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Abstract: The study of micro and nano particle-laden multiphase flow has received much attention due to its 

occurrence in a wide range of industrial and natural phenomena. Many of these flows are multi-dimensional 

systems involving strong mass, momentum and energy transfer between carrying fluid and particulate phase. 
The purpose of the present paper is to survey brief description of Eulerian-Lagrangian modeling of two-phase 

flow. 
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1. Introduction 

 
A two-phase flow is defined as combination of 

continuous phase, e.g. gas or liquid, and disperse 

phase, e.g. particles or droplets. They are found in 

many industrial applications such as cyclone 

separators, jet mills, deposition in duct or pipe 

flows (most probably undesired deposition), dust 

precipitation or coating processes (desired 

deposition). They also occur in nature, e.g., desert 

sand storms, pollen in air and dispersion of 

pollutants. In order to model such a phenomenon, 

two theoretical approaches are considered, namely 
the Eulerian-Eulerian (two-fluids) and the Eulerian-

Lagrangian approaches. The Eulerian description 

assumes continuum medium for discrete phase and 

solve conservative laws for both solid phase and 

gas phase [1-3]. With the rapid development of 

computational capabilities, the mixed Eulerian–

Lagrangian approach attracted more and more 

attentions from many researchers. In this approach, 

the detailed particle motion behavior, which 

facilitates a better understanding of the physical 

phenomena, can be revealed by solving the 

Newtonian motion Equations in Lagrangian 
coordinate while solving continuity and momentum 

equations for continuum phase.  

In this review we will focus on turbulent 

Lagrangian description of particle tracking to 

model two-phase flow and expose development 

process in modeling such phenomena. 

2. Characteristics of Lagrangian description in 

turbulent flow 

 

Empirical probes have shown that three impacts 

have to be allowed for, to predict particle 
dispersion precisely. 

 

2.1 The inertia effect (IE) 

The experiments of Wells & Stock [3]and the 

direct numerical simulations of Squires & 

Eaton[4]indicate the possibility that the dispersion 

coefficient for heavy particles exceeds that for fluid 

particles. Reeks [5] and Pismen & Nir [6] have 
developed theories which predict that very heavy 

particles disperse more rapidly, in the long term, 

than fluid particles. 

 

2.2 The crossing trajectory effect (CTE) 

This effect Udine [7],whereby particle 

dispersion is reduced in the presence of strong 
body forces due to particles rapidly passing through 

eddies. 

 

2.3 The continuity effect (CE) 

The continuity effect Csanady [1] tells that the 

dispersion in the direction of the drift velocity 

exceeds the dispersion in the other two directions. 

The effect results from the fact that “longitudinal” 
and “transverse” length scales are different, which 

is in turn due to continuity equation of fluid motion 

[8]. 

 

3. Particle equation of motion 

The surrounding fluid will interact with 

particles. The Lagrangian approach for the 

simulation of the disperse phase is based on 
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Newton's equation of motion. To date a number of 

such forces have been implemented in discrete 

particle simulations. The reader can refer to [9, 10] 

for the historical development of such forces. The 

equation of motion of particles is given by 

p

p

du
m F

dt
  (1) 

Here, F is sum of all forces that acting on particles 

which is represented in Table 1. 
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Table 1. Acting forces on particles 

 The difference between the velocity of 

carrying fluid and of a particle moving in the 

carrying fluid causes the Drag force. The effect of 

gravity force on particle motion should be 

included, in the case where the free-fall velocity of 

particles and the velocity of carrying fluid are the 

same order of magnitude. The non-uniformity of 

the profile of averaged velocity of carrier fluid 

results in Saffman lifts force [11]. The Magnus 

force is due to the particle rotation. During particle 
motion in a fluid, particles of complex shape (a 

spherical) always rotate. The spherical particles 

will also rotate in a flow with a no uniform velocity 

profile. The added mass or virtual mass force is the 

inertia added to a particle because an accelerating 

or decelerating body must move some volume of 

surrounding fluid as it moves through it. The 

Basset history term is the drag caused by unsteady 

motion of the particle in a viscous medium. If the 

size of particle suspended in a fluid is very small, 

the motion of the particle affected by discrete 

nature of molecular motion of the fluid which is 
called the Brownian force. Turbo-phoresis force 

arises because of the non-uniformity of the profile 

of fluctuation velocity of carrier fluid. Thermo-

phoresis force arises as a result of the non-

uniformity of the temperature profile of carrier 

fluid. 

