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 Abstract: In this paper the existence theory for stochastic differential equations under G-Brownian motion (G-
SDEs) of the type 

0 0 0 0
( , ) ( , ) ( , ) , [0, ],

t t t

t v v v v vX X a v X dv b v X d B v X dB t T          is studied. It is valuated 

that G-SDEs have solutions even if the coefficient b  is a discontinuous function. The method of upper and lower 
solutions is used to establish the above mentioned theory. As an example, a scalar G-SDE whose second coefficient 
is the sawtooth function is considered. [Faizullah F., Khan W.A., Arif M and Khan R.A. On the Existence of 
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1 Introduction 

The importance of stochastic differential 
equations (SDEs) is apparent from their wide range 
of applications inside as well as outside mathematics. 
For example stochastic dynamical systems   are used 
to model physical, economical, technical and 
biological dynamical systems under uncertainty. In 
general one can not obtain the explicit solutions of 
stochastic dynamical systems and needs to study the 
behavior and properties of solutions such as 
existence, uniqueness and stability etc. Existence 
theory for stochastic dynamical systems is the most 
important property in the sense that if solutions of the 
stated systems do not exist then any other property is 
worthless.  

Recently, the theory of G-Brownian motion 
with related stochastic calculus was introduced by 
Peng (Peng, 2006). The existence and uniqueness of 
solutions for stochastic differential equation under G-
Brownian motion (G-SDEs) with Lipschitz 
continuous coefficients was developed by Peng 
(Peng, 2006; 2008) and Gao (Gao, 2009). Later 
Faizullah and Piao extended this theory of G-SDEs to 
discontinuous drift coefficients (Faizullah et al., 
2012). Now here the existence theory for G-SDEs 
with a discontinuous coefficient b  via the method of 
upper and lower solutions is developed. It is shown 
that G-SDEs have more than one solution if the 
coefficient b  is a discontinuous function. 

In this article we consider the following 
stochastic differential equation under G-Brownian 

motion  

0 0 0

0

( , ) ( , )

( , ) , [0, ], (1.1)

t t

t v v v

t

v v

X X a v X dv b v X d B

v X dB t T

    

 

 



where 0
n

X R  is a given constant initial condition, 

( ) 0B t t  
 is the quadratic variation process of the G-

Brownian motion ( ) 0Bt t
 and all the coefficients 

( , )a t x , ( , )b t x  and ( , )t x  are in the space 

2
(0, ; )

n
M T RG

 (Peng, 2008). A process Xt  

belongs to the mentioned space satisfying the G-SDE 
(1.1) is said to be its solution. It is assumed that 

( , )b t x  is a discontinuous function where ( , )a t x  

and ( , )t x  are Lipschitz continuous for all nx R . 

This paper is organized as follows. In section 2 
some basic notions and definitions are included. In 
section 3 the method of upper and lower solutions for 
G-SDEs is established. In section 4 the comparison 
theorem is introduced. In section 4 the existence of 
solutions for the G-SDEs with a discontinuous 
coefficient b  is developed. In section 5 appendix is 
given. 
2. Preliminaries 

For the material of this section see the book 
(Peng, 2010) and papers (Denis et al., 2010; 
Faizullah, 2012; Gao, 2009; Li et al., 2011; Song, 
2011).  

Let   be a (non-empty) basic space and H  be a 
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linear space of real valued functions defined on   
such that any arbitrary constant c  H  and if X  H  

then | |X  H . We consider that H  is the space of 

random variables. 
2.1 Definition  

A functional :E RH  is called sub-linear 

expectation, if for all ,X Y  H , c R  and 0   it 

satisfies the following properties 
1. (Monotonicity): If X Y  then [ ] [ ]E X E Y . 

2. (Constant preserving): [ ]E c c . 

3. (Sub-additivity): [ ] [ ] [ ]E X Y E X E Y   . 

4. (Positive homogeneity): [ ] [ ]E X E X  . 

