
Life Science Journal 2013;10(7s) http://www.lifesciencesite.com

607

Improving the Software Quality by Designing an Effective Test Cases with an Unit Testing

Nirmal Kumar A 1, Dr. B.G. Geetha 2

1 Assistant Professor, Department of Computer Science and Engineering, Christian College of Engineering and
Technology, Dindigul, Tamilnadu - 624619, India.

2 Professor & Head, Department of Computer Science and Engineering , KSR College of Technology,
Thiruchengode, Tamilnadu - 637215, India.

Corresponding Author Email: nirmal15483@gmail.com

Abstract: Software projects are acting important role in human life and they are becoming most challenging for the
software programmers. Human cannot do anything in this world without software in our day-to-day life. Software
companies are developing the software products in the domains like Health Care, Financial Management, Banking,
Insurance, Retail Management, etc. New methodologies, new techniques, new tools and new standards are increased
day-by-day to ensure the high quality software. Since there is a stress for software employees to produce the high
quality software. Both the programmers and the testers of the software should focus on the quality matters. Only the
effective software testing can ensure the quality software products and satisfying the user’s requirements, needs and
expectations. The software testing contains several steps. Test Case design is one of the steps in Testing Life Cycle
(TLC). The testers should concentrate on this test case design process carefully. In this research, the Traditional
Software (Financial Management, Banking, Insurance, Retail Management) is taken as example and discussed
about the improving the quality of the software.
[Nirmal Kumar A, Geetha B G. Improving the Software Quality by Designing an Effective Test Cases with an
Unit Testing Life Sci J 2013;10(7s):608-610] (ISSN:1097-8135). http://www.lifesciencesite.com. 97

Keywords: Software Quality, Software Testing, Test Cases, Unit Testing

1. Introduction
An airline reservation system (ARS) is part of

the so-called passenger service systems (PSS), which
are applications supporting the direct contact with the
passenger. The airline reservations system was one of
the earliest changes to improve efficiency. ARS
eventually evolved into the computer reservations
system (CRS). A computer reservation system is used
for the reservations of a particular airline and
interfaces with a global distribution system (GDS)
which supports travel agencies and other distribution
channels in making reservations for most major
airlines in a single system. Airline reservations
systems contain airline schedules, fare tariffs,
passenger reservations and ticket records. An airline's
direct distribution works within their own reservation
system, as well as pushing out information to the
GDS. A second type of direct distribution channel is
consumers who use the internet or mobile
applications to make their own reservations [2].
Travel agencies and other indirect distribution
channels access the same GDS as those accessed by
the airlines' reservation systems, and all messaging is
transmitted by a standardized messaging system that
functions on two types of messaging that transmit on
SITA's HLN [high level network]. These message
types are called Type A [usually EDIFACT format]
for real time interactive communication and Type B
[TTY] for informational and booking type of
messages. Message construction standards set by

IATA and ICAO, are global, and apply to more than
air transportation. Since airline reservation systems
are business critical applications, and their
functionally quite complex, the operation of an in-
house airline reservation system is relatively
expensive. [6].

As of February 2009, there are only three major
GDS providers in the market space: Amadeus,
Travelport (which operates the Apollo, Worldspan
and Galileo systems), Sabre and Shares. There is one
major Regional GDS, Abacus, serving the Asian
marketplace and a number of regional players serving
single countries, including Travelsky (China), Infini
and Axess (both Japan) and Topas (South Korea). Of
these, Infini is hosted within the Sabre complex,
Axess is in the process of moving into a partition
within the Worldspan complex, and Topas agencies
will be migrating into Amadeus [11].

