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Abstract: Services like resource discovery, monitoring and scheduling are more complicated in a grid environment 
due to the resource pool being large, dynamic and architecturally diverse. A Grid scheduler ensures resource 
selection decisions in an environment where it cannot control local resources, as the latter are distributed, and 
systems information is limited/dated and such interactions are closely linked to Grid Information Services 
functionality. This paper addresses dynamic scheduling of jobs to distributed computing resources. No single 
scheduling method is enough as scheduling problems have richness and variety. Makespan is the most common 
objective function of task scheduling problems. Makespan minimisation ensures jobs to level differences between 
each phases’ completion time. In this paper, a hybrid Genetic Algorithm (GA) with incorporates Ant Colony 
Optimization (ACO) for grid scheduling is proposed. The proposed Hybrid Genetic Algorithm with Elitist Ant 
System (HGAEAS) demonstrates its effectiveness for Grid Scheduling.  
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1. Introduction 

A Grid is a dynamic heterogeneous 
environment agglomerating geographically 
distributed resources and is defined as a process of 
taking scheduling decisions concerning resources 
spread over various administrative domains [1, 2]. 
This includes examining varied administrative 
domains to identify a single machine or multiple 
resources at single/multiple sites to schedule job. 
From a grid point of view, a job is anything needing a 
resource. A Grid scheduler, also called broker, takes 
decisions about resource selection where it lacks 
control over local resources, and system information 
often being limited or dated. These interactions are 
linked to Grid Information Services [3] functionality. 

Figure 1 depicts a grid scheduler’s main 
phases. A grid resource broker is responsible for 
resource discovery, deciding job allocation to a 
particular resource, binding user applications (files), 
hardware resources, initiating computations, adapting 
to grid resource changes and presenting the grid to 
the user as a single, unified resource [4]. The broker 
controls tasks physical allocation managing available 
resources constantly while dynamically updating grid 
scheduler when resource availability changes. 
Knowing processing speeds of available resources 
and user applications job length is a tedious task in a 
grid environment. Though it is easy to get 
information about available resources speed, it is 
complicated to know users computational processing 
time requirements. When computing power demand 
is greater than available resources only dynamic 

scheduling is useful. To think of the problem as an 
algorithm, it should dynamically estimate job lengths 
from user application specifications or historical data.  

Scheduler structure depends on the number 
of resources managed and the domain where they are 
located. Generally, three models to structure 
schedulers can be distinguished: Centralized, 
Decentralized and Hierarchical [5]. The first is used 
to manage single/multiple resources located either in 
single/multiple domains and can only support 
uniform scheduling  and is thereby suitable for 
cluster management (or batch queuing) systems.  

The Decentralized model fits a typical Grid 
environment better as schedulers interact among 
themselves to decide resource allocation for jobs 
being executed. As it has no central component 
responsible for scheduling, this model is highly 
scalable and fault-tolerant. Resource owners can 
define their policies that require schedulers to 
enforce. But as remote jobs and resources status is 
not available at a single location, it is questionable 
whether it can generate highly efficient schedules.  

The Hierarchical model fits Grid 
environments as it allows remote resource owners to 
enforce own policy on external users removing single 
centralization points. This looks like a hybrid model 
(combining central and decentralized models) and in 
all likelihood will suit Grid systems better. The 
scheduler at the top of the hierarchy is called a super-
scheduler/resource broker, to interact with local 
schedulers to decide schedules. 



Life Science Journal 2013;10(7s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  511

 
Figure 1: Main Phases of a Grid Scheduler 
 
The operations management has to optimize 

limited resources use. Techniques combined into 
heuristic approaches [6] or in upper level multi-
objective methodologies (i.e., meta-heuristics) [7], 
are the lone methods to schedule when there is a high 
problem dimension and/or complexity. As 
optimization techniques, metaheuristics are stochastic 
algorithms trying to solve many hard optimization 
problems that are effective than traditional methods. 
In recent years, metaheuristics attracted attention 
from the hard optimization community as a powerful 
tool, as it demonstrated promising results from both 
experiments and practice in engineering areas. So,  
recent scheduling problem  research focused on such 
techniques [8-10]. This research examines meta-
heuristic approaches for scheduling issues as the 
latter is a NP complete problem. 