The triple ( , , )E H  is called a sublinear 

expectation space. 
Consider the space of random variables H  such 

that if 
1 2, ,..., nX X X H  then 

1 2( , ,..., )nX X X H  for each 
. ( )n

l LipC R  , 

where 
. ( )n

l LipC R  is the space of linear functions   

defined as the following  
 

. ( ) { : | ,

. . | ( ) ( ) | (1 | | | | ) | |},

n n
l Lip

m m

C R R R C R m N

s t x y c x y x y



 

    

    
 for 

, .nx y R   

2.2 Definition  
An n-dimensional random vector 

1 2( , ,..., )nY Y Y Y  is said to be independent from 

an m-dimensional random vector 

1 2( , ,..., )mX X X X  if  

.

[ ( , )] [ [ ( , )] ],

( ).

x X

m n
l Lip

E X Y E E x Y

C R R

 





  
 

2.3 Definition  
Two n-dimensional random vectors X  and 

X̂  defined respectively on the sublinear expectation 
spaces ( , , )E H  and 垐ˆ( , , )E H  are said to be 

identically distributed, denoted by ˆX X  or 

ˆ ,dX X  if  

.
垐[ ( )] [ ( )], ( ).n

l LipE X E X C R      

2.4 Definition  
 Let ( , , )E H  be a sublinear expectation 

space and X  H  with  
2 2[ ],E X   2 2[ ].E X     

Then X  is said to be G-distributed or 
22(0;[ , ]) N  -distributed, if   , 0a b   we have 

2 2 ,aX bY a b X    

 for each Y H  which is independent to X  and 

.Y X   
G-expectation and G-Brownian Motion. Let 

0 ( )C R  , that is, the space of all R  -valued 

continuous paths ( )t t R
w 

 with 
0 0w   equipped 

with the distance  

1 2 1 2

[0, ]
1

1
( , ) (max | | 1),

2
t tk t k

k

w w w w





    

 and consider the canonical process  ( )t tB w w   for  

[0, ),t     w   then for each fixed  [0, )T     

we have   

1 2 1

.

( ) { ( , ,..., ) : , [0, ],

( ), },

nip T t t t n

n
l Lip

L B B B t t T

C R n N





  

 

 

 where ( ) ( )ip t ip TL L    for t T  and 

1( ) ( ).ip m ip mL L
      

Consider a sequence 
1{ }i i 


 of n -dimensional 

random vectors on a sublinear expectation space  
ˆ ˆˆ( , , )p E H   such that  

1i 
  is independent of  

1 2( , ,..., )i     for each  1, 2,..., 1i n    and  

i   is G-normally distributed. Then a sublinear 

expectation  [.]E   defined on  ( )ipL    is introduced 

as follows. 
For  

0 10 ... ,nt t t       
. ( )n

l LipC R    and 

each  

1 0 2 1 1
( , ,..., ) ( ),

n nt t t t t t ipX B B B B B B L


     

1 0 2 1 1 1 0 1 1
ˆ[ ( , ,..., )] [ ( ,..., )].

n nt t t t t t n n nE B B B B B B E t t t t   
      

2.5 Definition  
The sublinear expectation  : ( )ipE L E    

defined above is called a G-expectation and the 
corresponding canonical process  

0( )t tB 
  is called a 

G-Brownian motion. 
The completion of  ( )ipL    under the norm  

1/( [| | ])p p

p
X E X   for  1p    is denoted by  

( )p
GL    and  ( ) ( ) ( )p p p

G t G T GL L L       for  

0 .t T      The filtration generated by the 
canonical process  

0( )t tB 
  is denoted by 

{ , 0 }t sB s t  F ,  
0{ }t tF F . 

