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1. Introduction 

When such widespread methods as the 
finite-difference method, the grid-projection method 
and many others are used for numerical solutions of 
boundary value problems of differential equations [1, 
2, 3, 4 and 5], it leads to the use of the sweep method. 
That is why the sweep method occupies an important 
place among the most commonly used numerical 
methods.  

The sweep method is specifically intended 
for difference equations that appear while writing 
difference relations for differential equations. The 
computational stability of the sweep method is 
guaranteed if there is a diagonal dominant matrix of 
difference equation system. In turn, for 
corresponding differential equations, this 
characteristic means that the coefficient must me 
positive for a desired solution. When there is a good 
computational stability, the sweep methods show 
themselves as a widely applicable way for the 
numerical solution of boundary value problems of 
second-order differential equations. Currently, there 
are various estimates for stability conditions of the 
sweep method (up to strong criticism [6]). 
Nevertheless, this type of methods is one of the main 
tools for computing specialists. This is confirmed by 
the fact that these methods are described in 
educational books. No doubt, the decisive role 
belongs to the 50-year practice in the application of 
the sweep methods to specific problems. 
Unfortunately, the rigorous substantiation for the 
application of such methods leaves much to be 
desired because there is a significant gap in a set of 
strict results. For example, in [7], one can find a 
detailed analysis of sweep formulae and a description 

of difficulties in the closure of a computational 
algorithm because, in starting point, forward-sweep 
formulae act as a quantity inverse to grid step. 

In various sources, there are many examples 
where the sweep method does not work well for 
boundary value problems. In particular, such 
examples can be found in [8, 9]. An unsatisfactory 
result can occur in the case when all conditions of 
sweep method applicability are met.  

Such unfavourable situation can be caused 
by the accumulation of computational errors. One can 
ignore the influence of computational errors on the 
decision in the calculations with relatively large steps 
h. But it is still worth bearing in mind that 
computational errors can accumulate while using the 
sweep method for solving boundary value problems 
of a difference equation system. It is well-know that 

if 0h , a computational error can increase in 

proportion to
2/1 h . So, a catastrophic loss of 

accuracy is possible at quite small values of step h. 
Such unacceptable loss of accuracy occurs due to a 
significant distortion of the desired value at the stage 
of working out difference equations [8]. That is, the 
situation is caused by lack of the finite-difference 
method, but not the sweep method. This fully accords 
with K.I. Babenko’s book [6]. 

From the above we can conclude that, in the 
toolbox of computational mathematics, it is necessary 
to have a series of recurrence formulae similar to 
sweep formulae but at the same time alternative to 
classical sweep formulae. Besides, it is desirable that 
suggested formulae are more computationally stable 
for a wide range of problems than it is for known 
types of sweep methods.  
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This paper is aimed at deriving recurrence 
formulae similar to sweep formulae for the numerical 
solution of boundary value problems of second-order 
differential equations when the sweep method can 
lead to disappointing results. In particular, the most 
important question is the presence of sweep formulae 
while the coefficient is negative in the equation, and 
boundary conditions do not satisfy the stability 
conditions of widely used sweep method.  
2. Problem definition.  
Let us consider a second-order differential equation  
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certain approximation ),y(t)(ty=y nn ~~  

1,21 N,=n . It is necessary to derive 

recurrence sweep formulae and study them for 
consistency and stability, thereby stating the 
conditions for the applicability of derived formulae.  
3. Recurrence formulae for the numerical 
solution of boundary value problem (1) – (3) in 

case when .0q(t)  As it is known, in this case 

there is a unique solution of boundary value problem 
(1)-(3). 
Description of the algorithm 

In case when 0q(t) , the following 

recurrence formulae can be used for the numerical 
solution of boundary value problem (1) – (3): 
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Justification for the above formulae.  

If we multiply both parts of the equation (1) 
by function  
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Plugging these values in the previous 
expression we get:  
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For convenience, we will denote 
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With the help of these denotations, after 

reducing both parts by ,kn the previous expression 

will be rewritten in the following more visual form:  
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and dropping second-order remainder terms, 
we obtain recurrence formula 
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we obtain the following recurrence formula for the 
evaluation of desired solution in grid nodes with the 

first order of approximation  
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By taking ,=a 00  00 =v  we will 

satisfy boundary condition (2) at the left end. And, 

accordingly, if we take ,β=yN 1  then the boundary 

condition at the right end will be met automatically. 
Thereby, we obtained all recurrence formulae (1.1) - 
(1.3).  

