vector angle, lunar gravitational 

acceleration force and lunar centrifugal force. To  
generate an ideal descent trajectory it is rational to 
assume a constant value for N i.e., F/m and lg , and 
control input   is set to zero. But in the situation of 
constant thrust acceleration, m will not be constant and 
so F/m is varying. Yet, this error will be removed by 
the real time guidance algorithm. Therefore, using 
initial values for mass and gravity is a straightforward 
assumption for this solution. 
To find the full integrated numerical solutions for 
speed u, time t, horizontal distance x and vertical 
distance y as a function of pitch angle α during power 
descend phase; authors has performed the mathematical 
derivations for simplification.  
4. Conventional Descent Solution 

The traditional solution for descent is obtained 
by assuming the lunar surface similar as a plane so that 
the lunar radius yl → ∞. Therefore, centrifugal 

acceleration term is ignored in order that 0
2


 lyy

u  

[7, 11].  In this perimeter, velocity vector pitch angle 
reduces to 
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This reduced equation can be used to obtain a single, 
distinguishable differential equation with α as the self-
regulating variable, such that 
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Now the solution for time, vertical and horizontal 
ranges can be acquired utilizing the value of speed u in 
to previously derived mathematical equations to obtain 
descent trajectory in terms of traditional descent 
solution. Therefore, acquired equations are for time,  
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and horizontal span, 
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5. Advanced Lunar Descent SOlution 

 

Lunar Module Orbit 

Lunar Surface 
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To solve those governing equations for the 
proposed advanced scheme, it is again necessary that 
the right hand sides of the equations are kept as a 
function of velocity vector pitch angleαconsidering 
further assumption for homogeneous spherical lunar 
surface and centrifugal acceleration term. Using initial 
values for mass and gravity is an uncomplicated 
assumption for qualitative solution. But for centrifugal 
acceleration term, a constant value Γ can be logically 
chosen which is defined as the ratio between 
centrifugal acceleration and lunar gravitational 
acceleration.   
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With these assumptions and making consistent with the 
traditional lunar descent works, [7, 10, 11] speed can 
be recognized by following differential equations 
formulating as a function of velocity vector pitch angle
 .  
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This equation can now be directly integrated to obtain 
the descent velocity u as a function of the velocity 
vector pitch  
angle   as 
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where τ=1/(1-Γ) is a measure of the centrifugal 
acceleration term. Then the solution for speed currently 
obtains the shape 
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Now the time to go )(got , horizontal span )(x  and 

vertical range  )(y  are resolved in an identical manner 

of the conventional lunar descent solution as follow 
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6. Performance Test of Different Schemes 
Figure 2 shows the comparison of different 

trajectory responses for spacecraft descent on lunar 
surface while the governing equations are solved by 
complete integration method, conventional descent 
illumination, and proposed advanced scheme. 
Conventional scheme is demonstrated with out taking 
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any approximation regarding centrifugal acceleration 
term. Equations for different states are numerically 
integrated with the constant value for gl, N, u0 and α0 
where gl = 1.623 m/sec2, N = 4N/kg, u0 = 1688 m/sec 
and α0 = 90 degree. 

It can be realized that there is differences in 
responses between traditional descent solutions and 
numerically integrated solutions to the equations of 
lunar module motion. Traditional descent solutions has 
largest impact on the final altitude variation with 
respect to full integrated solutions due to the 
centrifugal acceleration term is ignored. Therefore it 
needs to perform further analysis with new advanced 
scheme for lunar descent and landing. 

To integrate the above equations in a 
qualitative manner, the value for τ must be an integer. 
This entails τ = 1, 2, 3, 4 . . . . Instead of this solution, 
directly the ratio Γ, which is mentioned earlier, can be 
chosen some fractional values to make τ as an integer. 

But the authors found better results having directly the 
integer logical values to get a qualitative integration of 
these equations. Choosing a logical value directly for 
the τ proves more preciseness in approximation as well. 
The influences of differing the constant τ is 
demonstrated in Figures. 3(a), 3(b), 3(c) and 3(d). 
Unlike values (1, 2, 3, 4, 5, …) for τ are employed into 
Equations and these equations are numerically 
integrated with constant approximate values for gl and 
N whereas gl = 1.623 m/sec2 and N = 5N/kg. Initial and 
final values for the velocity vector pitch angle α is 
taken 90[deg.] and 0[deg.] while the initial speed u0 is 
considered as approximate orbital speed, 1688 m/sec. 
In contrast of this advanced solution, full numerical 
integrated resolution are performed for comparison 
taking same approximation for β, gl, N, α and u0 as it is 
made while no estimation are made about the 
centrifugal acceleration. 