G-Itô's Integral. For any  ,T R   a finite ordered 

subset  
0 1{ , ,..., }T Nt t t    such that  

0 10 ... Nt t t T       is a partition of  [0, ]T   and  

1( ) max{| |: 0, 1,..., 1}.T i it t i N       

 A sequence of partitions of  [0, ]T  is denoted by  

0 1{ , ,..., }N N N N
T Nt t t    such that lim ( ) 0.N

N T     
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Consider the following simple process: Let  1p    

be fixed. For a given partition  
0 1{ , ,..., }T Nt t t    

of [0, ],T    

1

1

[ , ]
0

( ) ( ) ( ),
i i

N

t i t t
i

w w I t 







 

 where ( )
i

p
i G tL   ,  0, 1,..., 1i N  . The collection 

containing the above type of processes, that is, 
containing  ( )t w   is denoted by  , 0 (0, ).p

GM T  The 

completion of  , 0(0, )p
GM T   under the norm  

1/

0
{ [| | ] }T p p

vE dv     is denoted by  (0, )p
GM T   

and for  1 ,p q     (0, ) (0, ).p q
G GM T M T   

2.6 Definition  
 For each  2, 0 (0, ),t GM T    the Itô's integral of G-

Brownian motion is defined as  

1

1

0
0

( ) ( ).
i i

NT

v v i t t
i

I dB B B  






  
 

2.7 Definition  
An increasing continuous process  

0( )t tB     with  

0 0,B     defined by  

2

0
2 ,

t

t t v vB B B dB      

 is called the quadratic variation process of G-
Brownian motion. 
Let  ( )B   be the Borel   -algebra of   . It was 

proved in (Denis et al., 2010) that there exists a 
weakly compact family  P   of probability measures  
P   defined on  ( , ( )) B   such that 

[ ] sup [ ], ( ).P
P

E X E X X


   
P

Lip  

This makes the following definitions reasonable. 
 2.8 Definition  
The capacity  ˆ(.)c   associated to the family  P   is 

defined by   
ˆ( ) sup ( ), ( ).

P

c A P A A


  
P

B  

 2.9 Definition  
A set  A   is said to be polar if its capacity is zero, 

that is,  ˆ( ) 0c A    and a property holds quasi-surely  

( q. s.  in short) if it holds outside a polar set. 
Through out the paper for 

1 2( , ,..., ),nX x x x    

1 2( , ,..., ),nY y y y    X Y   means  ,i ix y    

1, 2,..., .i n   

3 Upper and Lower Solutions Method for G-SDEs 
We recall that the notion of lower and upper solutions 
for the classical SDEs was established in (Assing et 
al., 1995; Halidias et al., 2006; 2008; Ladde, 1980) 
and for G-SDEs in (Faizullah et al., 2012). 
3.1 Definition  
A process  2 (0, )t GL M T   is said to be a lower 

solution of the G-SDE on the interval  [0, ]T   if for 

any fixed  s   the inequality (interpreted component 
wise)  

( , ) ( , )

( , ) ,0 , (3.2)

t t

t s v v v
s s

t

v v
s

L L a v L dv b v L d B

v L dB s t T

    

   

 



 

 holds q.s. 
3.2 Definition  
A process  2 (0, )t GU M T    is said to be an upper 

solution of the G-SDE on the interval  [0, ]T   if for 

any fixed  s   the inequality (interpreted component 
wise)  

( , ) ( , )

( , ) ,0 , (3.1)

t t

t s v v vs s

t

v vs

U U a v U dv b v U d B

v U dB s t T

    

   

 



  

 holds q.s. 
3.3 Example  
Consider the scalar stochastic differential equation 
under G-Brownian motion  

{ } , [0, ],t t t tdX dt X d B dB t T          (3.3) 

where { }: [0, 1)x R   is the sawtooth or fractional 

part function.  It has discontinuities at the integers 
and is defined by 

{ } , ,x x x x R      

 where  x     is the floor function (Graham et al., 

1994). 

Then  
0 0 0 0

t t t

t v vU U dv d B dB          and  

0 0 0

t t

t vL L dv dB      for  [0, ]t T   are the upper 

and lower solutions of the G-SDE (3.3) respectively, 
which are shown as follows.  

