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Abstract: Here, the existence of a unique solution of Volterra — Fredholm integral equation (V-FIE) of
the first kind is considered in the space L,[—1,1] x C (0,T ), T< 1. The Fredholm integral term is

considered in position with discontinuous kernel, while the Volterra integral term is considered in time
with continuous kernel. Using a numerical, we have system of Fredholm integral equations (SFIES) of
the first find. Then, using Krein's method, the solution of SFIES is obtained in the form of spectral
relationships (SRs). Finally, many special cases in fluid mechanics and contact problems are discussed.
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1. Introduction:

Singular integral equations of the first
kind have received considerable interest in the
mathematical literatures, because of their many
field of applications in different areas of
sciences, for example see [1- 4]. The solution of
these 1ES can be obtained analytically using one
of the following methods: Cauchy method [5],
potential theory method [6], orthogonal
polynomials method [7], integral transformation
methods [4-7] and Krein's method [8].
Mkhitarian and Abdou, [9] discussed some
different methods for solving the FIE of the first
kind with logarithmic kernel.

In this work, we consider the V-FIE of the
first kind
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under the condition
_[_ago (x,t)dx =P(t) (3

The function L (V ) is continuous and positive

m >1,

for Ve ( 0, o ) and satisfies the following
asymptotic equalities
L(v)=m-(m-1)v+0 (v3 )
v—>0
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(v >0, m=21) (1.4)

The V-FIE (1.1), under the condition (1.2),
can be investigated from the contact problem

of a rigid surface ( G,v ) having an elastic
material occupying the domain [-a, a ],

where f, (X) is describing the surface base

of a stamp. This stamp is impressed into an
elastic layer surface by a variable known

forceP(t ), t e [ 0,T ], T <1, whose
eccentricity of application € ('[ ) , that case a

rigid displacement y (t) Here, G is called

the displacement and LU s
Poisson's coefficient.
In order to guarantee the existence of

unique solution of (2.1), we assume, for the

magnitude

two constants E and D, the following
conditions:
(i) The kernel of position satisfies

e Y ooy | e

(i) The positive continuous kernel, which
represents the resistance force of the material,

F(t.r)eC ([0, T] x [0, T])

and satisfies F (t,T) < D,
(iii) The continuous function of time

y ('[ )EC [O,T] , while the position
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f.(x)elL,[a a]

function

and f (X, t) €
L, [-a,a]x C [0, T ]|.The norm of
f(x,t)is

1
10 o =max[) ([ 112 (x0) dx)zdr

(iv) The wunknown potential function
(D(X,t ) satisfies Holder condition with

respect to time and Lipschitz condition with
respect to position.

In this work, we use a numerical method to
transform the V-FIE into linear SFIES of the
first kind. Then, using Krein’s method, the
solution of SFIES can be obtained in the form
of spectral relationships (SRs) of CPs. Many
special cases are derived and discussed from
the work. Moreover, some applications in
contact problems and fluid mechanics are
considered.

2. System of FIEs. If we divide the interval
[0,T, 0 <t < T<Z1 as

0 <t,<t, <---<ty= T, when
t=t,, k= 0,1, 2,..., /. The V-FIE
(1.1) takes the form, see [2]

.[Ulj: F(t.r)k (x, y)(p(y,r)dydr:i:nu] Fl_kj‘;k (x.y)g, (y)dy ==f, (x).

2.1
In (2.1) we neglect the error term, O ( h?“ )
where 7, =maxh; , h; =t; |, —t;.The
constant Uj defined as the characteristic

number, see [2]. Also we used the following
notations

(P(X, t, ):(ﬁe‘(x ) >

F(t.t; )=F; .

f(x,t,)=f,(x). @2

The boundary condition (1.3), becomes
J.z o, (X) dx = P, ( P, are

constants ), (2.3)
Let, in (1.2), M =1 and A —> 0, such that

the term ( X=Yy ) is very small , then using

the relation [7]
J‘ © COSV Z

0 v

dv =-Inz +d (dis

a constant ),
the conditions (2.3), take the form

(2.4)
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[-ln(x-y)=+d]

; up Fy _[ ? T,

(+) o -
T, (%), (=1,2.,N n, 21

y nP,[ln(§)+d] n =0
—y?

3.D
where T nj (X) ,i=1,2, .., U are the
CPs of the first find and order n .

