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1. Introduction 

A functional equation in which the unknown 
function appears in the form of it is a derivative as 
well as under the integral sign is called an integro-
differential equation (see, filiz(2000a; 2013) and 
Volterra(1931; 1959; 1957)). In this paper we will 
consider the linear Volterra integro-differential 
equation of the form (see, Asanov, 1978; Baker, 
1978; Bellman, 1949; Cooke, 1966). 
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with the kernel ),( stK  of equation (1) assumed to be 

continuous on TttTt ,(],[ 00  a finite )  and 

}.:),{( TtstRRstS   In this paper we 

consider in detail only one case, the question 
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with initial condition 

(3)  00 )( utu  . 

Equation (1) can be solved numerically using 
various methods (see, Baker et al., 1998; Filiz, 
2000b; Baker et al., 2006; Filiz, 2000a; Filiz, 2013; 

Linz, 1985). In this paper )( ntu  will denote the exact 

value of u at nhtt n  0 . We shall use )(~
ntu  or 

nu~ to denote a numerical solution u of at .nt  

However, in this paper we will construct fifth-order 
numerical method for equation (1). Since the integral 
cannot be determined explicitly, it may be 
approximated using familiar numerical integration 
methods. The Newton-Cotes integration formulae, 
which include the 2-point closed Newton-Cotes 
formula is called the trapezoidal rule, the 3-point rule 

is known as Simpson’s 1/3 rule, the 4-point closed 
rule is Simpson’s 3/8 rule, the 5-point closed rule is 
Boole’s rule (Bode’s rule), Weddle’s rule, higher 
rules include the 6-point, 7-point and 8-point are well 
suited here since they use nodes which were given in 
(e.g., Wolfram, 2013; Filiz, 2000a; Abramowitz and 
Stegun, 1972; Ueberhuber, 1972) and (see, Baker, 
1978; Linz, 1985). In (Filiz, 2000b; Filiz, 2000a; 
Filiz, 2013) we consider an elementary class of 
formulae for the numerical solution of integro-
differential equation of first-order and second-order, 
based upon the  method (see Table 1).  
2. The Numerical of Integro-differential 

Equations 
The functional equation (1) is a first-order Volterra 
integro-differential equation; here, one usually looks 
for a solution which satisfies the initial 
condition 00 )( utu  . 

Definition 1. (Linear kernel) A Volterra integro-
differential equation is said to be linear if its kernel 
has the form ).(),())(,,( sustKsustK   

Definition 2. (Convolution kernel) If the kernel of (1) 

is a function of )( st   only, that is )(),( stkstK  , 

then K  is said to be a difference (convolution) 
kernel. 

Since a nonlinear Volterra integro-
differential equations is characterized by two 
functions, namely, ))(),(,( tztutF  (differential part) 

and ))(,,( sustK  (integral part) a corresponding 

existence and uniqueness theorem is an extension of 
the analogous for initial value problem (IVP) for 
first-order ordinary differential equations and for 
Volterra integral equation of the second kind.  
Theorem 1. (Existence and uniqueness) In equation 

(1) suppose that ))(),(,( tztutF  and ))(,,( sustK
 
are, 
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respectively, continuous for ],[ 0 Ttt   and ,),( Sst   

and let the following (uniform) Lipschitz condition 
hold: 

(i) ,)()())(),(,())(),(,( 21121 tutuLtztutFtztutF   

(ii) ,)()())(),(,())(),(,( 21221 tztzLtztutFtztutF   

(iii) ,)()())(,,())(,,( 21321 tutuLtustKtustK   

for all ],[ 0 Ttt  , ,),( Sst   and 

).2,1()(,)(  itztu ii  Then each 0u  

there exist exactly one solution ]),([)( 0
1 TtCtu   of 

equation (1) satisfying 00 )( utu  . 

Proof. (See (Linz, 1985)). 
 
In general formulae for the numerical solution of 
integro-differential equations rely upon formulae for 
the underlying Ordinary Differential Equation 
(ODE), combined with auxiliary quadrature rules 
approximation of  
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For equation (1), we adapted the  -method in 

filiz (2000a; 2013) and method convergence O(h) and 

)( 2hO respectively. 