0
0 0 0

{ } , 0 ,

t t t

t v v

t t t

s v v
s s s

t t t

s v v v
s s s

U U dv d B dB

U dv d B dB

U dv U d B dB s t T

     

     

        

  

  

  
 where  

0 0 0 0

s s s

s v vU U dv d B dB         , for each 

fixed  s   such that  0 s t T   . On similar 
arguments as above one can show that  

0 0

t t

t v
s

L L dv dB      is a lower solution of the 

scalar G-SDE (3.3). The existence of solutions for the 
G-SDE (3.3) will be discussed later in section 5. 
Suppose that  

tU   and  
tL   are the respective upper 

and lower solutions of the G-SDE  
( , ) ( , ) ( , ) ,

[0, ]. (3.4)

t t t t tdX a t X dt b t w d B t X dB

t T

    


 

 Define two functions  

, ,
, : [0, ]

L U L U

n np q T R R    by  
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,

, ,

( , , ) max{ ( ), min{ ( ), }},

( , , ) ( , , ) , (3.5)

L U

L U L U

t tp t x w L w U w x

q t x w p t x w x



 
 

 and consider the stochastic differential equation  

( , ) ( , ) ( , ) ,

[0, ], (3.6)

t t t t t tdX a t X dt b t X d B t X dB

t T

    



   

 with a given constant initial condition  
0 ,nX R   

where  

,

,

,

( , , ) ( ( , , )),

( , , ) ( , ) ( , , ),

( , , ) ( ( , , )),

L U

L U

L U

a t x w a p t x w

b t x w b t w q t x w

t x w p t x w 



 









 

 are Lipschitz continuous in .x   The stochastic 
differential equation (3.6)  has a unique solution  

2 (0, ; )n
t GX M T R  see (Gao, 2009; Peng, 2006; 

2008). 
4  Comparison Theorem for G-SDEs 
First we give the following two important lemmas. 
They will be used in the next comparison theorem 
4.3.  
4.1 Lemma   

Suppose that the respective upper and lower 
solutions  

tU   and  
tL   of the G-SDE (3.4) satisfy  

t tL U  for [0, ]t T . Then  Ut   and  Lt   are the 

respective upper and lower solutions of the G-SDE 
(3.6). 
Proof  

As  L Ut t   gives  
,

( , )
L U t tp t U U   and  

,
( , ) 0.

L U tq t U   Hence 

,

, ,

( , ) ( , )

( , )

[ ( , ( , ))]

[ ( , ) ( , )] ( , ( , ))

( , ) ( , ) ( , ) .

L U

L U L U

t t

s v v vs s

t

v v
s

t

s vs

t t

v v v vs s

t t t

s v v v v ts s s

U a v U dv b v U d B

v U dB

U a v p v U dv

b v w q v U d B v p v U dB

U a v U dv b v w d B v U dB U







   



  

   

      

 





 

  




 

Thus 
tU  for 0 s t T    is an upper solution of the 

G-SDE (3.6). Similarly, we can show that  
tL   is a 

lower solution of the G-SDE (3.6). 
The following lemma can be found in (Faizullah, 
2012). The proof is given in appendix. 
4.2 Lemma   
Let 1, 0, ([0, ]; )n

t t GX Y M T R . If 
t tX Y   for 

[0, ]t T  and any w . Then  

0 0
.

T T

t t t tX d B Y d B       

4.3 Theorem:  
Suppose that 

i. The function  ( , )b t x   is measurable with  

2

0
[| ( ,.) | ]

t
E b v dv    where ( , )a t x  and 

( , )t x   are Lipschitz continuous in  x . 

ii. The respective upper and lower solutions  
tU   

and  
tL   of the G-SDE (3.4)  with   

2[| | ] ,tE U      2[| | ]tE L     satisfy  

t tL U   for  [0, ].t T   

iii. Also  
0

nX R   is a given initial value with  
2

0[| | ]E X     and  
0 0 0.L X U    

Then there exists a unique solution  
2 (0, ; )n

t GX M T R   of the G-SDE (3.4) such that  

t t tL X U    for  [0, ]t T   q.s. 

