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Abstract: The main goal of this paper is to assess the incorporation of Chaos search to Multi-Objective Particle 
swarm optimization. The proposed algorithm combined chaotic maps to produce random numbers needed by the 
algorithm during search. The new technique so-called Multi-Objective Chaotic Particle Swarm Optimization 
(MOCPSO) uses an external archive for keeping the solutions found over iterations. Fitness Sharing method is 
employed to maintain diversity of solutions found in the external archive. For validity, the proposed technique is 
applied to a well-known structural optimization problem called two-bar truss problem, and the results show the 
efficiency of adding chaos. 
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1. Introduction   
   Decision situations often involve multiple criteria or 
objectives. In many cases, objectives are 
incommensurable, meaning they are not comparable 
with respect to magnitude and value, and conflicting, 
meaning that the different objectives cannot be 
arbitrarily improved without decreasing the value of 
another. This result in trade-offs between the 
objectives [3]. Multi-Objective programming is a part 
of mathematical programming dealing with decision 
problems characterized by multiple and conflicting 
objective functions that are to be optimized over a 
feasible set of decisions. Such problems, referred to as 
Multi-Objective Programs (MOPs), are commonly 
encountered in many areas of human activity 
including engineering, management, and others [4]. 
    Particle swarm optimization (PSO) is a population-
based stochastic optimization technique modeled on 
the social behaviors observed in animals or insects, 
e.g., bird flocking, fish schooling, and animal herding. 
It was originally proposed by James Kennedy and 
Russell Eberhart in 1995 [7]. Since its inception, PSO 
has gained increasing popularity among researchers 
and practitioners as a robust and efficient technique 
for solving difficult optimization problems [3]. 
  A structure in mechanics is defined by J.E. Gordon 
[6] as “any assemblage of  materials which is intended 
to sustain loads.” Chaos is a kind of common 
nonlinear phenomenon, which has diverse,  complex 
and sophisticated native under apparent disorder. 
  In this paper, a new method is developed to solve the 
two-bar truss problem. The new method combined 
Particle Swarm Optimization (PSO) algorithm to 
chaos search in order to enhance exploration during 

search. The proposed method called Multi-Objective 
Chaotic Particle Swarm Optimization (MOCPSO) 
uses an external archive for keeping the nondominated 
solutions gained during search. This paper is 
structured as following: Section 2 is made for Multi-
Objective Optimization basic concepts, section 3 is 
devoted to the Particle Swarm Optimization 
technique, the proposed technique is illustrated in 
section 4, the two-bar problem is presented in section 
5, and finally in section 6 conclusion is introduced. 
2. Multi-Objective Optimization 
  A general multi-objective optimization problem 
consists of a number of objectives to be optimized 
simultaneously. In general, a k-objective minimization 
problem can be written as   
   min {(f1(x),..., fk (x)): x X } (1) 
we usually assume that the set X is given implicitly in 
the form of constraints resulted in the feasible region 
in the decision space [3], i.e., X : = {xRn : gj (x) ≤ 0, 
j = 1,...,s;  hj (x) = 0, j = 1,...,m}. 
Definition 1 (Pareto Dominance): Without loss of 
generality in a minimization problem, a decision 
vector  x1 X  is said to dominate  a decision vector x2 

X  iff  the following two conditions are satisfied: 
1. The decision vector x1 is not worse than x2 in 

all objectives, or  i  {1,2,…,k} : ƒi (x1) ≤ ƒi 

(x2). 
2. The decision vector x1 is strictly better than x2  

in at least one objective, or  i  {1,2,…,k} : 
ƒi (x1) < ƒi (x2). 

If any of the above conditions is violated, then x1 does 
not dominate x2. A decision vector x1 X is called 
Pareto-optimal if there is no another x2  X that 
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dominates it and in this case x1 is called nondominated 
with respect to X 
Definition 2 (Pareto Optimal Set): The Pareto 
Optimal Set P* is defined by [2]:  
  P* = {xX | x is pareto-optimal} (2) 
3. Particle Swarm Optimization 
  Particle Swarm Optimization (PSO) is an 
evolutionary computation technique for optimization. 
It is inspired by the social behaviour of individuals in 
groups in nature [7]. The behaviour of an individual is 
influenced by its own experience and that of its 
neighbours. PSO became so popular for its simplicity 
since its original version; it only adopts one operator 
for finding creating new solutions not like other 
evolutionary algorithms (EAs), also it has been found 
effective in a wide variety of applications, in PSO the 
members of the entire population are maintained 
through the search procedure so that information is 
socially shared among individuals to direct the search 
towards the best position in the search space [5].  
  PSO algorithm reaches optimal solutions through 
two mechanisms as shown in equations 3 and 4, 
equation 3 for updating positions (solutions), while 4 
is for velocity updating for achieving better positions 
(solutions). The swarm contains a population of N 
particles, in the iteration (t) the position of particle (i) 
in the search space is presented by Xi  (t), and Vi (t) is 
the velocity updating which will be added to the old 
position to obtain the new position of particle (i). 
Xpbest is the best position attained by the particle 
during the search, while Xleader is the best global 
solution among the swarm.  

