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1 Introduction and preliminaries 

Let A  denote the class of functions  )(zf  of the form  
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which are holomorphic in }1||:{  zCz . We denote by N  the subclass of A  consisting of functions 

Azf )( which are holomorphic univalent in 

  and are of the form                                    .0,)(
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For more information about univalent analytic functions see [1] and [6]. 

Definition 1. Let }0{ Nn  and 0 . Let fn
  denote the operator defined by NNn  : , such that  

                           ,,)()()1()(  zzfRzfSzf nnn                        (3) 

where fS n
 is the Salagean differential operator [5] and fR n

 is the Ruscheweyh differential operator [4]. 

For Nzf )(  given by (1.2) we get 
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Further by replacing (1.4) and (1.5) in (1.3) we conclude                        
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It is observed that for ,0n  

.)()()()()()1()( 00000 zfRzfSzfzfRzfSzf   Definition 2. A function Nzf )(  is said to belong 

to the class ),( 
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Where   ,10,10  . 
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In recent years, many authors (e.g. [2,3]) have investigated certain subclasses of  N . 
2 On Main Results 

We begin by proving a necessary and sufficient condition for a function belonging to the class ),( 
n . 

Theorem 1 :  A function )(zf  given by (1.2) is in the class ),( 
n  if and only if 
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where )(nBk  defined by (1.6). The result is best possible for the function 
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Proof : By making use of (1.7) in (1.8) we have 
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By choosing the values of z  on the real axis and the 
1z  through real values, we get 
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Conversely, suppose that (2.1) holds true. We will show that (1.80 is satisfied and so ),()( 
nzf  . Using 

the fact that  Re   if and only if |)1(||)1(|   , it is enough to show that 
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By using (1.7) and replacing 
')]([ zfn

  and 
")]([ zfn

  in (2.3) we conclude 
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After same calculation on R , when z  , it is easy to verify that 0 LR   if (2.1) holds and so the proof is 
complete. 

We next find the extreme points of ),( 
n . 

Theorem 2 : Let zzf )(  and  
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then ),()( 
nzf   if and only if it can be expressed  

 where 0kt  and 
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Proof : Let )(zf be expressed as in the above form. This means we can write 
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so by Theorem 2.1 we conclude that ),()( 
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3 Radius Properties 
In the last section we obtain the radii of starlikeness, convexity and close to convexity. 

Theorem 3 : Let ),()( 
nzf  . Then )(zf  is starlike of order )10(    in 1|| Rz  , where 

       1

1

}
))((

)1)](()1()[)(1()([
{inf 




 kk

n

k
k

k

nBkkkk
R




.              (12) 
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and this complete the proof. 

Since )(zf  is convex if and only if )(' zzf  is starlike, we obtain the following theorem. 

Theorem 4 : Let ),()( 
nzf  . Then )(zf is  close to convex of order )10(    in 2|| Rz   , where  
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Theorem 5 : Let ),()( 
nzf  . Then )(zf is  close to convex of order )10(    in 3|| Rz   , where  

               1

1

3 }
)(

)1)](()1()[)(1()([
{inf 




 kk

n

k k

nBkkkk
R




      (14) 

Proof : We must show that  1|1)(| ' zf   for 3|| Rz   we have 3R  is given by (3.3). Now 
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and this gives the required result. 
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