Proof  
Consider the G-SDE (3.6) with the functions  

, ,
, : [0, ]

L U L U

n np q T R R    

defined by (3.5). Now the G-SDE (3.6) has a unique 
solution and by lemma 4.1 if  

tU   and  
tL   are upper 

and lower solutions of the G-SDE (3.4) respectively 
then they are the respective upper and lower solutions 
for the G-SDE (3.6). Also it is obvious to see that any 
solution  

tX   of the modified G-SDE (3.6) such that  

, [0, ],t t tL X U t T                   (4.1) 

 q.s. is also a solution of the G-SDE (3.4). Thus we 
only have to show that any solution  

tX   of the 

problem (3.6) does satisfy the inequality (4.1). 
Suppose that there exists an arbitrary interval  

1 2( , ) [0, ]t t T   such that  
1 1t tX L   and   

t tX L   for  
1 2( , )t t t , then we have 

1 1 1

1 1 1

, ,
1 1

, ,
1 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

[ ( , ( , ))] [ ( , ) ( , )]

( , ( , )) [ ( , ( , )]

L U L U

L U L U

t t t

t t v v v v v
t t t

t t t

v v v v v
t t t

t t

v v vt t

t t

v v vt t

X L a v X dv b v X d B v X dB

a v L dv b v L d B v L dB

a v p v X dv b v w q v X d B

v p v X dB a v p v L







     

    

    

 

  

  

 

 

 

 

, ,
1 1

[ ( , ) ( , )] ( , ( , )) .
L U L U

t t

v v v vt t

dv

b v w q v L d B v p v L dB     
As  

t tL U   yields  
,

( , )
L U t tp t L L   and  

t tX L ,  

t tX U  gives  
,

( , )
L U t tp t X L  . Also  

,
( , ) 0

L U tq t L    and 
,

( , ) 0
L U t t tq t X L X   . 

Hence  

,
1

( , ) 0,
L U

t

t t v vt
X L q v X d B      

which is a contradiction. Thus  
t tX L   for  

[0, ].t T  By the similar arguments as above we can 
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show that  
t tX U   for  [0, ].t T   

5  G-SDEs with Discontinuous Coefficients  b   
Now take the following G-SDE  

( , ) ( , ) ( , ) , [0, ],t t t t t tdX a t X dt b t X d B t X dB t T     

                 (5.1) 
where  ( , )b t x  does not need to be continuous but 

suppose that it is increasing, that is, if  x y   then  

( , ) ( , )b t x b t y  (where the inequalities are 

interpreted component wise) and ( , )a t x , ( , )t x   

are Lipschitz continuous in .x   
5.1 Theorem   
Assume that 

i. The functions  ( , )b t x   is increasing in  x   

where ( , )a t x , ( , )t x   are Lipschitz 

continuous in  x . 

ii.  
tU   and  

tL   are the respective upper and 

lower solutions of the G-SDE (5.1)  with  
2

0
[| ( ) | ] ,

t

vE b U dv    2

0
[| ( ) | ]

t

vE b L dv    and  

t tL U   for  [0, ].t T   

Then there exists at least one solution  
2 (0, ; )n

t GX M T R   of the G-SDE (5.1) such that  

t t tL X U    for  [0, ]t T   q.s. 

 Proof  
Define the space of all  d -dimensional stochastic 
processes by  

2 ,H   that is,  

2

2 { { , [0, ]}: [| | ] }t tX X t T E X    H   with the 

norm  2 1/2

02
{ [| | ] }

t

vX E X dv    for all  [0, ],t T   

which is a Banach space (Peng, 2006; 2008; 2010). 