Of course, whereas we have defined 

approximations )(~
ntz  in terms of quadrature rules 

that reflect the underlying ODE method, it is in 
principle possible to “mix and match”. The 
combinations of formulae can be chosen on the basis 
of order of convergence. There are two directions in 
which  method can be generalized. The first 
involves adapting Linear Multistep Method (LMM) 
for ODE’s and second involves adapting Runge-
Kutta methods. In each case, we will require to 
approximate integral terms (4) at selected values at t. 
Equation (1) can be solved various methods. In this 
paper we shall focus on fifth-order numerical method 
for equation (1). The integral term cannot be 
determined explicitly; it may be approximated using 
familiar numerical integration methods. The Newton-
Cotes integration formulae, which include left and 
right rectangle rules, the trapezoidal rule, Simpson’s 
1/3 rule and Simpson’s 3/8 rule are well suited here 
since they used nodes which were previously 
calculated: 
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where jn,  are the appropriate coefficients for the 

composite integration schemes chosen. A 

combination of integration method may be used.  
Simpson’s 1/3 rule requires that n , the number of 

subintervals dividing ],,[ 0 ntt  be even. Therefore, 

Simpson’s 1/3 rule cannot be used at each step. When 
n  is odd, one method is to use Simpson’s 1/3 rule on 

],,[ 10 ntt  and trapezoidal rule on ],,[ 1 nn tt  , adding 

the results to approximate the integral on ].,[ 0 ntt  

Another method is to use the trapezoidal rule ],,[ 10 tt  

and Simpson’s 1/3 rule thereafter. 
3. Convergence and Order of Convergence 
If we use time discretization in (2), we get 
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Given an interval ],[ 0 Tt  introduce ntTh /)( 0  

for some Nn over mesh-points 

 nhtt n  0 , n=0, 1, 2, 3, ….,n. 

For the integro-differential equation with the unique 
solution )(tu  suppose )(~

itu , i = 0, 1, 2, 3, · · ·, n are 

computed by some approximation scheme. We have 

convergence of order p for mesh-points in ],[ 0 Tt  

using step-size h 
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0

ii
Ttt

tutu
i




 

 
as .0h  Consider the set of values 

,,....,3,2,1,),()(~
0 niihtttutue iiii   

which is called discretization error of the 

approximate solution )(~
itu at the mesh-points }.{ it  

Definition 3. (Convergence) A method of the form 
(5) is said to be convergent on ],[ 0 Tt  if 

0)()(~maxlim
],[0 0












ii

ttth
tutu

i

. 

Definition 4. (Order of convergence) If, for all h, 
there exists a number M < ∞, independent of h, such 
that if 

,)()(~max
0

p
ii

ni
hMtutu 


 

and if p is the largest number for which such an 
inequality holds, then p is called the order of 
convergence of the method. 
4. The Fifth-order Numerical Routine for 

Linear Volterra Integro-differential Equation 
Now consider the non-dimensional problem (1). In 
order to solve (1) numerically, we purpose the use of 
two methods familiar to most mathematicians. We 
consider methods which approximate the solution the 
initial value problem (IVP) 

,)(),)(,()(' 00 utututftu   
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at time nhttn  0 , n=0, 1, 2, 3, …., where 

1 nn tth  is the constant nodal step-size and, in 

the Example 1, 
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For example, the explicit Euler method approximates 
the solution to Example 1 at 1nt  
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 The explicit finite difference method given in 
 (Filiz,2013) as applied to equation (1) easily 
extended to more accurate predictor-corrector 
method. The predictor step uses 

(  ))(~,~,(~~
1 nnnnn tzutFhuu  ) 

to obtain 
1

~
nu , which is followed by the corrector step, 

which uses higher order trapezoidal method 
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       This procedure is sometimes referred to as 
modified Euler method (second order Runge-Kutta-
RK2) and is one order magnitude more accurate than 
the explicit Euler method. 
             Theorem 2. (Second order convergence) If 
conditions (3), Theorem 1-(i) and Theorem 1-(iii) are 
satisfied, and if in addition F and K are twice 
continuously differentiable with respect to all 
arguments, then approximate solution defined by (6) 
and (7) converges to the true solution of (7) with 
order two. 
              Proof.  (See (Linz, 1985)).  
              At each step the equation (6) was solved by 
the trapezoidal method. The results are shown in 
Table 3. The apparent order of convergence is two, 
which is not surprising because of the use trapezoidal 
method. 
               Higher order methods can be constructed 
along similar lines. The 5-point extended closed rule 