An airline’s inventory contains all flights with
their available seats. The inventory of an airline is
generally divided into service classes (e.g. first,
business or economy class) and up to 26 booking
classes, for which different prices and booking
conditions apply. Inventory data is imported and
maintained through a schedule distribution system
over standardized interfaces. One of the core
functions of the inventory management is the
inventory control. Inventory control steers how many
seats are available in the different booking classes, by
opening and closing individual booking classes for

Life Science Journal 2013;10(7s) http://www.lifesciencesite.com

608

sale. In combination with the fares and booking
conditions stored in the Fare Quote System the price
for each sold seat is determined. In most cases
inventory control has a real time interface to an
airline’s Yield management system to support a
permanent optimization of the offered booking
classes in response to changes in demand or pricing
strategies of a competitor.

2. Material and Methods
Users access an airline’s inventory through an

availability display. It contains all offered flights for
a particular city-pair with their available seats in the
different booking classes. This display contains
flights which are operated by the airline itself as well
as code share flights which are operated in co-
operation with another airline. If the city pair is not
one on which the airline offers service it may display
a connection using its own flights or display the
flights of other airlines. The availability of seats of
other airlines is updated through standard industry
interfaces. Depending on the type of co-operation it
supports access to the last seat (last seat availability)
in real-time. Reservations for individual passengers
or groups are stored in a so-called passenger name
record (PNR). Among other data, the PNR contains
personal information such as name, contact
information or special services requests (SSRs) e.g.
for a vegetarian meal, as well as the flights
(segments) and issued tickets. Some reservation
systems also allow to store customer data in profiles
to avoid data re-entry each time a new reservation is
made for a known passenger. In addition most
systems have interfaces to CRM systems or customer
loyalty applications (aka frequent traveller systems).
Before a flight departs the so-called passenger name
list (PNL) is handed over to the departure control
system that is used to check-in passengers and
baggage. Reservation data such as the number of
booked passengers and special service requests is
also transferred to flight operations systems, crew
management and catering systems. Once a flight has
departed the reservation system is updated with a list
of the checked-in passengers (e.g. passengers who
had a reservation but did not check in (no shows) and
passengers who checked in, but didn’t have a
reservation (go shows)). Finally data needed for
revenue accounting and reporting is handed over to
administrative systems [1] [7].

Software testing is an investigation conducted to
provide stakeholders with information about the

quality of the product or service under test.[1]
Software testing can also provide an objective,
independent view of the software to allow the
business to appreciate and understand the risks of
software implementation. Test techniques include,
but are not limited to the process of executing a
program or application with the intent of finding
software bugs (errors or other defects). [10].

Software testing, depending on the testing
method employed, can be implemented at any time in
the software development process. Traditionally most
of the test effort occurs after the requirements have
been defined and the coding process has been
completed, but in the Agile approaches most of the
test effort is on-going. As such, the methodology of
the test is governed by the chosen software
development methodology. [12] [3] [8]. Unit testing,
also known as component testing refers to tests that
verify the functionality of a specific section of code,
usually at the function level. In an object-oriented
environment, this is usually at the class level, and the
minimal unit tests include the constructors and
destructors.

Unit testing is a software development process
that involves synchronized application of a broad
spectrum of defect prevention and detection
strategies in order to reduce software development
risks, time, and costs. It is performed by the software
developer or engineer during the construction phase
of the software development lifecycle. Rather than
replace traditional QA focuses, it augments it. Unit
testing aims to eliminate construction errors before
code is promoted to QA; this strategy is intended to
increase the quality of the resulting software as well
as the efficiency of the overall development and QA
process. [1].

3. Results
Many programming groups are relying more

and more on automated testing, especially groups that
use test-driven development. There are many
frameworks to write tests in, and continuous
integration software will run tests automatically
every time code is checked into a version control
system. While automation cannot reproduce
everything that a human can do (and all the ways
they think of doing it), it can be very useful for
regression testing. However, it does require a well-
developed test suite of testing scripts in order to be
truly useful [4] [9].Figure:2 explained about the
testing the software.