Represent the order interval  [ , ]L U   in  
2H   by  ,K   

that is,  
2

ˆ{ : and }t t tX X L X U   K H    for  

[0, ],t T   which is closed and bounded by the 

above norm. By using the monotone convergence 
theorem (Denis et al., 2010), one can show the 
convergence of a monotone sequence that belongs to  

K   in  2H . Thus  K   is a regularly ordered metric 

space with the above norm. It is clear that for any 
process  ,V  K    

tU   and  
tL   are the respective upper 

and lower solutions for the G-SDE 
( , ) ( , ) ( , ) ,

[0, ]. (5.2)

t t t t t tdX a t X dt b t V d B t X dB

t T

    



 

Hence by theorem 4.3, for any 
0

nX R  with  
2

0[| | ]E X     and  
0 0 0,L X U    the G-SDE (5.2) 

has a unique solution  2 (0, ; )n
t GX M T R   such 

that  
t t tL X U    for  [0, ]t T  q.s. 

Define an operator  :S K K   by  ( ) ,S V X   

where X is the unique solution of the G-SDE (5.2). 

Now suppose that (1) (2)
t tV V   for all  [0, ]t T   

and define   (1) (1)( ),X S V    (2) (2)( )X S V  where 
(1) (2), .V V K  As it is given that b  is increasing 

function, thus  (1)
tX   is a lower solution of the G-SDE  

(2)
0 0 0 0

( , ) ( , ) ( , ) ,

[0, ]. (5.3)

t t t

t t v v v vX X a v X dv b v V d B v X dB

t T

     



  

But this problem has an upper solution  .tU  Hence 

by theorem 4.3, the G-SDE (5.3) has a solution  (2)
tX   

such that  (1) (2)
t t tX X U   for [0, ]t T . Thus  S   is 

an increasing mapping and by theorem 6.2, it has a 

fixed point  ( ) ( )( )X S X  K   such that  
( )

t t tY X U    q.s. where  

( ) ( ) ( )
0 0 0

( )

0

( , ) ( , )

( , ) , [0, ].

t t

t v v v

t

v v

X X a v X dv b v X d B

v X dB t T

  



    

 

 



 

Now continuing example 3.3 by the above theorem 

5.1, there exists at least one solution ( )X   of the G-
SDE (3.3) such that  

( )
0 0t t t tL B X U t B B          for  [0, ]t T  , 

where  
0t tL L B    and  

0t t tU U t B B        are 

the respective lower and upper solutions of (3.3). 
6 Appendix 

The following definition and theorem can be 
found in (Heikkila et al., 1993).  
6.1 Definition  
An ordered metric space  M   is called regularly 
(resp. fully regularly) ordered, if each monotone and 
order (resp. metrically) bounded ordinary sequence of  
M   converges. 
6.2 Theorem  
If [ , ]a b  is a nonempty order interval in a regularly 

ordered metric space, then each increasing mapping 

: [ , ] [ , ]S a b a b  has the least and the greatest 

fixed point. 
Proof of theorem 4.2 
Since  { : 0}tB t     is an increasing continuous 

process with  
0 0B    . Therefore for any fixed  

w   and  
1i it t  , 

1
0,

i it tB B


       

0, 1,..., 1i N   . Also 

for 1, 0, ([0, ]; )n
t t GX Y M T R , 

1

1
0 [ , )i i

N
it i t tX I




    and  

1

1
0 [ , )i i

N
it i t tY I




     where  

1, ( )i i G iL    ,  0, 1,..., 1i N  .Then  

t tX Y   implies that  

1 1

1 1

[ , ) [ , )

0 0

.
i i i i

N N

i t t i t t

i i

I I 
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 This gives 

1 1

1 1

0 0

[ ] [ ].
i i i i

N N

i t t i t t
i i

B B B B 
 

 

 

              

 Thus 

0 0
.

T T

t t t tX d B Y d B       

6.3 Remark 
The above lemma shows that G-Ito's integral 

with respect to the quadratic variation process 
satisfies the monotonic property. Also if 0tX   then 

0
0.

T

t tX d B     
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