is Boole's method may be devised on ],[ 0 ntt   as 

following: 
               If n=0,  ,0~

0 z  
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1110011
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              The fourth order classical Runge-Kutta 
method (RK4) can also be adapted to the numerical 
solution of equation (1) (see Table 3). Stepping from 

nu~  with step-size h to obtain 1
~

nu , the RK4 method 

as applied to this problem in filiz(2000a; 2013). 
The fifth-order Runge-Kutta-Fehlberg (see 

Table 2) and sixth order Runge-Kutta-Verner 
methods (see Table 1) may be used but not readily 
(see, (Burden and Faires, 1997)), since the intranodal 
evaluation points are uniformly spaced. 
Consequently, the integrals needed during the 
intermediate calculations to step from nt  to 1nt  may 

require the trapezoidal rule or Lagrange polynomial 
interpolating integration on a non-uniform partition 

].,[ 1nn tt  

              Other high-order finite difference methods 
which may be used here include the Adam-Basforth 
multistep methods. One such fourth order method is 
described in (see, (Burden and Faires, 1997)). It uses 
the RK4 method to obtain the starting values 

.,, 210 uuu  Thereafter, the method uses the fourth 

order explicit Adam-Basforth method as a predictor 
and fourth-order implicit Adam-Moulton method 

corrector to step from nt  to 1nt . 

              Runge-Kutta-Verner method (RKV) can also 
be adapted to the numerical solution of (1). Stepping 
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from nu~  with step-size h to obtain 1
~

nu , the RKV 

method as applied to this problem may be written as: 
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 In this example, the trapezoidal rule is used to  

approximate dssustktz
nt

t

n  

0

)()()(~  on ],[ 6/1nn tt ,  

],[ 15/4nn tt , ],[ 3/2nn tt , ],[ 6/5nn tt , ],[ 1nn tt ,  

],[ 15/1nn tt , ],[ 1nn tt   in calculating, 2k , 3k , 4k , 5k , 

6k , 7k  and 8k  respectively. If desired, the trapezoidal 

rule may be used on ],[ 0 ntt  (gives second order 

accuracy); the trapezoidal rule and Simpson’s 1/3 rule 
(giving third order accuracy, see Table 3) may be used 

on ].,[ 0 ntt  
In order to get fifth order accuracy the integral term 

must be evaluated more accurately on ],[ 6/1nn tt , 

],[ 15/4nn tt , ],[ 3/2nn tt , ],[ 6/5nn tt , ],[ 1nn tt , 

],[ 15/1nn tt , ],[ 1nn tt   in calculating, 2k , 3k , 4k , 5k , 

6k , 7k  and 8k , as shown in (12) --(18) below.  

If we interpolating on 6/112
~,~,~,~

 nnnn uuuu  (special  

formulae required for the first three steps, for example  
we can use (9)) Lagrange’s formula for points t=-2, -1,  
0, 1/6 gives 
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If we integrate the expression between 0 and h/6, we 
get 
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Similarly, we can find t= t=-2, -1, 0, 4/15 
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Therefore the Runge-Kutta-Verner formulae become 
4n  (for starting values we can use equation (9) )  

           ,))(~,~,(1 nnn tzuthFk   

,
6

~~ 1
6/1

k
uu n

a
n          

           ,)~,~,( 6/16/16/12  n
a
nn zuthFk  

)),~
5184

469~
18144

25

~
5184

1~
168

13
(~,~,(

1

26/16/16/12

nn

n
a
nn

a
nn

uu

uuhzuthFk









   

       

,
75

16

75

4~~ 21
15/4

kk
uu n

b
n        

 
(19)  ,)~,~,( 15/415/415/43  n

b
nn zuthFk  

)),~
10125

1538~
192375

1024

~
10125

8~
285

34
(~,~,(

1

215/415/415/43

nn

n
b
nn

b
nn

uu

uuhzuthFk









 

