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Abstract: The aim of this work is to investigate the role of chaotic advection in the mixing performance of the 
proposed novel mixer in the recent study of Hosseinalipour et.al. (2013). The computed flow domain calculated is 
used to find material point trajectories needed to calculate mixing measures in the novel dough mixer based on 
chaos theory. Two characteristics of a Lagrangian chaotic system (strong stretching and folding of material elements 
and sensitivity to initial conditions) horseshoe maps and also Poincare sections were visualized. Lyapunov 
exponents which quantify the exponential divergence of initially close state-space trajectories and estimate the 
amount of chaos presence in a system were also calculated. The results indicated that the flow filed was a 
combination of coexistence of both the chaotic and non-chaotic zones, with high and poor mixing performance 
respectively.  
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1. Introduction 

Unfortunately, due to the high viscosity 
difficulties usually encountered in food processing 
industries, rapid mixing produced by turbulence is 
not available. On the other hand, fluids with long 
molecular chains, such as synthetic polymers, food 
and various types of pharmaceutical products, can be 
damaged by high shear stresses. In these systems the 
flow regime is often laminar which is considered as a 
limitation due to the poor mixing performance 
produced mainly by molecular diffusion. Thus, some 
other mechanisms must be exploited to enhance 
mixing.  

In the last three decades, the concept of 
'chaos theory' has contributed to solve practical 
problems of mixing highly viscous fluids at low 
Reynolds numbers. In this way, the advantages of 
chaotic advection, which provides a natural way of 
increasing the mixing efficiency of flow, is clearly 
undeniable. Chaotic advection, or in more precise 
terms Lagrangian chaos (Peerhossainiet al., 2001), is 
a flow regime in which chaos is generated in the 
physical space.  

In the context of two dimensional flow 
fields, it is known that a steady system is called 
nonchaotic since the relevant velocity field is 
integrable (Aref, 1984). This means that, for passive 
injected tracers there are closed streamlines which 
force tracers to travel through a limited portion of the 
whole flow domain. Also the rate of stretching in 2D 
steady flow is linear in time and the resultant mixing 
is inefficient. A two dimensional flow field has to be 
made time periodic for chaotic advection to occur 
and consequently efficient mixing caused by an 

exponential rate of stretching. However, a three-
dimensional steady flow can produce chaotic 
trajectories. This is due to the nonintegrable nature of 
their velocity fields. From the Eulerian point of view 
the flow can be laminar and time-independent; 
however, the fluid particles follow irregular 
trajectories different from the Eulerian streamlines, 
and therefore overcome the virtual barriers which 
constitute the streamlines for mixing (Peerhossainiet 
al., 2005).  

In this way, an increasing interest in 
devising new mixers to induce chaotic advection has 
arisen. In fact, much of the understanding of chaotic 
mixing can be exploited in the design of novel 
mixing devices. The literature describes a number of 
devices designed based on chaos theory (Muzzio et 
al., 2002; Aref et al., 2000; Hwu, 2008; Chang et al., 
2004). These devices fall into one of two categories: 

1) Active techniques in which chaotic 
advection is produced by means of irregularity in the 
motion pattern of the stirrer or moving part of the 
mixer, e.g. time-periodic rotating eccentric cylinders 
(Ottino et al., 1993; Ottino et al., 1990; Kumar et al., 
1990; Ottino et al., 1994; Muzzio et al., 1997), 
blinking vortex (Peerhossainiet al., 2005). 

2) Passive techniques in which chaotic 
advection is produced by means of geometrical 
perturbations, usually time- periodic configurations 
of mixers, e.g. partitioned pipe mixer (Mizuno et al., 
2002; Yamagishi et al., 2007), twisted pipes 
(Castelain et al., 2000; Cocero, 1993.).  

It should be noted that there are other 
possible classifications, and that both techniques can 
be jointly applied in a mixer. In this study, the active 
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technique was employed due to its simplicity in 
operation, simulation and application. 

It should be noted that there are other 
possible classifications, and that both techniques can 
be jointly applied in a mixer. In this study, the active 
technique was employed due to its simplicity in 
operation, simulation and application. 

According to the authors’ knowledge, there 
is no work in the literature that has introduced and 
analyzed a chaotic mixer for dough preparation. 
Therefore, taking the advantage of high performance 
mixing in chaotic mixers (for highly viscous fluids) 
has been the main aim of this study to propose a new 
chaotic dough mixer. The new model, geometrical 
and mathematical concepts have been discussed in 
addition in Hosseinalipour et al. (2013). This paper, 
thus, focuses on the performance of the proposed 
dough mixer by employing Lagrangian particle 
tracing and Lyapunov exponents which reveal clear 
evidence for the presence of chaotic regimes in the 
novel dough mixer. In order to achieve a precise 
assessment of the effects of chaotic advection on 
mixing efficiency, recording of stretching 
measurements of fluid elements, were carried out. To 
gain a more qualitatively fundamental understanding 
of the process Poincare sections were also used.  