4. Fluid-phase flow model 

The conservation equations for the fluid flow are 

given by (in tensorial notation): 

, , , ,( ) ( ) ( )f t f i i i i pU S S           (2) 

Where, 
f is the gas density, 

iU are the Reynolds-

averaged velocity components, and   is an 
effective transport coefficient. The source terms 

S  and pS are arisen from the transport equation 

and presence of particles, respectively. The k 

(energy contained in velocity fluctuations)–ε (rate 

of transfer of kinetic fluctuation energy to heat by 
viscous friction) model is widely used for the 

simulation of turbulent fluid flows in practical 

applications. Error! Reference source not 

found. and Table 2. Summary of terms in the 

general equation for the different variables that 

describe the fluid phase in Cartesian 

flowdemonstrate the different variables and source 

terms that describe the fluid phase; respectively. 

The direct influence of the dispersed phase on the 

continuous phase is usually taken into account by 



Life Science Journal 2013;10(2s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com 36 lifesciencej@gmail.com 
 

formulating appropriate source terms for all 

quantities under consideration. In the situation 

which mass loading of particles is low, the 

influence of particles on their carrier phase is 

negligible. Thus, the source terms that appear in the 

conservative equations as a result of particles are 

zero. In many situations, the mass loading particle 

to fluid ratio is too large to allow one to be satisfied 

with the one-way approach discussed in the 

previous subsection. 

In the Euler-Lagrange approach the interaction 

between both phases requires an iterative solution 

procedure, which is usually called two-way 

coupling.  The discrete form of Reynolds Stress 

Model equations and their relevant source terms 

were presented by Gouesbet and Berlemont[9] and 

Lain et al[10]. In addition to two-way coupling 

simulation, four way coupling simulation accounts 

for inter-particle collisions which was considered 

by many researchers [10, 19-23]. 
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Table 2. Summary of terms in the general equation for the different variables that describe the fluid phase in 

Cartesian flow 
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Table 3.Fluid phase source terms in Cartesian flow 

5. Lagrangian modeling 

A common feature of most Lagrangian 
methods used to date is the decomposition of the 

driving fluid velocity into the mean and the 

fluctuating parts. The mean fluid velocity field 

results from the continuous phase computation and 

is interpolated at particle locations. Then, a 

Lagrangian model gives the fluctuating component. 

In order to develop stochastic models for the 

generation of fluctuations, one typically uses, 

together with particle parameters (such as τp), a few 

quantities derived from the fluid variables, like the 

Eulerian length scale LE or the Lagrangian time 
scale TL. The modeling of fluid fluctuation velocity 

is complicated, because of two effects that cause 

the fluid element and particle trajectories to differ: 

first, particle inertia that induces a relative 
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instantaneous motion of particles with regard to 

their fluid neighborhood, and second, mean particle 

drift due to gravity. 

 

5.1  Eddy Interaction Model 
Hutchinson et al [26]considered particles which 

have one-directional radial motion in a turbulent 

pipe flow. Their well-known model is called eddy 

life time model. The model uses a stochastic 

approach to predict the characteristic of discrete 

phase. The adequate characteristic of the eddy 

interaction model lies in its simplicity and the fact 

that the only statistics required by the model are 

representative length, time and velocity scales, 

whereas, in the autocorrelation models (will discuss 

in the next section), the forms of either the 

temporal (Lagrangian) or the spatial (Eulerian) 
velocity auto-correlation functions (or both of 

these) are required. In single eddy interaction 

model (SEIM) each of a number of individual 

particles is tracked through a series of interactions 

with fluid eddies whose length, "lifetime" and 

velocity can all be random variables. Their model 

modified by some researchers to account for 

various particles dispersion [27-29]. 