Consistency proof. In order to prove 

consistency, we will show that if 0h , then, from 
above recurrence formulae (1.1) - (1.3) we can get a 
Cauchy problem for three first-order differential 
equations. This problem, in its turn, is equal to 
original boundary value problem (1) – (3). 

From formula (1.1) we get 

nnnnnn l+a=μaa+a 11  or 

nnnnnn μaal=aa 11 
 . If we divide both parts 

of this expression by h  and pass to the limit 

while 0h , we can get differential equation  

k(t)
=(t)q(t)a+(t)a' 12

, with initial value 

00 =)a(       (1.5) 

Reasoning quite similarly, we can become 
convinced that the following differential equations 
are the differential analogues for respective 
recurrence formulae (1.2) - (1.3):  

a(t)f(t)=t)q(t)a(t)v(+(t)v'   00 β=)v( , (1.6) 

v(t)=(t)a(t)k(t)yy(t) '   11 β=)y( .(1.7) 

where the latter equation of the system is 
integrated from right to left.  

The equivalence of received system to 
boundary value problem (1)-(3) is checked by 
differentiating the latter equation considering two 
previous equations. At that, noted initial conditions 

for y(t)v(t),a(t),  ensure the fulfillment of 

boundary conditions (2)-(3). 
Stability proof.  

Now let us receive evidences that the above 
recurrence formulae are computationally stable. It 

should be noted that by condition ,dttq=μ
n
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N,=n ,21 . This fact ensures the stability of 

calculation by formulae (1.1) – (1.2). In formula 
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satisfied for all 1.1,N,N=n  This guarantees 

the stability of calculation by backward formula 
(1.3). It is notable that the above recurrence formulae 
(1.1) - (1.3) approximate the original boundary value 
problem with the first order of accuracy. If necessary, 
recurrence formulae similar to (1.1)-(1.3) can be 
written. These recurrence formulae provide a higher 
accuracy than the above ones, but this paragraph is 
aimed at justifying the correctness of formulae (1.1)-
(1.3) that form a basis for the algorithm of the 
numerical solution of problem (1)-(3), in case when 

.0q(t)  Moreover, if necessary, some well-known 

methods, such as the Runge-Kutta method etc., can 
be used to improve the accuracy of the desired 
solution. In book [10] one can find a system of 
differential equations (1.5) – (1.7) and a certain 
analysis of this system. Nevertheless, the book does 
not contain corresponding discrete formulae for the 
numerical solution. This paragraph of the present 
paper meets this lack.  

The reduction of boundary value problem 
(1) - (3) to Cauchy problem (1.5) – (1.7) and its 
subsequent solution is called a differential sweep 
method or simple factorization method. When in 

equation (1) 0q(t) , this method was studied by 

many authors, such as Gelfand, Lokutsievsky, 
Marchuk, Ridley etc. Many distinguished 
mathematicians contributed into the development of 
the sweep method in relation to different problems. 
They include: A.A. Abramov, N.S. Bakhvalov, V.S. 
Vladimirov, A.F. Voyevodin, S.K. Godunov, L.M. 
Degtyarev, I.D. Safronov etc. As a result, today there 
are many modifications of the sweep method, such 
as: classical, flow, cyclical, orthogonal and non-
monotonic modifications. All of them are designed 

for solving equation systems that appear in the course 
of the approximation of boundary value problems. 
Besides, they are modifications of classical sweep 
method. Each of them can be chosen to solve a 
specific class of problems.  

