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Abstract: Optimal tuning of proportional–integral–derivative (PID) controller parameter is necessary for thematic 
factory operation of an automatic voltage regulator (AVR) system. This study presents a novel combined genetic 
algorithm (GA), radial-basis function network (RBF) identification and fuzzy logic control approaches to determine 
the optimal PID controller parameters in AVR system. The problem of obtaining the optimal AVR and PID 
controller parameters is formulated as an optimization problem and RBF tuning by GA is applied to solve the 
optimization problem. The proposed approach has resulted in AVR and PID controller with a good response. 
Whereas , RBF tuning by GA for various operating conditions are used to develop the rule base of the Sugeno fuzzy 
system and design fuzzy PID controller (GRBFF-PID) of AVR system to improve the system response. The 
GRBFF-PID controller is found to possess excellent features of easy implementation, stable convergence 
characteristic, good computational efficiency and high-quality solution. Our simulation provides high sensitive 
response (~0.05 sec) of an AVR system compared to the real-code genetic algorithm (RGA), a linear-quadratic 
regulator (LQR) method and GA. We assert that GRBFF-PID is highly efficient and robust in improving the system 
response of an AVR system.  
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1. Introduction 

The major purpose of the AVR is to control the 
terminal voltage by regulating the generator exciter 
voltage. The AVR must keep path of the generator 
terminal voltage all the time under any load and 
operational conditions, in order to keep the voltage 
within pre-established limits. Researches concerning 
the improvement of the search process to control 
system engineering problems proposed different 
approaches to get better solutions. Devaraj and 
Selvabala [1]suggested a new design method for 
determining the PID controller parameters of the AVR 
system using the real coded genetic algorithm method. 
Kim et al. presented a hybrid GA and bacterial 
foraging approach to tune the PID controller of an 
AVR[2]. Valarmathi et al. proposed enhanced GA for 
PI controllers tuning in pH process [3].  Genetic 
algorithm (GA) is one of these widely used 
approaches since it improved its ability for solving 
optimization problem [2-4]. Genetic algorithms can be 
found in many applications in biogenetics, 
engineering, economics, manufacturing, mathematics, 
physics, chemistry, computer science, , and other 
fields. For instance, Gas can be applied to discuss the 
data classification, fuzzy modeling and Omni-
directional robot design problems [5]. 

[6]During this paper a neuro-fuzzy primarily 
based methodology is projected to scale back the 
degree of the uncertainty within the reliability indices 
and thus to judge the reliability of the composite 

power systems exactly. Additionally use of RBF-NN 
as a result of powerful characteristic to find out any 
nonlinear mapping between two states. [7]In this 
study, a stochastic multi objective framework is 
proposed for distribution feeder reconfiguration 
(DFR). The proposed multi objective framework will 
at the same time optimize competitive objective 
functions as well as total power losses, voltage 
deviation and total cost. For every settled state of 
affairs, a multi objective formulation supported the 
adaptive changed particle swarm improvement 
(AMPSO) is enforced for every settled state of affairs 
of it. 

[8]Propose, a new hybrid technique supported 
teacher learning algorithmic rule (TLA) and artificial 
neural network (ANN) is planned to develop a correct 
model to analyze short-term load forecasting more 
precisely. Additionally, in an endeavor to settle on the 
foremost satisfying options from the set of input 
variables, a completely unique feature-selection 
approach supported fuzzy agglomeration and fuzzy set 
theory is proposed and utilized sufficiently. 

Dacheng and Xiaoye proposed the application of 
PID controller based on GA optimization to control 
valve in hydraulic system with vertical load [9]. Yu et 
al. introduced new design method of PID controller 
based on improved GA for PMSM Servo system. The 
PMSM is vastly used in modern AC servo system due 
to its advantages such as high efficiency, high power 
density and high performance in wide range speed 
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[10].[11]This paper proposes a new probabilistic 
framework based on 2m Point Estimate Method 
(2m PEM) to consider the uncertainties in the optimal 
energy management of the Micro Girds (MGs) 
including different renewable power sources . 