 
2. Proposed model 

The proposed mixer includes an eccentric 
helical rotor rotates around the stator at a constant 
speed (Figures 1 and 2). In contrast with other 
eccentric cylinders in which the choatic trajectories 
can be produced only if either one or both cylinders’ 
angular velocities depend on time, in the proposed 
mixer, the flow domain will contains the chaotic 
advection even at constant angular velocity. More 
details can be found in Hosseinalipour et.al. (2013).  

 

 
Figure 1. Dough mixer configuration. 
 
3. Mathematical algorithm 

Since the rotor has a helical shape and 
rotation is done around the stator axis, the mesh 
configuration will change at each time-step. In order 
to prevent difficulties due to the dynamic mesh, the 
spatially periodic flow was approximated as 
piecewise steady flow using Creeping Flow concepts 
(Hosseinalipour et al., 2013). In fact, the strategy 
utilized here is to divide the whole transient flow 

field into numerous separate steady flow fields so 
that each of them would be compatible with any 
degree of rotation around the stator axis and 
consequently, the continuous rotational motion can 
be calculated as a summation of distinct flows 
through some discrete degrees. In this regard, 
equation (1) will provide the adaptable time-step 
according to which, each flow field should be 
modeled. This time-step is compatible with different 
infinitesimal degrees of rotation (Hosseinalipour et 
al., 2013). 

 
Figure 2. Cross section of the mixer, where 
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On the other hand, considering the fact that 
the mixer is spatially periodic, each section of the 
flow field can be proportional to one specific degree 
of rotation which means degrees of rotation can be 
calculated just with considering specific mixer’s 
cross sections. Equation (2) calculates this location of 
a cross section that is indicator of a specific rotation 
degree (Hosseinalipour et al., 2013).  
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Considering all these fact, the numerical 
method employed in this study is summarized in a 
mathematical algorithm illustrated in Figure 3. For 
further details, the reader is asked to refer to 
(Hosseinalipour et al., 2013).  

 
4. Lagrangian particle tracing 

In order to establish the analytical study of 
chaotic advection effects on mixing performance of 
the proposed mixer, a robust technique employed as a 
basic concept of all further calculations is Lagrangian 
particle tracing. A computer code was developed to 
track fluid particles as they moved through the flow 
field. The movement of particles is determined by 
integrating the vector equation of motion for each 
particle given by [14]: 

 

(3) 

A combination of an Adams and a fourth 
order Runge-Kutta integration scheme was adopted 
for integration of the equation of motion owing to its 
high accuracy and straightforward implementation 
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(Muzzio et al., 1997). In integrating equation (3) in 
the time between t and t+dt, the three dimensional 
computed velocity field is obtained from the velocity 
field data according to the degree of rotation θ+dθ 
previously discussed. More information can be found 
in (Muzzio et al., 1997).  

 
Figure 3. Algorithm for particle tracking 
(Hosseinalipour et al., 2013). 

 
5. Sensitivity to initial condition 

One of the fingerprints of chaos is that two 
particles, which are initially very close to each other, 
rapidly diverge exponentially. This special 
divergence is interpreted as sensitivity to initial 
conditions which can be considered as a main 
symptom of the existence of chaotic advection.  

As discussed in the Part A of this paper, 576 
particles located at the entrance section of the 
computed flow domain in the arrangement similar to 
the Figure 4 were traced. 

Figure 5 illustrates some results. The results 
reflect separate regions where different sensitivity to 
initial conditions can be detected. In some regions 
trajectories follow completely different paths and 
diverge rapidly thereby probably representing chaotic 
regions. However, trajectories of other regions are 
completely identical. Actually, the flow domain 
possesses a combination of the coexistence of chaotic 
and non-chaotic zones in the flow field. Figure 6 and 
Table 1 show the distribution of initial conditions 
which yield different mixing behavior. S3 and S2 
represent the particle initial conditions which lead to 
high and low chaotic behavior through the mixer. 

