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1. Introduction:  

Singular integral equations of the first 
kind    have received considerable interest in the 
mathematical literatures, because of their many 
field of applications in different areas of 
sciences, for example see [1- 4]. The solution of 
these IEs can be obtained analytically using one 
of the following methods:  Cauchy method [5], 
potential theory method [6], orthogonal 
polynomials method [7], integral transformation 
methods [4-7] and Krein's method [8].  
Mkhitarian and Abdou, [9] discussed some 
different methods for solving the FIE of the first 
kind with logarithmic kernel. 
   In this work, we consider the V-FIE of the 
first kind  
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under the condition 
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The function ( )L v  is continuous and positive 

for ( )  ,   v ∞∈ 0  and satisfies the following 
asymptotic equalities  

( ) ( ) ( )3    1    L v m m v O v= − − + ,   

0→v  

( ) 3

   1 1  1      mL v O
v v
− ⎛ ⎞= − + ⎜ ⎟

⎝ ⎠
( ), 1v m→∞ ≥  (1.4) 
The V-FIE (1.1), under the condition (1.2), 
can be investigated from the contact problem 
of a rigid surface ( ) ,  G υ  having an elastic 

material occupying the domain [ ]  - ,   a a , 

where  ( )xf ∗   is describing the surface base 
of a stamp. This stamp is impressed into an 
elastic layer surface by a variable known 
force ( ) t Ρ ,  [ ]   0,  ,   1t ∈ Τ Τ < , whose 

eccentricity of application ( )  e t , that case a 

rigid displacement ( )tγ . Here, G  is called 
the displacement magnitude and υ  is 
Poisson's coefficient. 

In order to guarantee the existence of 
unique solution of (2.1), we assume, for the 
two constants E and D, the following 
conditions:  
(i) The kernel of position satisfies 

1
2  a   a 2

 - a  - a

          x yk dx dy E
λ

⎧ ⎫−⎛ ⎞ =⎨ ⎬⎜ ⎟
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∫ ∫
   ,              
(ii) The positive continuous kernel, which 
represents the resistance force of the material, 

( ) [ ] [ ]( ),     0,      0,   F t Cτ ∈ Τ × Τ   

and satisfies ( )  ,       ,  DtF <τ   
(iii)  The continuous function of time  

( ) [ ]    0,  t Cγ ∈ Τ  , while the position 
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function ( ) [ ]2 x   ,   f L a a∗ ∈ −  

and ( ),     f x t ∈

[ ] [ ]2  ,      0,   L a a C− × Τ .The norm of 

( ),  f x t is 

( )( )2

1
 t   a 22

   0  - a
  max   ,  

L C t
f f x dx dτ τ

×
= ∫ ∫

. 
(iv) The unknown potential function 
( ),   x tϕ  satisfies Hölder condition with 

respect to time and Lipschitz condition with 
respect to position.  
     In this work, we use a numerical method to 
transform the V-FIE into linear SFIEs of the 
first kind. Then, using Krein’s method, the 
solution of SFIEs can be obtained in the form 
of spectral relationships (SRs) of CPs. Many 
special cases are derived and discussed from 
the work. Moreover, some applications in 
contact problems and fluid mechanics are 
considered. 
2. System of FIEs. If we divide the interval 
[0,T], 1         0 ≤Τ≤≤ t  as 

0 10 =  Nt t t≤ < < < ΤL , when 

,    0,1, 2, ,  kt t k= = K l  . The V-FIE 
(1.1) takes the form, see [2] 

( ) ( ) ( ) ( ) ( ) ( )
 t  a  a

, k 0  -a  -a
0

 , ,  ,   , .
k

j j j k
j

F t k x y y dyd u F k x y y dy f xτ ϕ τ τ φ π
=

= =∑∫ ∫ ∫

   (2.1) 
In (2.1) we neglect the error term, ( )1  pO +

lh  

where jh max=lh ,   1  j j jh t t+= − . The 

constant ju  defined as the characteristic 
number, see [2]. Also we used the following 
notations 
( ) ( ),     x t xϕ ϕ=l l   , 

( ) ,,  j jF t t F=l l   ,         

( ) ( ),     f x t f x=l l  .   (2.2)  
The boundary condition (1.3), becomes  
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a 

a- 
φ          ( kΡ  are 

constants ),          (2.3) 
Let,  in (1.2) , 1m =  and λ →∞ , such that 

the term ( ) y x −  is very small , then using 
the relation [7]  
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 the conditions (2.3), take the form  
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where  ( ) x   

jnΤ  , j = 1, 2, …, l  are the 

CPs of the first find and order n . 
Proof:  The proof of (3.1) depends on the 
following lemmas  
Lemma 1: For all positive integers jn , 1=a  
, we have 
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jn xα βΡ  are Jacobi polynomials 

(JPs )  
 Proof: For proving (3.2) let 
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 ll 2Τ=+   , where  

( ) y  n  l2Τ  are the CPs of the first kind, 

then (2.8) can be written in the form  
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Using the substation uts =  and the relation  