Life Science Journal 2013;10(7s) http://www.lifesciencesite.com

609

Figure 2: Example of Test Case

Life Science Journal 2013;10(7s) http://www.lifesciencesite.com

610

4. Discussions
So Software testing is important as it cause

mission failure, impact on operational cost
performance and reliability, if it is not done properly.
Most of the software programmers expect 100% of
quality in the software. So the effective software
testing only can make 100% quality softwares. In this
research, illustration is made for that how to improve
the quality of the software which is used Airlines
Management System by efficiently designing the test
cases during the test life cycle.

Acknowledgements:
Authors are grateful to the Department of

Computer Science and Engineering, KSR College of
Technology, Tiruchengode, Tamilnadu, India for
every support to carry out this work.

Corresponding Author:
Nirmal Kumar A
Assistant Professor
Department of Computer Science and Engineering
Christian College of Engineering and Technology
Oddanchatram, Tamilnadu 624619, India
E-mail: nirmal15483@gmail.com

References
1. Poulding, S. and Clark, J.A. “Efficient Software

Verification: Statistical Testing Using
Automated Search”, IEEE Transactions on
Software Engineering, Vol. 36, Issue: 6 , pp. 763
– 777, 2010.

2. Nidhia, K., Shashank, S. and Ahmed. P.
“Gathering Requirements for Hospital
Magement System using Intelligent Agents”,
International Journal of Engineering and
Innovative Technology (IJEIT), Vol 1, Issue: 3,
pp. 276-279, 2012.

3. Mouchawrab, S., Briand, L.C., Labiche, Y. and
Di Penta, M. “Assessing, Comparing,
andCombining State Machine-Based Testing and
Structural Testing: A Series of Experiments”,
IEEE Transactions on Software Engineering,
Vol. 37 , Issue: 2 , pp. 161 – 187, 2012.

4. Moonzoo, K., Yunho, K. and Hotae, K. “A
Comparative Study of Software Model Checkers

as Unit Testing Tools: An Industrial Case
Study”, IEEE Transactions on Software
Engineering, Vol. 37 , Issue: 2 , pp. 146 – 160,
2011.

5. Mesbah, A., van Deursen, A., and Roest, D.
“Invariant-Based Automatic Testing of Modern
Web Applications”, IEEE Transactions on
Software Engineering, Vol. 38, Issue: 1, pp. 35 –
53, 2012.

6. Manjit, K. “Comparative Study of Automated
Testing Tools”, International Journal of
Computer Applications (0975 – 8887), Vol 24–
No.1, 2011.

7. John, Ø. and Abdul, S. "Hospital quality
management system in a low income Arabic
country: an evaluation", International Journal of
Health Care Quality Assurance, Vol. 19, Issue:
6, pp. 516 – 532, 2006.

8. Janna, A.F., Kathy. E., Ann. D., Terry. S. and
Kathryn. J.H. “Health services innovation:
evaluating process changes to improve patient
flow”, International Journal of Healthcare
Technology and Management, Vol.12, No.3/4,
pp. 280 – 292, 2011.

9. Hong Mei, Dan Hao, Lingming Zhang, Lu
Zhang, Ji Zhou and Rothermel, G. “A Static
Approach to Prioritizing JUnit Test Cases”,
IEEE Transactions on Software Engineering,
Vol. 38, Issue: 6, pp. 1258 – 1275, 2012.

10. Hall, T., Beecham, S., Bowes, D., Gray, D. and
Counsell, S. “A Systematic Literature Review on
Fault Prediction Performance in Software
Engineering”, IEEE Transactions on Software
Engineering, Vol. 38, Issue: 6, pp. 1276 – 1304,
2012.

11. Denver, S., Taryn, A., Shannon, E. and Cheryl
C. "Hospitality in hospitals?”, International
Journal of Contemporary Hospitality
Management, Vol. 20, Issue: 6, pp. 664 – 678,
2008.

12. Ali, S., Briand, L.C., Hemmati, H. and Panesar-
Walawege, R.K. “A Systematic Review of the
Application and Empirical Investigation of
Search-Based Test Case Generation”, IEEE
Transactions on Software Engineering, Vol. 36,
pp. 742 – 762, 2010.

5/11/2013