Proof: The proof of (3.1) depends on the
following lemmas

Lemma 1: For all positive integers nj, a=1

, we have

I (u)=2 B P (20 =1)+ 0w in(2 +d )P0 (20— 1)
3.2)

where P (naj’ﬁ ) (X) are Jacobi polynomials

(JIPs)

Proof: For proving (3.2) let

+
97 (y)=Tan, (y) . whee

THn ' (y ) are the CPs of the first kind,

then (2.8) can be written in the form
n:

2 ,\d
J 7; D, (u)+u GMJEJDW(U)

(3.3)

L (u)=>

where
o T, (s) ds

D”f(u):.[o 2

u- — S

2

(3.4)

Using the substation S = Ut and the relation
_ 2

T on; (x)= T, (2x - 1),
the formula (3.4) takes the form

1 Bl
D, =[, (1-t")" T, (2u-1)dt
(3.5)
Using the famous relation between CPs, LPs
and JPs, see [10]

I (1-v)%T, (l—tzy)dt:% [P (1=y)=P, . (1-y)]

(3.6)

are Legendre polynomials

;vherePnj (X)

(LPs),  the formula (3.5), yields
_ (-1,0) 2
D u)= —P 2u -1
n ¢ ( ) 2 n 1 ( )
3.7)

Also, the first derivative of (3.7) takes the form
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dD (u
ng( ) :ngﬂ- P( 1)1 (2u 1)
du
Ny oq o0 (0 =12 .. N
(3.8)
(a.p) —
P (X )_ 0 for negative integer )

Finally, introducing (3.7), (3.8) in (3.3) , we
obtain the required result.®

Corollaryl: Put U=1 in (3.2), we have

D, (1)=2| 375 (1) sn (222 )

3.9

Using the famous
relation Pr(]a'ﬁ) (l) = M , the

n'T(1+ o)
formula (3.9) becomes
D, (1)=2n,In(2+d) (3.10)
where F(X) is the Gamma function .
Corollary2: The value of the second
e 4 (D)
erivatives a W 18 given by
d ( dDmJ
_ u =
dul du
o =2 (a7 i, (o

(3.11)
Lemma 2: The value of the following integral

d Tzng (S)dS
[ v
, (3.12)

takes the form
3
= 13

z2n,! 1 1 {“) [‘75]
A"‘(X):ﬁF(n, —;)'H{ZH XlP (y)_(l"'y)Pnfl (y)

+\/§ng7z
vi-y

. y=2x%-1
n,=12,...;0=12,...,N .3.13)

Proof: For proving the lemma, we introduce
(3.12) in (3.13) to have

lup°' (2 1)du l)ju3pﬁ‘f;(2u2—1)du
n + e

K X \/U2—X2

L(3.14)
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Assume in  (3.14) the  substitution

2u° 1=y, 2x* —-1=12,

n- y)d H7T
pia- D00

n,(n, +1)z jP(u
Jy-1

22
If we put Y = 1- (1 — Z)\/ , then (3.15)

(3.1 5)
yields

to have

¥, Ayl

=

1 _
A, (z)= %F = 2[(1-v)2 POV - (1 - 2 )]
0
nnf(n +l : ; (12)
0 +2)[(1-v)2 P21 - (1- zv]ov
0
n,(n, + )z z‘ L
+T 2.[1 V 2P [1 I_Z)V]
0
(3.16)

If we use the famous formulas [10]

1
[ (1-2)" PP (1 - yz)dz =
0

NI{l+a){A+r) > ( nN+a+f+LAa+LA+r; 2]
(Reﬂ >0, Rer > 0)
(3.17)
and
Pfga’ﬂ)(v)z[n_;ajl:( nN+a+f+1; 12\/]
(3.18)

where 3F2(a1,a2,a3;ﬂ1,ﬂ2;2) is
the generalized hypergeometric series and
F (0( R ,8 iy Z) is the hypergeometric Gauss

function , the first integral term of (3.16)
becomes
1 -1 ..

(Ul — (4)
{(l V) PO - (1 - z]dv = WPH(Z)
(3.19)

Also, using the same way, the second and third
integral term of (3.16), yield
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—z)v]dv =

[La-v)T R0 -
U 2w R, 2
el o)

(3.20)
and

J ol (1-v) Prglﬁ)z [1-(1-z)v]dv-

AR P
(n, +1f1-2)r(n, +1) ™! (n, +1)1-2)
(3.21)
Introducing the three formulas (3.19) - (3.21)
in (3.13) the lemma is proved.®
Finally, to prove the theorem, we write (3.13)
in the CPs form, for this purpose, we must
consider the following famous formulas, see

[10, 11]
(i)
-1 - 1
R B AR
Jar(n+a) v
(3.22)
(Relation between Jacobi
and Gegenbauer polynomials)
(i)
h11) (n + 3)1“
P, 2?%(2x° -1 X
n ( ) fxl“(n+k+1) 2n+1( )
(3.23)
and
: 2
iy imI(2)CH(x)==T,(x)
A—0 n
(n>1) (3.24)
(Relation between Chebyshev and Gegenbauer
polynomials)