The effective eddy interaction time 

interval ti in which the velocities are kept constants 

are set to the minimum of the integral eddy life 

time 
eT and the time scale for the crossing of the 

eddies 
ct in order to account for the turbulence 

structure of the carrier phase as well as for the 

crossing trajectory effect[29]which is given by 

ln(1 )e

c r

pr

L
t

u u



  


 (3) 

In this approach[30, 31]as shown in 

Figure, at the start of the interaction time between 

fluid and particle ( t = 0 ), the particle will be 

assumed to be sitting at the center of the eddy with 

velocity of p0U . During the interaction of eddy and 

non-fluid particle, instantaneous fluid velocity of 

eddy is remained constant in space and time within 

the eddy and is given by 

'u U u   (4) 

Whereu is the instantaneous eddy velocity, U is 

the mean velocity and 'u is the fluctuating velocity 

which is given by 

i

2
'=

3

k
u   (5) 

Where i  is the zero mean unit variance Gaussian 

random vector. 

With proceed of time both the eddy and 

the non-fluid particle have moved in space. The 

eddy moves with its instantaneous fluid velocity 

while the non-fluid particle movement is governed 

by the Newtonian equation of motion (Eq. (1)). The 

non-fluid particle remains under the influence of 

that eddy until the interaction time exceeds the 

eddy lifetime ( eT ), or distance between the center 

of eddy and non-fluid particle ( 1d(t ) ) exceeds the 

eddy length eL . So in this approach interaction 

time is given by 

min( , )i e ct T t  (6) 

 
Figure 1. Eddy interaction model (from[30, 31]) 

Inertia and crossing trajectory and continuity 

effects have not been considered in original EIM. 

Some modifications have been taken to account by 

Graham[30, 31] to amend these deficiencies. The 

drawbacks of the method are twofold: a resulting 

velocity correlation coefficient is linear (rather than 

exponential) and the velocity record for a fluid 

particle is discontinuous (rather than continuous). 

5.1.1 Eddy scale determination 

As discussed earlier, to predict Particle 

motions in eddy interaction models three 

parameters are therefore determined: (i) eddy 

velocity, (ii) eddy lifetime and (iii) eddy length. 

Wang [32]have shown that the choice of eddy 

lifetime distribution in the eddy interaction model 
determines the form of the Lagrangian fluid 

velocity auto-correlation function.  

Eddy scales used by Hutchinson and 

James et al[33]were obtained from empirical 

correlations using Laufer [34]pipe flow data. 

Gosman & Ioannides [27]assumed that the eddy 

length and lifetime are equal to the dissipation 

scales, given by 

3/2
3/4 3/43 / 2 ,e e

k k
T C L C 

 
   (7) 

Where k and is the turbulence kinetic energy and 

its rate of dissipation, respectively and 0.09C  . 

Eddy scales in the near-wall turbulence studied by 

Kallio&Reeks[35]where determined from laws of 

similarity at the wall. Milojevic[29]proposed the 
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following eddy length and time scales which is 

given by 

3/22
,

3
e T e T

k k
T C L C

 
   (8) 

Typically a value of CT is in the range of 0.2 to 

0.96. 

Call & Kennedy[36] accounted for 

anisotropic turbulence by the use of a Reynolds 

stress turbulence model for the primary flow, 

thereby allowing for different eddy velocities in 

different coordinate directions. Graham & 

James[31]investigated the performance of different 
eddy interaction models with random length and 

time scales. 

 

5.2 Auto-correlation method 

In analyzing turbulent two phase flow we 

almost deal with Lagrangian fluid velocity auto-

correlation and Eulerian fluid velocity auto-

correlation functions. These two functions 

represent correlations between fluctuations of 

velocity of carrier phase and have the following 

general form, respectively: 

2

( ) ( )
( , )

( )

f f

L

f

u t u t
R t

u t





  (9) 

0 0 0 0

2

0 0

( , ) ( , )
( , )

( , )

f f

E

f

u x t u x x t t
R x t

u x t

 
  (10) 

Where ( )fu t and ( )fu t  are the fluid velocity at 

time t and t  , respectively and angled brackets 

indicate ensemble averaging over many such 
particles. Lagrangian velocity coloration function is 

one of the most important statistics of turbulent 

flows. 