 
Numerical examples 

1. As a numerical example, we will consider 

boundary value problem 0,25 =y(t)(t)y ''   

10  t , 10 =)y( , 11 =)y( . In the conditions 

of this example 1k(t) , 25q(t)  , 0f(t)  

10 =β , 11 =β . In numerical calculation with step 

1000=N  by formulae (1.1)-(1.3), the greatest 

absolute error is 0.005=δ .  
2. As the next example, we 

consider 0,100 =y(t)(t)y ''   10  t , 

10 =)y( , 11 =)y( . Here 1k(t) , 100q(t) , 

0f(t)  10 =β , 11 =β . In numerical calculation 

with the same step 1000=N  by formulae (1.1)-
(1.3), the greatest absolute error reaches 

value 0.01=δ . 
3. As the third numerical example, we 

consider 0,10000 =y(t)(t)y ''   10  t , 

10 =)y( , 11 =)y( . Here 1k(t) , 

00010q(t) , 0f(t)  10 =β , 11 =β . In 

numerical calculation with step 1000=N  by 
formulae (1.1)-(1.3), the greatest absolute error 

reaches value 0.089=δ .  
These and other examples show that if 

equation coefficient q(t)  and/or values 0β , 1β  of 

end parameters are high, it is necessary to reduce the 
step for the best accuracy. Here we express the fact 

that, if values q(t) , 0β , 1β  are high, the original 

problem becomes harder; at the same time, the 
solution of a problem around ends changes very 
quickly and forms a “boundary layer” or a “boundary 
effect”. Inside the segment, the solution changes very 
slowly, that is it goes to quasi-stationary mode. In 
similar cases, under this method, it is possible to 
specify the points where the integration step reduces 
and increases. But in this paper we will not study this 
question in depth (it can become the object for further 
research) because the main goal of this paper is to 
study the questions of the numerical solution of 

problem (1)-(3) in case when .0q(t)  
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4. Recurrence formulae for the numerical 
solution of boundary value problem (1) – (3) in 

case when .0q(t)  

Algorithm description  
Forward algorithm organization.  
We will begin calculations with the following 
formulae calling them forward formulae for 
negative “entry”  
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need to start calculations using these formulae is 
caused by the fact that the left-end boundary 
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above initial values of recurrence formulae). 

As formulae (2.8) are designed for negative 

“entry”, we will take 0
1

1

1 >
b

=a , 
1

1
1

b

d
=v , then 

we begin calculations with the following formulae 
calling them forward formulae for positive “entry” 

nn

nn
n

la+

μ+a
=a

1

1

1 

 , 
1

1

1

b
=a ; 

nn

nn
n

la+

σ+v
=v

1

1

1 

 , 

1

1
1

b

d
=v ;   (2.9) .2,.... 1θ=n  

 where ,θ1  is such a number that for all 

1,2,.... 1 θ=n  values 0,na   and 0
1

<aθ . 

That is, here the value of number n , for which 

0,<an for the first time, is denoted by 1θ . If there 

is not such a number, then calculations by formulae 
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.1,.... 21 θ+θ=n   

where ,θ2 is such a number that for all 

1.1,.... 21 θ+θ=n  values 0,nb  and 0
2

>bθ . 

If there is not such a number, then the calculations by 
these formulae will be conducted to the right end of 
the segment. Then, if needed, the above procedure is 
repeated in the next possible transition points. This 
method is suitable for many transitions between 
forward formulae of positive and negative “entries”. 
The number of such transitions depends on the value 

of function .q(t)  

 If we denote 1,0 =θ  and kθ is the number 

on which the latter transition from formula (2.8) to 
(2.9) was performed, or vice versa, then 

 k210 ....,θ,θ,θ will be a set of indexes that are 

“transition step numbers”. And accordingly, a set of 

indexes from 0 to N, is divided into subintervals in 

the amount of 1+k  pieces; ]θ[ 00, , 

]θ+[θ 10 1, , ]θ+[θ 21 1, ,….. ]θ+[θ kk 12 1,  , 

]θ+[θ kk 1,1 , N]+[θk 1, . Then if needed it is 

possible to turn to forward formulae for positive 

“entry” (2.9) by substituting

jθ
jθ

a
=b

1
, 

jθ

jθ

jθ
a

v
=d , and back to forward formulae for 

negative “entry” (2.8) by substituting 

jθ
jθ

b
=a

1
, 

jθ

jθ

jθ
b

d
=v , where jθ is the index number from 

which transition ....1,20, k,=j  is performed, 

and j  is the number of transition.  