Overall the sensitivity to the initial conditions of 
these regions can be compared with each other as: 

(4) 3 4 1 2S S S S    

In order to keep the investigation reasonably 
focused, two significant examples of a chaotic zone 
(175 degrees) and a non-chaotic zone (130 degrees) 
were chosen as illustrated in Figures 7 and 8. It is 
clear that those particles with the initial arrangement 
of 175 degrees exhibit significant sensitivity to initial 
conditions. Conversely, those particles in the 130 
degrees zone show very low performance in this 
regard. Therefore the analytical study presented in 
the following section will focus on assessing and 
comparing the mixing parameters of these two typical 
zones.  

It should be noted that these regions with 
different sensitivity to initial conditions, and 
therefore, different presence of chaotic advection, 
were observed only for 5760 fluid particles located 
around 288 small circles at the section mentioned 
before. Since more particles located at different 
sections are tracked much more regions can be 
identified.   

 
Figure 4. Initial particle arrangements at the entrance 
section of the proposed mixer. 
 
6. Poincare section 

The Poincare map and the stretching 
distribution provide a conceptual tool for 
understanding the phenomenon that makes chaotic 
mixing so efficient. Since stretching is a 
quantitatively way of assessment of mixing behavior, 
the Poincare map is qualitative and less 
computationally expensive to obtain (Kokini et al., 
2007). It is often used to visualize the flow structure 
by superimposing the intersections of several 
trajectories on a single plane, and is considered to be 
a practical method in order to evaluate the mixing 
performance (Peerhossainiet al., 2005). The 
stretching will be taken up in later section and 
Poincare map is described more generally here.  
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Figure 5. Sensitivity to initial condition of 28 groups located at angle 0º, 60 º, 120 º, 180 º, 240 º, 300 
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In this analytical study, the Poincare section 
is obtained using the Lagrangian particle tracing of 
121 fluid elements with the initial arrangement of 
Figure 9 in both chaotic and non-chaotic regions. In 
order to gain an accurate assessment of the loci of 
particles in the whole flow domain, superimpositions 
of these sections for two different entrance regions 
(130 and 175 degrees) are obtained. Figures 10 and 
11 illustrate the results. 

Results show that the Poincare section of the 
chaotic region, preferably regarded as an effective 
mixing, is well-scattered which indicates that the 
particles freely move over the mixer cross-section. 
On the other hand, particles in the Poincare section of 
the non-chaotic region, preferably regarded as a poor 
mixing, are remaining close to each other. 

 
Figure 6. Distribution of initial conditions which 
yield to different mixing behavior. 

 
Table 1. Regions with different sensitivity to initial 
condition. 

Region Name Area Specification 

S1 0 70   

S2 70 140   

S3 140 320   

S4 320 360   

 
7. Line stretching  

Understanding of a more significant 
characterization of mixing is possible by studying the 
local stretching of different material elements 
(Kokini et al., 2007). Therefore, the effectiveness of a 
dough mixer can be evaluated by examining the 
ability of the novel mixer to stretch and distribute 
ingredients through the dough. 

Length stretching of fluid elements is a 
cooperative action between velocity gradients and 
orientation which can be easily computed using tracer 
particle tracking. The calculation of the average 
specific stretching rate and efficiency requires the 
knowledge of the instantaneous values of the 

orientation and length stretch. These can be obtained 
by integrating the following equation (Kokini et al., 
2007): 
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in which, at each time lx, ly and lz are the 

vector components considered to be placed at an 
arbitrary position in the flow and stretches along it. If 
the initial vector is considered to be unit length, the 
quantity of the stretching is obtained by: 

0

l l
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Where l0 is the length of initial vector. The 
mean value of stretching is given by: 

1
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t t

n

str str
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   (7) 

 
The line stretching defined above is a 

technique to quantitatively evaluate the length 
stretching and consequently, mixing efficiency. 
Motivated by this work, 25 particles, shown in Figure 
12, were radially aligned at two specific regions (130 
and 175 degrees) at the entrance section of computed 
flow domain discussed above. The mean values of 
stretching of these elements in terms of the time were 
calculated. The results are depicted in Figure 13. The 
interaction surface of fluid elements can be stretched 
differently depending on initial location which can 
lead them either to a chaotic zone or non-chaotic 
zone. Obviously, length stretching of fluid elements 
in the region referring to the 175 degrees section 
evolves exponentially while advancing in the axial 
direction and is much higher than that referring to the 
130 degrees section. This is due to the exponential 
evolution of the distance between two adjacent 
tracers in the chaotic zone which can lead to greatly 
enhanced length stretching and cause local mixing 
more efficient. Since this exponential length stretch is 
a clear symptom of chaotic advection, results 
apparently confirm the chaotic advection mechanism. 
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Figure 7. Significant example of non-chaotic zone (130 degrees) in the proposed mixer. 