RL should satisfy some requirements as following 

requirements: 

I. 0 1, 0L LR R       

II.    22

0
0

0, 0L LdR d d R d




 




   

Desjonqueres et al [37] proposed a Lagrangian 

method in which a correlation matrix is used in 

random process, which simulates the Lagrangian 

time correlations along the particle path. In the one 

dimensional formulation we have the following 
procedure in order to generate fluctuation velocities 

([9, 38 and 39]): 

Consider 
'U  as the fluctuating velocity in the 

different time steps as follow 

' ' ' ' 'U [ (0), ( ),..., ( ),..., ( )]x x x xu u t u i t u n t     (11) 

Define uncorrelated zero mean and unit variance 

Gaussian vector 
'U and Y have the following 

relationship 

'U BY  (12) 

There is a symmetric, positive-definite matrix A  

which has the following relationship with B as 

follow: 

TA BB  (13) 

Where,
TB  is the transpose matrix of B . 

Element of matrix A  obtain simply by Frenkiel 

[40] family of the correlation as follow 

2 2
exp( )cos( )

( 1) ( 1)
ij

L L

j i t m j i t
a

m m 

    


 
 (14) 

where m is the loop parameter and  m = 1 is a 

recommended value[9]. In the final step we use 

Cholesky factorization in order to B obtain from

A . 

 

5.3  Lagrangian temporal construction 

Model 

Lu et al [41] proposed a Lagrangian model which 

represents satisfactory results in compared to 

experimental results. In their model, at time t, the 

particle and a corresponding fluid point start out 
from the same position XS (Figure 2). After one 

time step, they arrive at Xf and XP, respectively, 

and the distance between them is Δs. The relative 

coordinate system O-ΞΩΘ is chosen such that its 

original point, O, is located at the position Xf, and 

the Θ-axis passes through the position XP ([41-43]). 

 
Figure 2. The locations of the particle and a fluid 

particle (from[42]) 
With the aid of time series analysis, the normalized 

fluctuating component in the location of particle in 

the i-direction of relative coordinate system O-

ΞΩΘ is obtained by (no summation convention is 

used): 

( ) ( ) ( 1, 2, 3)i P i i i S iW X a bW X i    (15) 

Where 
'

' 2

( 1, 2, 3)i

i

i

u
W i

u

   (16) 

In Eq. (15), 
i are mean zero, 21 ( )i ia b

variance Gaussian random numbers and ,i ia b are 
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Lagrangian auto-correlation and Eulerian spatial 

velocity correlations functions, respectively which 

they for example pick from the Frenkeil [40]family 

of auto-correlations as follow 

exp( ), exp( )cos( ), ( 1, 2, 3)
2 2

i iL

i ii

t s s
a b i



  
  

 

 

(17

) 

Where are 
i the length scales and L

i  are the 

Lagrangian time scales. 

 

5.4  Kraichnan Fourier modes 

Kraichnan [44]suggested a simple method 
for generating a random field which resembles a 

pseudo-isotropic turbulence. In this approach 

fluctuation velocities are obtained as below 

'
1 2

1 1

2
( , ) ( ) cos( . ) ( ) sin( . )

N N

p n n p n n n p n

n n

u X t u k k X t u k k X t
N
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(1
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Where 

1 2( ) , ( )n nn n n nu k k u k k      (19) 

And 

1 2
. ( ) . ( ) 0n n n nk u k k u k   (20) 

Satisfy the incompressibility condition. The 

components of vectors n , n and the values of 

frequency
n , were picked independently from a 

three or two dimensional Gaussian distribution 

with a standard deviation of unity. Each component 

of nk , is a Gaussian random number with a 

standard deviation that depends on energy 
spectrum [44]. Here, N is the number of terms in 

the series that usually is considered as 100. 

Some modifications were taken to account 

for anisotropy effects [21, 22 and 45].  

 

5.5  Models based on the Langevin equation 

 

A following stochastic differential 

equation has been proposed to model the behavior 

of fluid velocities 

2

1/22 '
( ) ( )i i i i

i

L L

du u U u
t

dt T T



    (21) 

Here, ( )i t is the Wiener process (white 

noise);it is a stochastic process of zero mean,

( ) 0i t  , a variance equal to the time interval

2( ( )) .i t dt  The above is the Langevin 

equation first proposed to model the Brownian 

motion; in that context, it represents the equation of 
motion of a small particle in surrounding fluid [46, 

47]. Some models presented by Pozorski & Minier 

[46] which account for main three effects in 

Lagrangian simulation, i.e. IE, CTE and CE. 
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