So, the alternate use of forward formulae 
(2.8) and (2.9) for negative and positive “entries” 
allows us to calculate to the right end of the segment 
and thereby to complete the “forward stroke”. At 

that, on segment N]+[θk 1,  two mutually 

exclusive cases are possible:  
1) Calculations by forward formulae (2.8) for 

negative “entry”; 
2) Calculations by forward formulae (2.9) for 

positive “entry”.  
 
Backward algorithm organization  
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In the first case, we will begin backward 
calculations by the following formulae calling them 
backward formulae for negative “entry”. 

N

N
N

b

d+β
=z 1 , 

nn

nnnn
n

μb+

σdμz
=z

1

1
1 




, 

1111   nnnn dzb=y ;

1..2,1,.... +θ+θNN,=n kk  (2.10) 

if 0Nb . 

Then, beginning with step kθ , we continue 

calculations by the following recurrence formula that 
can be called a backward formula for positive 
“entry”. 
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indexes from 1kθ  to 12 +θk , calculations are 

conducted by formulae (2.10). At the next interval 

]θ+[θ kk 23 1,   calculations are performed from 

right to left by formulae (2.11). Thus, by alternating 
backward formula for negative “entry” (2.10) and 
backward formula for positive “entry” (2.11), we can 

find all desired values ny , .1,...1.)N=(n   

Besides, if it is necessary to turn from (2.11) to 
(2.10), it can be made by formula 
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, where jθ is the number of 

index from which transition .1,...0.)kk,=(j   

begins, and j  is the number of transition.  

In the second case, we assume 

that 1β=yN , and calculations continue by 

formulae (2.11), that is by backward formulae for 

positive “entry” from index N to 1+θk . On 

index kθ , when it is necessary to turn to (2.10), we 

calculate by formula 

kθ

kθkθ
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1
, and 

calculations will continue by the formula for 1nz  

from (2.10) for all indexes of interval 

]θ+[θ kk 1,1 from right to left. Then we organize 

this backward numerical process in perfect analogy 
with the previous case, that is we alternate backward 
formulae for negative and positive “entry”. This can 

let us obtain all desired values 1ny , 

.1,...1.)N=(n    

Justification for the above recurrence formulae  
Now we will study the following system on 

the first-order differential equations  
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when 01 )b( . Here the latter equation of 

the system is integrated from right to left. If we know 
the solution for this system, we can write the solution 
for original boundary value problem in the following 
form:  

d(t)b(t)z(t)=y(t)         (2.15) 

It is true that if we differentiate this 
expression and use equations of the system (2.12)–

(2.14) we will get 
k(t)

z(t)
=(t)y'

 or z(t)=(t)k(t)y'
.  

After we differentiate this expression, we get  
  q(t)y(t)+f(t)=d(t)b(t)z(t)q(t)+f(t)=t)q(t)b(t)z(+q(t)d(t)f(t)=(t)z=(t))(k(t)y ''' 

 
That is we obtain an original equation. Now 

if we take 00 =)b( , 00 β=)d(  , then the 

boundary condition at the left end of the segment is 
satisfied automatically. In order to determine the 

missing initial value for z(t) , we will put down 

(2.15), when 1=t  and taking into account boundary 

condition 11 β=)y( . We 

have 11111 β=)d())z(b(=)y(  . Hence, if 
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01 )b( , we have 
)b(

)d(+β
=)z(

1

1
1 1 . Thus, we 

show that function d(t)b(t)z(t)=y(t)   is a 

solution for (1)-(3), where b(t) , d(t) , z(t)  are the 

solutions of differential system (2.12) – (2.14). 
Backwards, from boundary value problem (1)-(3), we 
get system (2,12)-(2,14) as follows. In equation (1) 

we take z(t)=(t)k(t)y'
 and 

d(t)b(t)z(t)=y(t)  . After that equation (1) will 

be rewritten in form (2.14). Considering these 
equalities and relation 

)()()()()()()()( tdtqtytktbtqtfq(t)d(t)t)q(t)b(t)z(tf(t)z' 

,  we have  
=(t)]d(t)b(t)z+(t)z(t)k(t)[b=d(t)]z(t)k(t)[(b(t)=(t)k(t)y ''''' 

(t)k(t)dt)k(t)b(t)f(+t)d(t)k(t)q(t)b(tytbtqtktytbtk ' )()()()()()()( 222

.  