 
Fig. 2.  Comparison of Advanced Solution to full Integrated Solution and Conventional Solution: Speed, Time, 
Vertical Range and Horizontal Span. 
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A comprehensive evaluation of this advanced 
solution with traditional descent solution, and a 
numerically integrated solution to the full equations of 
lunar landing mission are exposed in this 
investigation. It can be noted that varying τ has 
reasonable impact on different responses specially it 
directly influences the vertical range of the trajectory. 
From the assessment of the various values for τ, a 
value of τ = 2 emerges to be a realistic number and 
improves on different responses of advanced solutions 
for speed, time, vertical range and horizontal span 
over traditional solutions. More over an accurate 
verification of mathematical calculation of proposed 
advanced scheme is observed by investigating the 
responses in Figs. 2. In the figures it produces exactly 
same results between conventional descent solution 
and the solution choosing a value of τ = 1. On the 
other way it can be reproduced the same assumption 
for conventional descent solutions putting this value 
of τ = 1 in to previous equations to prove in which 
centrifugal acceleration term is ignored. 
7. Elapsed Time Analysis for Different Schemes 

While the online trajectory generation is a 
great challenge for lunar or planetary landing, it 
becomes useful to compare elapsed time spent to 
solve the numerical calculations producing trajectory 
response on board. Table 1 shows a computing time 
performance analysis of different schemes for 15 
numbers of runs. Among different responses of 
proposed advanced solutions, response for taking τ = 2 
is observed separately because this response is much 
attractive than the traditional scheme. Executable time 
is always less or same for this advanced scheme with 
respect to the traditional solution. Fig. 3 shows the 

average elapsed time comparison among different 
methods of descent scheme.  
8. Algorithm design for Reference Trajectory 
Generation 

With the help of previously derived 
equations, a reference trajectory generation algorithm 
can be designed which will be a function of horizontal 
span, vertical range, speed, and velocity vector pitch 
angle. This type of trajectory is unspecified to any 
certain location on the lunar surface and it is a great 
benefit of this type of reference trajectory generation 
technique. 

 
Fig. 3  Average time line comparison 
 

The proposed advanced solutions for speed, 
vertical range, and horizontal span equations of can be 
derived. Assuming τ = 2 and integrating the equations, 
the new form for time is shown by 




 2

2
))cos(1(

)1(4

1
[)( 


 tgoGt  

tC  ]))(sin1csccot2)(csc2( 222   

where  )( 00 ttCt   

and 0t  is the initial time. The solution for vertical 

range is  

Table 1: Computing time performance analysis (sec.) 

ComputingTime Performance Analysis: Advanced Solution 

No. of Hits Full Soln Conven-tional Solution τ = 1 τ = 2 τ = 3 τ = 4 

01 3.718 0.0313 0.0000 0.0156 0.0156 0.0156 

02 3.843 0.0000 0.1560 0.3130 0.0156 0.0000 

03 3.671 0.0313 0.0156 0.0000 0.0313 0.0000 

04 3.640 0.0313 0.0000 0.0313 0.0000 0.0000 

05 3.750 0.0313 0.0000 0.0156 0.0156 0.0000 

06 3.812 0.0313 0.0000 0.0313 0.0000 0.0313 

07 3.703 0.0313 0.0000 0.0156 0.0000 0.0313 

08 3.640 0.0313 0.0156 0.0000 0.0000 0.0313 

09 3.640 0.0313 0.0000 0.0313 0.0000 0.0313 

10 3.640 0.0313 0.0000 0.0313 0.0000 0.0156 

11 4.593 0.2344 0.0000 0.0156 0.0156 0.0000 

12 6.093 0.3125 0.1250 0.0496 0.0313 0.3125 

13 5.437 0.0000 0.0313 0.0000 0.0313 0.0000 

14 5.296 0.2500 0.0000 0.0313 0.0000 0.0313 

15 5.828 0.0156 0.0000 0.0000 0.0156 0.0313 

AVE 4.287 0.0729 0.0229 0.0387 0.0114 0.0354 

 

Full Numerical Solution 

Conventional Solution 

Advanced Solution 

.0.0………0.039……..0.073…………………4.23 Seconds 
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Where the equation for speed considering τ = 2 is  
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The solution for horizontal span is 