,
2

5

3

8

6

5~~ 321
3/2

kkk
uu n

c
n     

,)~,~,( 3/23/23/24  n
c
nn zuthFk  

)),~
81

37~
405

28

~
81

1~
15

4
(~,~,(

1

23/23/23/24

nn

n
c
nn

c
nn

uu

uuhzuthFk









 

,
96

85

64

425

6

55

64

165~~ 4321
6/5

kkkk
uu n

d
n     

,)~,~,( 6/56/56/55  n
d
nn zuthFk  

)),~
5184

3185~
28512

3625

~
5184

125~
264

85
(

~,~,(

1

26/5

6/56/55

nn

n
d
n

n
d
nn

uu

uuh

zuhFk













 

,
255

88

36

11

612

4015
8

15

12~~ 543
2

1
1

kkk
k

k
uu n

e
n     

,)~,~,( 1116  n
e
nn zuthFk  

)),~
24

19~
24

5~
24

1~
8

3
(

~,~,(

121

116

nnn
e
n

n
e
nn

uuuuh

zuthFk









 

,
10625

2484

250

81

680

643

75

124

15000

8263~~

543

21
15/1

kkk

kk
uu n

f
n





   

,)~,~,( 15/115/115/17  n
f

nn zuthFk  

)),~
81000

2791~
648000

61

~
81000

1~
960

31
(

~,~,(

1

215/1

15/115/17

nn

n
f

n

n
f

nn

uu

uuh

zuthFk













 

,
26703

3850

84065

24068

2322

319

52632

297275

43

300

1720

3501~~

754

3
2

1
1

kkk

k
k

k
uu n

g
n





  

,)~,~,( 1118  n
g

nn zuthFk   

)),~
24

19~
24

5~
24

1~
8

3
(

~,~,(

121

118

nnn
g
n

n
g

nn

uuuuh

zuthFk









 



Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  307

 
 and the sixth-order method 
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 is used to 

estimate the error in the fifth-order method  
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              We can construct an algorithm similar to the 
Runge-Kutta-Fehlberg method and we can repeat 
Example 1 using this new method (see Table 2).     
              Table 1 shows the fifth order accuracy 
obtained with this formula. In Example 1, we have 
used Runge-Kutta-Verner methods and numerical 
quadrature, trapezoidal rule, the 3-point rule is known 
as Simpson’s 1/3 rule, the 4-point closed rule is 
Simpson’s 3/8 rule, the 5-point closed rule is Boole’s 
rule (Bode’s rule), Weddle’s rule, higher rules 
include the 6-point, 7-point and 8-point and their 
combinations. 
Example 1: Consider a first order Linear Volterra 
integro-differential equation of the form 

(22) 
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|)(| , we can solve (22), with suitable 

initial  
conditions, by Laplace transforms (see (Cooke, 
1966)).  
Equation (22) has the analytical solution. 
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           In solution (23): 
            Case (i): If we choose 

0,0,1,0    and ,)0( 0uu  we 

obtain ).cos()( 0 tutu     

            Case (ii): If we choose 
0,1,1,1    and ,)0( 0uu  we 

obtain ).cos()( 0 teutu t
 

            Case (iii): If we choose 

1,0,1,0    and ,)0( 0uu  we 

obtain ).sin()cos()( 0 ttutu 
    

            Case (iv): If we choose 

1,0,1,0    and ,)0( 0uu  we obtain 

).sinh()cosh()( 0 ttutu 
 

            Case (v): If we choose 

0,1,1,0    and ,)0( 0uu  we 

obtain  
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           Case (vi): If we choose  ,1,2/1    

         
2/1,1    and ,)0( 0uu  we obtain  
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        Case (vii): If we choose  
,1,1,2/1    

    
2/1  and ,)0( 0uu  we obtain 
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              The errors found are given Table 1, where 
error=|true value – approximate value|. Unless 
otherwise indicated, in this paper, error means 
absolute error. Table 1 is consistent with the property 

that the order of the error is )( 5hO . 
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Table 1: Errors in the Solutions (22) for RKV 
method ,0,1,0,1,0 0  u  

1max t  gives )( 5hO . 