Design space for Grid Schedulers in usually 
rich. First, it is based on the objective function a user 
wants to minimize/maximize - examples being 
minimizing overall job completion time, minimizing 
communication time and volume, and maximizing 
resource utilization. Second, it is also based on how 
job requirements, job performance models, and Grid 
resource models are used. The scheduler must choose 
carefully between different implementations of user 
authentication, allocation, and reservation. Other 
choices are scheduling application components for 
single/multiple users and whether rescheduling/re-
planning is needed. The objective in this study is to 
minimize overall job completion time or the 
application makespan, the latter often being the 
performance feature in resource allocation [11]study. 
Makespan represents lapsed time from the first task’s 
beginning to the end of the last scheduled task. 
Makespan minimisation arranges tasks to level 
differences between each work phase’s completion 
time. This paper proposes a hybrid Genetic 
Algorithm (GA) incorporating Ant Colony 
Optimization (ACO) for grid scheduling with optimal 
makespan. 
 
2. Related Works  

To obtain an optimal answer in an 
acceptable time through heuristic search techniques 

to schedule grid resources, techniques like GA, Tabu 
search, simulated Annealing [7-10, 12-14] are used. 
Between them GA provides a better result to solve 
problems with NP complexity. Literature also 
proposes many GA based heuristics. Various 
algorithms attempt to overcome this problem by 
changes in fitness functions. Some works available in 
the literature are reviewed in this section.  

Pinel et al [15] proposed a new parallel 
asynchronous cellular genetic algorithm for multi-
core processors applicable to scheduling of 
independent grid tasks. Cellular genetic algorithms 
(CGAs) are GA type with decentralized populations 
that outperform regular GAs in many problems with 
different features and distinct domains. The proposed 
algorithm was analyzed for parallelism, different 
recombination and new local search operators. It 
improved earlier schedules on benchmark problems. 
The algorithm’s parallelism makes it suitable for 
bigger problem instances. 

Delavar et al [16] introduced a GA based 
scheduling algorithm for independent tasks. In grids 
with high fault rate, fault tolerant is used from check 
point method as it has more efficiency than other 
methods like retry, migration and replication. The 
proposed method proved effective and efficient in 
these situations. Servicing quality increases in grid 
environments while average task recovery time 
decreases greatly. The proposed algorithm aims to 
reduce repeating of GA generations to reach higher 
speeds considering communications costs (available 
in the fitness function) while maintaining fitness 
efficiency. Simulations are done with Gridsim to 
reveal improvement of the proposed algorithm rather 
than earlier algorithms. 

Jin Xu, et al., [17] proposed many versions 
of Chemical Reaction Optimization (CRO) algorithm 
to tackle grid scheduling issues. CRO, a population-
based meta heuristic was inspired by molecular 
interactions. This study was due to the fact that 
inspite of Grid computing solving high 
performance/high-throughput computing problems 
through sharing resources,-  ranging from personal 
computers to supercomputers globally - a major issue 
was task scheduling. The study accounted for 
resources reliability in addition to makespan and 
flowtime. Task scheduling was conceptualised as a 
three objective optimization problem. A meta 
heuristic approach was chosen to locate an optimal 
solution as this was a NP hard problem. This paper 
compared CRO methods with four other meta 
heuristics on a range of instances. Simulation results 
proved that CRO outperformed 5 existing methods, 
this being very high in large-scale applications. The 
study also proved that vector-based representation 
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was better than permutation-based procedures for 
independent task grid scheduling issues.  

Garg [18] proposed a novel LP driven 
metascheduling algorithm to map independent 
applications within a given deadline and budget to 
rented grid resources aimed at minimizing the 
combined cost of all users who share a 
metascheduler. The proposed algorithm combines 
benefits of LP and GA for a solution to grid 
scheduling issues with concurrent users and multiple 
heterogeneous resources. Though only 3 QoS 
parameters are considered (number of processors, 
deadline and budget), the proposed algorithm is 
general enough to handle more parameters. 
Simulation studies prove its effectiveness compared 
to other greedy and genetic algorithms. 