( ) ( )    x         x   
jj  n n 12 2

2 −Τ=Τ  , 

the formula (3.4) takes the form 
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−
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(3.5) 
Using the famous relation between CPs, LPs 
and JPs, see [10] 
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j j jn n nx x x−
−Ρ = Ρ − Ρ

,                                 (3.6) 
where ( ) x   

j nΡ  are Legendre polynomials 

(LPs),   the formula (3.5), yields  

( ) ( ) ( )   1, 0 2
       =      2  1

2n nD u uπ −Ρ −
l l

     
         (3.7) 
Also, the first derivative of (3.7) takes the form  
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( 
( ) ( ) ,  

      0n xα βΡ =
l  for negative integer ) 

. 
Finally, introducing (3.7), (3.8) in (3.3) , we 
obtain the required result.  
Corollary1: Put 1 u =   in (3.2), we have  
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Using the famous 
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where ( )xΓ  is the Gamma function .  
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Lemma 2: The value of the following integral  
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takes the form  
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Proof: For proving the lemma, we introduce 
(3.12) in (3.13) to have  
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Assume in (3.14) the substitution  
zxyu =−=− 12,12 22  ,  to have 
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If we put ( )vzy −−= 11  , then (3.15) 
yields  
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If we use the famous formulas [10]  
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where ( )zF ;,;,, 2132123 ββααα    is 
the generalized hypergeometric series and 
( )zF ;;, γβα  is the hypergeometric Gauss 

function , the first integral term of (3.16) 
becomes  
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(3.19) 
Also, using the same way, the second and third 
integral term of (3.16), yield 
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Introducing the three formulas (3.19) - (3.21) 
in (3.13) the lemma is proved.  
Finally, to prove the theorem, we write (3.13) 
in the CPs form, for this purpose, we must 
consider the following famous formulas, see 
[10, 11]  
(i)      
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                              (Relation between Jacobi 

and Gegenbauer polynomials) 
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Using these famous relations in (3.13), one has  
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Introducing (3.25) and (3.10) in (2.6) , the 
theorem is proved.  
 By using the same way, we can prove this 
theorem 
 Theorem 2: The spectral relationships for the 
SFIEs with the kernel defined by (2.4) and the 
known function is odd is given by  
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     ( )Ν=≥ ,,2,1,1 Klln      (3.26)  

The proof of theorem 2 can be obtained 
directly by following the same way of theorem 
1.■    
4. Conclusion and results: From the above 
results and discussion, the following may be 
concluded  
(1) The contact problem of a rigid surface of 
an elastic material, when a stamp of length 

a2  is impressed into an elastic layer surface 
of a strip by a variable ( ) , 0 1t tΡ ≤ ≤ Τ < , 
whose eccentricity of application 
( )te ,represents a V-FIE of the first kind.  

(2) The numerical method used transforms the 
V-FIE into SFIEs. 
(3) The SFIEs depends on the number of 
derivatives of ( )τ,tF  with respect to time 

[ ], 0, , 1t t ∈ Τ Τ <   . 
(4) The displacement problems of ant plane 
deformation of an infinite rigid strip with 
width a2  , putting on an elastic layer of 
thickness  h  is considered as a special case of 
this work when 1=t , ( ) 1, =τtF , 

( ) Η=txf ,  and ( ) ( )xx ψϕ =1,  . Here 

Η  represents the displacement magnitude and 
( )xψ  the unknown function represents the 

displacement stress. 
(5) The problems of infinite rigid strip with 
width a2  impressed in a viscous liquid layer 
of thickness h   , when the strip has a velocity 
resulting from the impulsive force 

1,0 −== − ievv iwt  , where  0v  is the 
constant velocity , w  is the angular velocity 
resulting rotating the strip about z-axis  are 
considered as special case of this work , when 
( ) =τ,tF  constant , and 1=t  see [4] . 

(6)In the discussion (4) and (5) , when 
∞→h  , this means the depth of the liquid ( 

Fluid mechanics ) or the thickness of elastic 
material (contact problem ) becomes an 
infinite . 
(7)The three kinds of the displacement 
problem, in the theory of elasticity and mixed 
contact problems, which discussed in 
Aleksandrov et al. [4],Muskelishvili [5], Green 
[6] and Popov  [7].,are considered special 
cases of this work . 
(8) Many important relationships can be 
derived from (3.1)  
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The above system leads to the following SRs  
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(ii) Differentiating (3.1) with respect to x  , we 
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 are the CPs of the second 

kind. 
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(9)   The mixed integral equation with 
Carleman kernel can be established from this 
work by using the following relation  

( ) υ−−=− yxyxhyx ,ln             

10 <<υ               (4.7) 
  where                       

( ) yxyxyxh −−= ln, υ
  is a 

smooth function  
The importance of Carleman kernel came from 
the work of Arutiunion [12] who has shown 
that , the contact problem of nonlinear theory 
of plasticity, in its first approximation reduce 
to  FIE of the first kind with Carleman kernel . 
(10) The relation between the eigenvalues n   
and the corresponding Chebyshev 
polynomial nT     are obtained in the following 
figures
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Fig. 1 n=5

Fig.2: n=10
 

Fig.3: n=30                                                     

Fig.4.6: n=15 
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