Figure 8. Significant example of chaotic zone (175 degrees) in the proposed mixer. 
 

 
Figure 9. Initial arrangement of 121 particles for 
Poincare section calculations for chaotic and non-
chaotic regions of proposed mixer. 

  
a) b) 

Figure 10. (a) initial position of 121 fluid elements 
and (b) the superimposed Poincare sections in cross 
section of whole mixer for non-chaotic region. 

  
a) b) 

Figure 11. (a) initial position of 121 fluid elements 
and (b) the superimposed Poincare sections in cross 
section of whole mixer for chaotic region. 

 

 
 
Figure 12. Initial arrangement of 25 particles for 
stretching calculations for chaotic and non-chaotic 
regions of proposed mixer. 
 

 
Figure 13. Changes of average stretching of 25 
elements in two different regions of proposed mixer. 
 
8. Horseshoe map 

The horseshoe maps occupy a central 
position in dynamical systems, and as we shall see 
they are very relevant to mixing. The existence of 
such a map indicates that the system is chaotic; in 
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fact they can be regarded as the archetypical chaotic 
map. In fact horseshoe maps are qualitatively tools 
used for identification of presence of chaotic 
advection in a flow field.  

Figure 14 shows that the non-chaotic region 
of proposed mixer possesses no horseshoe map at all 
while Figure 15 provides an obvious evident of 
occurring horseshoe map in the chaotic region. 

 
9. Conclusions 

This paper examines the advantages of chaotic 
advection in order to make some progress in 
complicated mixing mechanisms of high viscous 
materials in food industries, especially in dough 
preparation process. This study implements a 
proposed dough mixer which possesses chaotic 
advection with high mixing performance in some 
regions.  

In order to identify the presence of chaotic 
regimes in the flow field, the sensitivity to initial 
conditions was examined using Lagrangian particle 
tracing. The results indicate that the flow filed is a 
combination of both effective and poor mixing due to 
different flow patterns. Therefore, additional 
computations were focused on comparing the mixing 
performance between two typical examples refer to 
the chaotic zone, namely as effective mixing, and the 
non-chaotic zone, namely as poor mixing. 

The comparison via line-stretching and Lyapunov 
exponent quantitatively showed a distinct difference 
in the mixing performance of these two regions. The 
well-scattered Poincare section of the chaotic region 
illustrates the free movement of particles over the 
mixer cross-section, while in the Poincare section of 
the non-chaotic region, particles remain close to each 
other. In the chaotic zones, the particle trajectories 
can diverge rapidly. In fact, chaotic advection causes 
fluid particles to follow chaotic trajectories that make 
them ‘visit’ a large number of transverse positions in 
the mixer cross-section. Also, the rate of stretching is 
exponential in the chaotic region resulting in a much 
faster rate for non-chaotic zone. All these results 
indicate that chaotic advection is a robust technique 
for increasing mixing performance. 

Using the numerical simulation of the dough flow 
through the proposed novel chaotic mixer, it will be 
possible to assess mixing performance during the 
process and to predict the quality of the processed 
material. This approach will be developed in the near 
future by studying and developing chaotic zones in 
such mixers of very high viscous materials and also 
by designing new chaotic mixers to take the 
advantages of high mixing performance induced by 
chaotic advection. 
 

 : Distance between two adjacent trajectories  

   : Eccentricity between rotor’s axis and stator’s 

axis 

    : Velocity 

  : Total number of particles for stretching 

calculations 

    : Mixing Region 

     : Time 

    : X component of velocity 

    : Y component of velocity 

    : Z component of velocity 

     : X component of position 

     : Y component of position 

     : Z component of position 

    : Time step 
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   : Reynolds number 
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     : Initial length of fluid elements 

     : Line stretching of fluid element 

      : Mean value of stretching 

         : Radius of rotor’s cross section area   

        : Radius of stator 

      : Constant material coefficient 

      : Lyapunov exponent 

ρ         : Density 

τ       : Stress tensor 

ω      : Rotational speed 

     : Shear rate 

      : Infinitive shear viscosity 

      : Zero shear viscosity 
 
Corresponding Author: 
Amir Tohidi 
Department of Mechanical Engineering, Iran 
University of Science and Technology, Tehran, Iran 
E-mail: Tohidi@iust.ac.ir 
 



Life Science Journal 2013;10(4s)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  421

 
Figure 14. The non-chaotic region of proposed mixer possesses no horseshoe map at all. 
 

 
 
Figure 15. Horseshoe map in the non-chaotic region of proposed mixer at interval time of 0.4s. 
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