t 
Error1 with 
h=0.0250 

Error2 with h=0.0125 
Error3 with 
h=0.00625 

0.1 7.7134e-10 2.4116e-11 7.5501e-13 
0.2 7.6308e-10 2.3839e-11 7.4746e-13 
0.3 7.4661e-10 2.3305e-11 7.3169e-13 
0.4 7.2210e-10 2.2518e-11 7.0810e-13 
0.5 6.8980e-10 2.1488e-11 6.7685e-13 
0.6 6.5006e-10 2.0224e-11 6.3793e-13 
0.7 6.0328e-10 1.8740e-11 5.9230e-13 
0.8 5.4997e-10 1.7050e-11 5.3990e-13 
0.9 4.9069e-10 1.5174e-11 4.8139e-13 
1.0 4.2606e-10 1.3129e-11 4.1744e-13 

The fifth order Runge-Kutta-Verner method (RKV) 

and numerical quadrature rules (gives error )( 5hO ). 

 
Table 2: Errors in the Solutions (22) for RKF 
Method  

A: ( 1,0,0,1,0,0 max0  tu  

gives )( 4hO . 

B: ( 1,0,0,1,0,1 max0  tu  

gives )( 5hO . 

t Error1 with h=0.0250 Error2 with h=0.0125 
 Method A Method B Method A Method B 
0.1 4.8696e-08 7.7084e-10 3.0410e-09 2.4070e-11 
0.2 4.8142e-08 7.6159e-10 3.0009e-09 2.3731e-11 
0.3 4.7108e-08 7.4415e-10 2.9308e-09 2.3137e-11 
0.4 4.5603e-08 7.1872e-10 2.8315e-09 2.2295e-11 
0.5 4.3643e-08 6.8557e-10 2.7039e-09 2.1213e-11 
0.6 4.1247e-08 6.4505e-10 2.5492e-09 1.9903e-11 
0.7 3.8439e-08 5.9760e-10 2.3691e-09 1.8379e-11 
0.8 3.5248e-08 5.4373e-10 2.1653e-09 1.6657e-11 
0.9 3.1705e-08 4.8402e-10 1.9400e-09 1.4756e-11 
1.0 2.7845e-08 4.1910e-10 1.6952e-09 1.2697e-11 

The fifth order (RKF) and numerical quadrature  

rules (gives error )( 4hO  and )( 5hO ). 

 
5. Conclusion  

The results are shown in Table 1. The apparent 
order of convergence is five, which is not surprising 
because of the use equation (22). After above 

calculation we are expecting order of ).( 5hO  In 

view, it seems to be true because of the truncation 
error for Runge-Kutta-Verner and Boole’s rule are 

).( 5hO  Numerical order of convergence is also 

calculated: 
Ord= ( ln( 1Error ) - ln( 2Error ) ) / ln(2). 

We expected that Ord=5. Obtained theoretical results 
are confirmed by numerical experiment. The seventh-
order Runge-Kutta and eighth-order Runge-Kutta 
methods can also be adapted to the numerical 
solution of equation of equation (22). 
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6. Appendix 
Various numerical solution of equation (22). 
Table 3: Errors in the solution of (22) with; 