   2cos24128()cos1[(()( 34
xGx  

 )3cos3cos)996(32 2    

 
xC ))]9160256(2/()sin 2434   

where  )( 00 xxC x   and 
0x  is the initial 

horizontal distance from landing spot. let 

)9160256(2

)3cos3cos)996(322cos24128(sin
),(

24

23









X

so that  

),(
2

),(
)(2

)( 0

2
0

2

0 


 X
g

u
X

g

u
xx

ll

         (19) 

To develop an algorithm of generating 
reference trajectory it is comprised of n steps where 
thrust to mass ratio, N is unchanged over each step 
and the combination of all the steps results in a 
collective horizontal span and vertical range. Different 
steps are joined by the continuity conditions that the 
speed and velocity vector pitch angle be continuous 
over each link. Let the initial horizontal span and 
vertical range of the complete trajectory are x0 and y0 
and terminal values these parameters are xt and yt. 
Now the complete displacements in horizontal and 
vertical direction are characterized by 
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The ending speed and the ending velocity 
vector pitch angle for the total trajectory are also 

associated to steps by the reality that final velocity 
vector pitch angle, αt, is the same as the nth vector 
pitch angle, αn and the ending speed. ut is the same as 
the nth speed, un. The individual step’s change in 
horizontal span and vertical range are shown by 
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where  
1i  and 

i  are the velocity vector pitch angle 

at the beginning and at the end of ith step. Moreover, 
the speed at the end of ith step is known by  
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where  1iu  and iu  are the speed at the beginning and 

at the end of ith step and  
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where 
ii mFN   and i  is constant over the step. 

Actually the objective is stipulate the 
traveling distance both in vertical and horizontal 
direction by evaluating the velocity vector pitch angle 
and speed at the beginning and end of the total 

trajectory ( tt uu ,,, 00  ). This would result in a 

preferred total horizontal span and vertical range 
given a set of values for n values of Ni. By these 
identities and n steps, there exist n+2 equations and 
3n+4 variables (

iii Nnunnuyx  ,,,,,, 00  ).  

If a single step is considered to describe the 
total trajectory, there exist only three equations where 
n = 1 and where i = 1) with seven variables (

Nyxuu ,,,,,, 1010  ). Given the wish to 

identify six of those parameters (

yxuu  ,,,,, 1010 ), the difficulty is rapidly over-

constrained. This problem can be overcome to bring 
under constraints by accumulating more steps to the 
solution.  

For example, if two steps are considered with 

the same objective (identify yxuu tt  ,,,,, 00 ), 

the problems become constrained. There exist four 
equations where n = 2 and two from other equation 
with i = 1 and  
i = 2) with ten variables  

( 21210210 ,,,,,,,,, NNyxuuu  ). The 

objective is to figure out 111 ,, Nu  and 2N  given 
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the other six predefined variables (

yxuu  ,,,,, 2020 ).  

It is easy to compute u1 if α1, N1 and N2 are 
already known together with α0 and u0 or α2 and u2:  
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This parity can be used to compute u1. First, 
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From here the two steps trajectory can be evaluated for 
horizontal span and vertical range: 
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The solution is to specify 

020 ,, u  and 
2u  

and search for reasonable values N1 and N2 to generate 
flight path space. An expected trajectory can be 
chosen from available options. 

A sample reference trajectory space is shown 
in fig. 4. Boundary condition for velocity vector pitch 
angles were set at 89[deg] and 0.1[deg]. The initial 
and final speeds were set at 1688 m/sec. and 8 m/sec. 
The gravity is considered as constant in this analysis 
where the values for thrust to mass ratios, N1 and N2 
are varied from 0.1 N/kg to 10 N/kg with 0.25 N/kg 
increments. Fig 6 shows the impact of varying the 
thrust acceleration and it appears to have set of curves 
whereas each curve is created varying N1 and N2 
simultaneously. Three dimensional vies are 
demonstrated in Figs. 5 and 6. 
Conclusion 

The conventional lunar descent and landing 
problem has been advanced to allow an accurate 
representation of lunar descent from orbital condition. 
Finding a reasonable assumption for lunar surface and 

centrifugal acceleration, it significantly advanced the 
sphere of validity of the traditional gravity-turn 
solution from low velocity terminal descent to a 
complete descent from orbital situation. The 
accessibility of the descent velocities, time, vertical 
range and horizontal span as a function of the velocity 
vector pitch angle could be utilized to lessen the 
computational trouble on real-time lunar descent 
guidance scheme for future landing mission. 
 

 
Fig. 4: Sample Trajectory Space Varying N 

 

 
Fig. 5: 3D View of Horizontal Span Sample Space 
 

 
Fig. 6: 3D View of Vertical Range Sample Space 
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