Guo, et al., [19] introduced Local Node 
Fault Recovery (LNFR) mechanism into grid 
systems, to ensure reliability in grid services. The 
study presented an in-depth look at grid service 
reliability modeling and analysis with an earlier 
mentioned fault recovery type. This study came about 
due to the fact that though there was information on 
tools and development of tools and grid system 
techniques, yet important issues like grid service 
reliability and grid task scheduling were not looked 
into at depth.  Grid services reliability was rather low 
for some grid services with large subtasks needing 
large computation. Constraints like subtasks lifetimes 
and recoveries performed in grid nodes were 
introduced to ensure that LNFR was practical. Grid 
service reliability models were introduced under such 
constraints. Based on proposed grid service reliability 
model, a multi-objective task scheduling optimization 
model was also presented followed by development 
of ant colony optimization (ACO) algorithm for a 
successful solution. However, experiments showed 
that along with grid service reliability costs also 
increased, which was not anticipated.  The reason 
was that resource price was arbitrary, while in 
practice price was linked to performance of grid 
resources like CPU processing capability and 
reliability. So, grid resources price played a major 
role in grid task scheduling. 

The main contribution of this paper is 
developing a GA based hybrid optimization for grid 
scheduling. Hybridization among different meta-
heuristics was effective for many problems by 
outperforming single methods [20]. Hybridization 
expects better convergence than a pure GA search 
and it can improve GA efficiency. 
 
3. Methodology  
Optimization parameter 

This study considers scheduling as a single 
objective optimization problem, where makespan is 

minimized. Makespan, the finishing time of latest 
task, is defined as 

 min max :j
S

F j jobs
 

where Fj denotes the finishing time of job j in 
schedule S. It is advantageous to define a machine’s 
completion time for a given schedule, as this 
indicates when the machine will finalize processing 
of jobs assigned earlier as well as those already 
planned. Completion time values are used to compute 
the makespan.   
 
A Hybrid Genetic Algorithm with Elitist Ant 
System (HGAEAS) in Grid Scheduling 

To avoid premature GA convergence, due to 
interference from mutation and genetic drift, sharing 
and crowding decrease the amount of duplicate 
schemata in the population. Elitism is incorporated to 
keep most superior individuals within the population. 

Enhancement, crossover, and mutation are 
the three HGAEAS’s design algorithm operators for 
proposed Grid Scheduling. The proposed system’s 
block diagram is given in Figure 2. A step by step 
account of an overall learning process is provided 
below. 

 

 
 

Figure 2 Block diagram of the proposed search 
process to minimize Makespan 
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Initialization 
Both GA and ACO algorithms in HGAEAS 

are initialized with the same population. Primarily, Ps 
individuals are generated randomly as they form the 
population. The population formed can be considered 
as either chromosomes in GA or ants in ACO. After 
initialization, new generation individuals are created 
by enhancement, crossover, and mutation operations. 
 
Enhancement 

Both genetic algorithm and ant colony 
optimization operate on a shared population, serving 
to enhance accomplishing a shared optimization goal 
through population and the hybrid algorithm’s 
pheromone updates. GA produces new solutions that 
replace population members improving population 
members average quality. Instead of reproducing 
such elite onto the next generation, the ACO 
algorithm first enhances them. This leads to 
improving pheromone traces updates, which further 
enhances ACO solution construction. On the other 
hand, ACO constructs new solutions replacing the 
population’s worst solutions and thereby improving 
the average quality of the parent population 
members. These ACO enhanced elite when used as 
parents, the offspring produced are of better quality 
than those produced by original elite. This enhances 
the GA convergence increasing chances of further 
producing better GA solutions. It is believed that this 
collaborative pattern increases the chance of 
uncovering good solutions for the whole hybrid 
algorithm. 

Artificial ants used in ACO are stochastic 
solution construction procedures probabilistically 
building a solution by iteratively adding solution 
components to partial solutions considering (i) 
heuristic information on the problem instance being 
solved, and (ii) pheromone trails changes 
dynamically to reflect agents’ acquired search 
experience. 

ACO interpretation as an extension of 
construction heuristics is appealing due to many 
reasons. ACO stochastic component allows the ants 
to build various solutions and thereby explores many 
larger solutions than greedy heuristics. 
Simultaneously use of heuristic information readily 
available for many problems guides ants towards 
most promising solutions. More importantly, ants’ 
search experience influences in a way meaningful of 
reinforcement learning the solution construction in 
future algorithm iterations [21]. Additionally, the use 
of an ant colony gives the algorithm increased 
robustness and in many ACO applications the 
collective interaction of a population of agents is 
needed to solve problems efficiently [21]. 