Errors in the Solutions (22) for Various Methods 1,0,1,0,1,0 max0  tu  

         Exact               (A) Explicit                  (B) Implicit                 (C) RK4 and SimpTrap       (D) RK4 and Simp II 
t       Solution      h=0.025     h=0.0125     h = 0.025   h = 0.0125   h=0.025      h=0.0125     h = 0.025    h = 0.0125 
0.1   0.0998334   5.7228e-05   2.9907e-05   6.7538e-05  3.2485e-05   3.9424e-09   5.5109e-10   7.3484e-10   3.3681e-11 
0.2   0.1986693   2.3829e-04   1.2166e-04   2.5828e-04  1.2666e-04   1.7562e-08   2.3103e-09   1.0650e-09   5.4422e-11 
0.3   0.2955202   5.3976e-04   2.7348e-04   5.6822e-04  2.8059e-04   4.0594e-08   5.2430e-09   1.3730e-09   7.3910e-11 
0.4   0.3894183   9.5579e-04   4.8236e-04   9.9091e-04  4.9114e-04   7.2586e-08   9.2908e-09   1.6503e-09   9.1611e-11 
0.5   0.4794255   1.4782e-03   7.4414e-04   1.5176e-03  7.5399e-04   1.1290e-07   1.4373e-08   1.8888e-09   1.0702e-10 
0.6   0.5646425   2.0965e-03   1.0535e-03   2.1375e-03  1.0638e-03   1.6073e-07   2.0385e-08   2.0813e-09   1.1967e-10 
0.7   0.6442177   2.7983e-03   1.4043e-03   2.8375e-03  1.4141e-03   2.1509e-07   2.7207e-08   2.2209e-09   1.2913e-10 
0.8   0.7173561   3.5692e-03   3.6030e-03   4.0738e-06  1.7975e-03   2.7488e-07   3.4696e-08   2.3018e-09   1.3503e-10 
0.9   0.7833269   4.3930e-03   2.1999e-03   4.4178e-03  2.2061e-03   3.3884e-07   4.2695e-08   2.3191e-09   1.3705e-10 
1.0   0.8414710   5.2524e-03   2.6280e-03   5.2641e-03  2.6309e-03   4.0562e-07   5.1034e-08   2.2691e-09   1.3496e-10 
            Exact              (E) RK2 and Trap        (F) RK4 and Trap         (G) RK4 and TrapSimp      (H) RK4 and Simp I 
t        Solution      h=0.025     h=0.0125     h = 0.025     h = 0.0125   h=0.025     h=0.0125    h = 0.025    h = 0.0125 
0.1   0.0998334   5.1818e-06   1.2955e-06   7.1956e-09   1.9741e-09   2.3161e-09   2.4629e-10  7.3484e-10   3.3686e-11 
0.2   0.1986693   1.0208e-05   2.5522e-06   6.2993e-08   1.6502e-08   7.8435e-09   8.9431e-10  1.0657e-09   5.4461e-11 
0.3   0.2955202   1.4926e-05   3.7317e-06   2.1827e-07   5.6291e-08   1.6477e-08   1.9315e-09  1.3753e-09   7.4015e-11 
0.4   0.3894183   1.9187e-05   4.7971e-06   5.2191e-07   1.3354e-07   2.8050e-08   3.3373e-09  1.6552e-09   9.1811e-11 
0.5   0.4794255   2.2852e-05   5.7133e-06   1.0198e-06   2.5971e-07   4.2334e-08   5.0837e-09  1.8973e-09   1.0734e-10 
0.6   0.5646425   2.5790e-05   6.4478e-06   1.7539e-06   4.4524e-07   5.9044e-08   7.1356e-09  2.0941e-09   1.2014e-10 
0.7   0.6442177   2.7883e-05   6.9711e-06   2.7614e-06   6.9939e-07   7.7842e-08   9.4512e-09  2.2388e-09   1.2976e-10 
0.8   0.7173561   2.9027e-05   7.2572e-06   4.0738e-06   1.0300e-06   9.8344e-08   1.1983e-08  2.3255e-09   1.3585e-10 
0.9   0.7833269   2.9136e-05   7.2844e-06   5.7162e-06   1.4432e-06   1.2012e-07   1.4677e-08  2.3491e-09   1.3808e-10 
1.0   0.8414710   2.8139e-05   7.0351e-06   7.7067e-06   1.9437e-06   1.4271e-07   1.7477e-08  2.3057e-09   1.3619e-10 

(A) The explicit (  = 0 ) method and the trapezoidal rule (gives error O(h)); 

(B) The implicit (  = 1 ) method and the trapezoidal rule (gives error O(h)); 

(C) The RK4 and Simpson’s 1/3 rule and the trapezoidal rule (gives error )( 3hO ); 

(D) The fourth order Runge-Kutta methodu(RK4) and Simpson’s method II (gives error )( 4hO  ); 

(E) The second order Runge-Kutta methodu(RK2) and the trapezoidal rule (gives error )( 2hO  ); 

(F) The fourth order Runge-Kutta method (RK4) and the trapezoidal rule (gives error )( 2hO  ); 

(G) The RK4 and the trapezoidal rule and Simpson’s 1/3 rule (gives error )( 3hO  ); 

(H) The fourth order Runge-Kutta method (RK4) and Simpson’s method I (gives error )( 4hO  
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