When (t)y'
 we make terms of this equation 

equal and get (2.12), and if we make free terms equal 

we get (2.13). From expression (2.15), if 0=t , and 
left-end boundary condition we get 

00000 β=)d())z(b(=)y(  . Here, if we take 

00 =)b( , we get 00 β=)d(  . The initial value 

for z(t)  is obtained by analogy. Thus, one can see 

that boundary value problems (1)-(3) and (2. 12)-
(2.15) are equal. 

In system (2.12) – (2.14) we can make the 

following substitution in points where function b(t) , 

do not become zero.  

b(t)
=a(t)

1
, 

b(t)

d(t)
=v(t) , d(t)b(t)z(t)=y(t)  .  

            (2.16) 
As a result, we come to another system of 

first-order differential equations  

q(t)=(t)a
k(t)

+(t)a' 21
      (2.17) 

f(t)=a(t)v(t)
k(t)

+(t)v' 1
    (2.18) 

v(t)=a(t)y(t)(t)k(t)y'        (2.19) 

As the previous one, this system is equal to 
the original boundary value problem. This can be 
shown similarly to how it was done with system 
(2.12)-(2.14). Initial values for differential equation 
system (2.17)-(2.19) are determined from relations 
(2.16). As it follows from (2.16), if necessary we can 
perform a backward transition from system (2.17)-
(2.19) to (2.12)-(2.14), using relations  

a(t)
=b(t)

1
, 

a(t)

v(t)
=d(t) , v(t)+a(t)y(t)=z(t) .  

                             (2.20)  
Now let us develop recurrence formulae for 

approximating the solutions of systems (2.12) – 
(2.14) and (2.17) – (2.19).  

It follows from the first part of this paper 

(when 0q(t) ) that recurrence formula for nb from 

series (2.8) corresponds to equation (2.12). We will 
develop the recurrence formula for equation (2.13) as 
follows: we will multiply equation (2.13) by certain 

function )t(tγ+=g(t) nn 11  (number nγ  will be 

found later) and integrate by parts on one of segments 

]t,[t nn 1 , ( N,=n ....1,2 ). As a result, we obtain  

 
 




n

n

n

n

n

n

n

n

t

t

t

t

t

t

t

t

dttgtftbdttqtdtbtgdttgtdtgtd
1 11

1

)()()()()()()()()()()(

 

It is notable that nn
'

n
' γ=)(tg=)(tg 1 , 

nn hγ+=)g(t 1 . 11 =)g(tn . Then, if we denote 

  ,b=)b(t,d=td nnnn  


n

n

t

t

n dttq=μ
1

)(  

,dttf=σ
n

n

t

t

n 
1

)(  .,21 N,=n  , and take into 

account a Taylor series expansion in point 

,tn 1 functions under integrals, after some 

transformations we obtain  

)O(h+σb=)μbhγ+(d)hγ+(d nnnnnnnn
2

1111 11  

 

Here we will require for all N,=n ....1,2  

the fulfillment of equalities. 

11 11  nnnn hγ+=μbhγ+ . Hence we find all 

values of nγ  in form 
h

μ
b+γ=γ n

nnn 11  . Then 

)O(h+σb=)hγ+(d)hγ+(d nnnnnn
2

111 11 
or  

n

nnnn
n

hγ+

σb+)hγ+(d
=d

1

1 111  , here 

we drop the remainder of order )O(h2
. Then, if 

in formula for nγ  we choose 01 =γn , with all 

N,=n ....1,2 ., we will have 
h

μ
b=γ n

nn 1 , and 

considering this expression formula for nd  will look 

like in (2.8). 
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In order to develop a recurrence formula 
corresponding with equation (2.14), we will multiply 
both parts of this equation by function 

)t(tξ+=g(t) nn 111   , (number nξ  will be 

found lately) by parts on one of segments ]t,[t nn 1 . 