The proposed ACO approach tries solving 
optimization problems through he following two 
steps: 

 Pheromone models construct candidate 
solutions 

 The pheromone values are modified by the 
candidate solutions as necessary to create 
high quality solutions. 
 
An artificial ant agent builds a constructive 

information based solution called a pheromone, 
provided by previous ant agents which have already 
built solutions. After building new solutions, 
pheromone traces are updated by artificial ants 
considering existing solutions quality. A solution 
components set C={c1,.,cn} is used for constructing 
solutions in the form of solution component 
sequences by the artificial ants. Most ACO 
algorithms choose next solution component through 
probabilities  which are also known as transition 
probabilities. They are defined as follows: 

   
 

 

 
.

,    
.

p
j

i ip p
i i

i i

c N s

c
p c s c N s

c





 

 


  


 
 
where η - weighting function depending on current 
partial solution,  
η (ci) - heuristic value assigned at each construction 
step  to a feasible solution component ci∈N(sp).  
α and β - positive parameters determining relations 
between pheromone information and heuristic 
information. 

Pheromone evaporation ensures rapid 
algorithm convergence toward a sub-optimal region 
implementing a form of overlooking so as to favor 
new area of exploration in the search space. One or 
more solutions from earlier iterations intensify the 
pheromone trail parameters value on solution 
components, which is updated as follows: 

   
 

1
upd i

i i

s S c s

F s   
 

   
 

 
for i=1,...,n. Here, Supdis the set of solutions used for 
the update. 

 
ρ ∈ (0,1] - evaporation rate, 
F : S→ R+ - quality function such that f(s) < 

f(s’)⟹ F(s) ≥ F(s’),   s ≠s’ ∈ S. F(.)  
 
Update rule are obtained by diverse 

specifications of Supd, which is usually a subset of 
Siter∪{sbs}, where Siter represents the set of solutions 
constructed in the current iteration, and sbs is the best-
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so-far solution. The solution thus found is input to the 
Genetic Algorithm’s next stage which is the cross 
over stage. 

Parents are chosen from ACO enhanced 
elites to warrant production of better individuals 
through a crossover operation. Parents for crossover 
operations are selected using tournament selection 
scheme where two enhanced elite are selected 
randomly. The fitness values of the selected elites are 
compared so that those with better fitness value are 
selected as a parent. The conventional view is that 
crossover is the more important of two techniques to 
explore a search space rapidly. Mutation provides 
limited random search, and ensures that no point in 
the search space has a zero examination probability. 
If the GA is implemented correctly, the population 
evolves over successive generations increasing the 
fitness of the best and average individuals in each 
generation towards a global optimum. Selection is the 
process of conserving the fittest individuals for the 
next generation. The selection part involves 
determination of individual fitness through a fitness 
function. The second part includes converting fitness 
function into an expected value followed by the last 
part where expected value is now converted to a 
specific number of offspring. 
 
4. Result and Discussion  

The effectiveness of the proposed 
scheduling method is assessed and evaluated using 
makespan. Makespan is the time taken by the grid 
system to complete the latest task. The experiments 
were conducted using 20 resource clusters and 100 
jobs. Experiments were conducted using the hybrid 
HGAEAS grid scheduling. Figure 3 shows the 
Makespan time vs. number of iterations. 
 

 
Figure 3: Makespan vs. Number of Iterations. 

 
It is observed from Figure 3 that with the 

incorporation of elitism in the GA, optimal makespan 
is achieved. Also, the convergence is achieved in 
about 20 generations. 
 
 

5. Conclusion  
Grid computing environments scheduling 

aim is in efficient job mapping generated by 
applications to available resources. Jobs and 
resources can be dynamically added/ dropped to and 
from the system. Grid scheduling remains a global 
optimization challenge. As scheduling is a NP 
complete problem, this research examines meta-
heuristic approaches for scheduling problems. The 
objective function of this study is minimizing overall 
job completion time or the application’s makespan. 
This paper proposes a hybrid Genetic Algorithm 
(GA) incorporating Ant Colony Optimization (ACO) 
for grid scheduling. The approach aims to generate an 
optimal schedule to complete jobs within minimum 
time. Experiments demonstrate the proposed 
method’s effectiveness. 
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