Using these famous relations in (3.13), one has
A () n,z(l-T,, (x))

‘ V1-x? ’
(n>1)

(3.25)

Introducing (3.25) and (3.10) in (2.6) , the
theorem is proved.®

By using the same way, we can prove this
theorem

Theorem 2: The spectral relationships for the
SFIEs with the kernel defined by (2.4) and the
known function is odd is given by

uj ,,j{ln }Zn 1()ds—L

2n, -1
(nz >1,/ :1,2,...,N) (3.26)

Ty, 1(X)
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The proof of theorem 2 can be obtained
directly by following the same way of theorem
l.m

4. Conclusion and results: From the above
results and discussion, the following may be
concluded

(1) The contact problem of a rigid surface of
an elastic material, when a stamp of length

2@ is impressed into an elastic layer surface
of a strip by a variable P(t ), 0<t<T«<I,
whose eccentricity of application

e(t ) ,srepresents a V-FIE of the first kind.

(2) The numerical method used transforms the
V-FIE into SFIEs.
(3) The SFIEs depends on the number of

derivatives of F(t, T ) with respect to time
t,t [0, T], T<1 .

(4) The displacement problems of ant plane
deformation of an infinite rigid strip with
width 2@ , putting on an elastic layer of

thickness N is considered as a special case of

this t=1, F(t,7)=1,
f(X,t)IH and ¢(X,1)= l//(X) . Here

H represents the displacement magnitude and

work when

74 (X) the unknown function represents the

displacement stress.
(5) The problems of infinite rigid strip with

width 2a impressed in a viscous liquid layer

of thickness N , when the strip has a velocity
resulting from the 1mpulslve force

V= VO | =A/—1 , where VO is the

constant velocity , W is the angular velocity
resulting rotating the strip about z-axis are
considered as special case of this work , when

F (t, T) = constant , and t = I see [4].
(6)In the discussion (4) and (5) ,

h— o0 , this means the depth of the liquid (
Fluid mechanics ) or the thickness of elastic
material (contact problem ) becomes an
infinite .

(7)The three kinds of the displacement
problem, in the theory of elasticity and mixed
contact problems, which discussed in
Aleksandrov et al. [4],Muskelishvili [5], Green
[6] and Popov [7].,are considered special
cases of this work .

(8) Many important relationships can be
derived from (3.1)

when
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X Sin%
a sm%
a7
SIn
X— 2 ; and if nj:2mj+1 ,
: [24
a SIHE
5 Ui
X tan=Z tan =
— = 2 , XZ 2 , we have the
a tan? a tan?
following SFIEs
ZU FJ/I In——->— ‘ +d V/J(é:)dé::hk(ﬂ)
ni
4.1)

The above system leads to the following SRS
n

T, Sl—nz co{%)dn

1 ! Sln
, || In dl———
ZUJ i, _[ Fquni”*— 2(cog7_cosa)
,(In 2 +d) m =0
. &
=< Slni
—T | —= >1/=12..,N
m " si " m >L/=12,
(4.2)
and
tan

ZUJ it J In . £
2

B T tan%

T g oem|

2m, +1 tan <
m, 20 @3)

(ii) Differentiating (3.1) with respectto X , we
have

_ﬂUn—

Jy X\/ﬁ ,1()
;21

Zu FM_'[ly X) /a y2:O
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where U ( ) are the CPs of the second

kind.
Also (4.4) yields

Y4 a
DuF, J.cot”—;’r
j=0 —a

n
tan 5

nj a
tan 5

cos(%)d n

\2(cos7 —cosax)

0 n=0

= km@%ﬂ;] n=m ,
{coe(%%(i@%—fiﬂtaﬁ“‘z} n=am-1

4.5)
2 sec’ cot’“g tanZ
u;F;, 24
z IJz (cosp—cosa) | tan? 7
c0£dg)se&(§p tang n>1
_ 2 2/-n- tan%‘ T (4.6)

set%‘).tang) n, =0

(9) The mixed integral equation with
Carleman kernel can be established from this
work by using the following relation

In|x—y| = h(x,y}x=y["
O<ovxl 4.7)
where

1%
h(x,y)=|x—y[’In[x—y| isa
smooth function

The importance of Carleman kernel came from
the work of Arutiunion [12] who has shown
that , the contact problem of nonlinear theory
of plasticity, in its first approximation reduce
to FIE of the first kind with Carleman kernel .
(10) The relation between the eigenvalues N

and the corresponding Chebyshev
polynomial T, are obtained in the following

figures
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