Then we act similarly to how we did above while 

developing the formula for nd , and we obtain 

nn

nnnn
n

μb+

σdμz
=z

1

1
1 




, which was shown in 

(2.10). As it follows from relations (2.16), recurrence 
formulae corresponding with equation of system 
(2.17)-(2.19) are obtained from formulae 

 nnnn y,z,d,b  by substituting  

n

n
b

=a
1

,  
n

n

b

d
=v(t) ,  nnnn dzb=y  , 

and they coincide with (2.9) and (2.11). This can be 
proved by a direct verification.  
 
Consistency proof.  

 Passing to the limit when 0h , in 

recurrence formulae  nn d,b  from (2.8) we 

obtain differential equations (2.12)-(2.13). Similarly, 

in the limit when 0h , in (2.10) we obtain 
equation (2.14). In the same way, we can become 
convinced that differential equations represented by 
system (2.17) - (2.19) are the analogues for 
corresponding recurrence formulae (2.9), (2.11). The 
equivalence of each of systems (2.12)-(2.14) and 
(2.17)-(2.19) to original boundary value problem (1)-
(3) was shown above.  
 
Stability proof.  

According to the condition, 

,dttq=μ
n

n

t

t

n 



1

0)(  which means that inequality 

1
1

1

1


 nn μb+

 is fulfilled for all 01 nb . 

N,=n ,21 . This fact ensures the stability of 

calculations by backward formulae for 

 1nnn z,d,b for negative “entry”. And the 

stability of calculations by backward and forward 

formulae for positive “entry” -  nn v,a  ensures 

inequality 1
1

1

1


 nn la+

, when 01 na . So, one 

can directly see that the condition of stability is met 

in all formulae except formula for  1ny . In formula 

for  1ny , if ny , the factor can be transformed to 

the form 

   22

1

1

1

1

1

1
1 hO+

la+
=hO+

)la+(k

ha
k

ha
+k

=
)la+(k

ha)la+(k
=

)l+(ak

ha

nnnnn

n

n

n
n

nnn

nnnn

nnn

n













 

As by condition ,0
)(

1




n

n

t

t

n
tk

dt
=l   and 

0na , then inequality 1
1

1


nnla+
 is fulfilled for 

all 1.1,N,N=n  This guarantees the stability 

of calculations by the backward formula for positive 
“entry”. As it follows from the above reasoning, the 

above algorithm is correct if  1Nb . 

 
Numerical examples 

1. For a numerical example, let us study 

boundary value problem 0,94 =y(t)(t)y ''   

10  t , 10 =)y( , 01 =)y( . In the 

conditions of this example, 1k(t) , 94q(t) , 

0f(t)  10 =β , 01 =β . If we perform 

numerical calculations with step 100=N , then, 
according to the above algorithm, the greatest 

absolute value is 0.302=δ . Such low accuracy is 

caused by the fact that function q(t)  and the number 

of steps N  are the values of the same order in this 

example. Nevertheless, such accuracy does not 
contradict the first accuracy order guaranteed by the 
stated method. And if we calculate with 

step 0100=N , the same error is 0.06=δ . 
2. For the next numerical example, let us 

study boundary value problem 

0,100 =y(t)(t)y ''   10  t , 10 =)y( , 

01 =)y( . In the conditions of this example, 

1k(t) , 100q(t) , 0f(t)  10 =β , 

01 =β . If we perform numerical calculations with 

step 100=N , then, according to the above 

algorithm, the greatest absolute error is 0.724=δ . 

And if we calculate with step 0100=N , the same 

error is 0.09=δ . 
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5. Conclusion.  
In this paper authors suggest recurrence 

formulae for the numerical solution of boundary 
value problem (1)-(3). These formulae have a wider 
field of application in solving boundary value 
problems of second-order differential equations. 
They work both with positive and negative 

coefficients q(t) . Besides, these formulae can be 

used with discontinuous coefficients of equations. 
The results obtained in this article are proved by 
computational data. These results can be generalized 

for numerical solutions in case )(tq  is an alternating 

function, and other kinds of boundary conditions for 
higher-order differential equations. 

Drawbacks and advantages of the method 
represented by formulae (1.1)-(1.3) and a series of 
formulae (2.8)-(2.11) can be clarified on the basis of 
practical application of this method by specialists in 
computational mathematics.  
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