  XXii  ((tt))  ==  XXii  ((tt--11))  ++  VVii((tt))                                                                              ((33))  

  VVii  ((tt))  ==  ww  VVii((tt--11))  ++  CC1rr1  ((XXppbbeesstt  --  XXii  ((tt))  ))  ++     

CC2rr2  ((XXlleeaaddeerr    --  XXii  ((tt))  ))  
((44))  

where ww is the inertia weight factor; C1 and C2 are 
acceleration constants and r1, r2 are random values    
[0,1]. 
  Some authors added some techniques to the general 
algorithm of PSO in order to deal with Multi-
Objective Optimization problems [10], they proposed 
many approaches in this direction, in the case of 
multi-objective optimization problems, each particle 
might have a set of different leaders from which just 
one can be selected in order to update its position. 
Such set of leaders is usually stored in a different 
place from the swarm that is called external archive. It 
is important to indicate that the majority of the 
currently proposed MOPSO approaches redefine the 
concept of leader. A quality measure that indicates 
how good a leader is very important. Obviously, such 
feature can be defined in several different ways. Thus 
other strategies have to be found to limit the archive 
size while preserving its diversity and spread [3]. 
 

4. Multi-Objective Chaotic Particle Swarm  
   Optimization  
  Mathematically, chaos is randomness of a simple 
deterministic dynamical system and chaotic system 
may be considered as sources of randomness [1]. A 
chaotic map is a discrete-time dynamical system  
    zk+1 = f (zk),   0 < zk < 1,  k = 0,1,2,…           (5) 
running in the chaotic state. The chaotic sequence {zk : 
k = 0,1,2,…} can be used as spread-spectrum 
sequence and as a random number sequence. Thus, in 
each iteration PSO parameters can be updated by 
chaotic maps. Also, the two random numbers (r1 and 
r2) are produced by moving the chaotic more steps. 
One famous function is employed in the proposed 
algorithm called the Logistic map. In 1976, Robert 
May pointed out that the logistic map led to chaotic 
dynamics. A logistic map is a polynomial map. It is 
often cited as an example of how complex behaviour 
can arise from a very simple nonlinear dynamical 
equation [9]. This map is defined by  
     zk+1 = µ zk (1- zk) (6) 
Obviously, zk   [0,1] under the conditions that the 
initial z0

 
 [0,1], where k is the iteration number and 

µ = 4.  
  In the proposed algorithm, the solutions are kept 
diversified in the archive by using the fitness sharing 
method. The main idea of fitness sharing is to 
distribute a population of individuals along a set of 
resources [8]. When an individual i is sharing 
resources with other individuals, its fitness fi is 
degraded in proportion to the number and closeness to 
individuals that surround it, and in this way promoting 
and maintaining diversity. In general Fitness sharing 
for an individual i is defined as: 
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where n is the number of individuals in the population. 
5. Two-Bar Truss Structural Problem  
  As shown in Fig. 1, the truss has to carry a certain 
load without elastic failure. Thus, in addition to the 
objective of designing the truss for minimum volume 
(which is equivalent to designing for minimum cost of 
fabrication), there are additional objectives of 
minimizing stresses in each of AC and BC.  

 
Fig. 1: The Two-Bar Truss Problem 
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  The two-objective optimization problem for three 
variables y (vertical distance between B and C in m), 
x1(length of AC in m) and x2(length of BC in m) is 
constructed as follows: 
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  In this proposal, the parameters are set as following: 
N = 50; C1 and C2 = 2. The values of w, r1 and r2 are 
obtained by moving the logistic map one step, size of 
external archive is 100 solution, and we had 100 
iterations. Fig. 2 shows the pareto front produced 
using the proposed method. An additional constraint 
of maximum stress being smaller than 1(105) is added 
to the original problem. The solutions are spread in the 
following range: (0.00392 m3, 91607 kPa) and 
(0.05315 m3, 8103 kPa). 

 
Fig. 2: Pareto Front produced using MOCPSO  

 
6. Conclusion  
  In the proposed algorithm, Chaos search is combined 
to Multi-Objective Particle Swarm Optimizer to 
enhance exploration during search. The two Truss 
problem is solved in an efficient way. Also, an 
external archive is incorporated to the algorithm in 
order to keep solutions found and maintain diversity 
during search.  
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