[12]In this study, the operating benefits of 
considering thermal recovery and hydrogen 
production in the economic model of a grid-parallel 
proton exchange membrane fuel cell power plant 
(PEM-FCPP) are investigated. The objective functions 
to be optimized are the total active power losses. 
[13]This paper suggests a new stochastic method 
based on point estimate method (PEM) to consider the 
uncertainty effects in the optimal capacitor placement 
problem. In this regard, a novel self-adaptive 
modification approach based on Honey Bee Mating 
Optimization (HBMO) algorithm is proposed to 
enhance the total ability of the algorithm effectively. 

The PID controller quality will affect 
significantly the system performance, thus obtaining 
the PID system parameters is very important. [10] and 
[14] studied an improved GA (IGA) for the PIO 
controller based on traditional GA (TGA).The global 
searching ability and the convergence speed of the 
IGA are remarkably improved by using real-coded 
chromosomes scheme [15], and protecting strategies 
of the best individual [14], accepting immigrations, as 
well as employing adaptive crossover and mutation 
operators. On the other hand, arithmetical 
optimization techniques like gradient descent 
technique can be applied to get the PID controllers 
limits. They need some quickly calculations, but with 
a variable answer surface, these techniques are highly 
responsive to starting points and often meet to local 
optimum solutions or deviate in total. In [16], a best 
PID controller for a universal second-order system has 
been improved using linear-quadratic regulator (LQR) 
method. This approach requires a good selection of 
weighting functions for acceptable performance. On 
the other hand, neural networks have been widely 
used in the identification, estimation, and control of 
nonlinear systems [17]. In addition, nonlinear H∞ 
control using radial basis function (RBF) neural 
networks has been proposed in [18, 19]. Computation 

techniques such as GA and PSO [20, 21] have been 
applied to obtain the best controller parameters. Gaing 
[22] suggested a new design method for determining 
the PID controller parameters of the AVR system 
using the particle swarm optimization (PSO) method. 
PSO is a population-based optimization technique, 
which is enthused by social performance patterns of 
organisms such as bird flocking and fish schooling. 
Whereas, both GA and PSO subject from 
computational burden and memory condition, they are 
not appropriate for on-line applications. To overcome 
the above complexities, we report the design of a 
novel method by integrating the Sugeno fuzzy system 
rule base and the AVR system fuzzy PID controller 
(GRBFF-PID) for enhancing the system response. 
2. Problem statement   
 Modeling of AVR system 

In a synchronous generator, the terminal voltage 
is kept constant at different levels by using an AVR. 
The AVR system consists of four major components 
namely exciter, amplifier, generator, and sensor as 
shown in Figure 1. An increase in the generator 
reactive power load is accompanied by a drop in the 
terminal voltage.  A PID controller is used to 
minimize the error and to achieve improved dynamic 
response. The PID controller consisting of 
proportional, integral and derivative manage devices 
are efficiently used together to place the manipulated 
variable at the set point. 

 

 
Figure 1. Block diagram of AVR system along with 
PID controller 
 

 
Table 1. The transfer function of AVR components 

component Transfer function Parameter limits 
Amplifier sKTF aaamplifier  1/

 
ss

K

a

a

1<<02.0

40<<10

  
exciter sKTF eeexciter  1/  

ss

K

e

e

1<<4.0

10<<1

  
generator sKTF gggenerator  1/

 
gK depend on the load  (0.7-1.0) 

ss g 2<<1   
sensor sKTF sssensor  1/  

ss s .060<<001.0   
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The transfer function of the PID controller is 
given by, 

sKKsG dp 
s

K
)( i

                                            (1)   
Equations (2) represent the transfer function of 

AVR systems with PID control. The AVR excellence 
affects the voltage level through steady-state process 
and diminishes the voltage oscillations during fleeting 
periods moving the overall stability of the system. 
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Optimization of controller parameters 

The acceptable operation of the system is 
determined by the selection of the best PID controller 
parameters. Moreover, the selection problem of the 
PID controller parameters is considered as an 
optimization problem. The objective function yields, 

)())(1(),,K( d rsssship tteEOeKKMinF   

     (3) 

The 
),,K( d ip KKMinF

 uses a combination of 
transient response counting rise time overshoot, 
settling time and steady-state error. The satisfaction of 
the designer needs can be achieved by choosing 

suitable value of the weighting factor  . Therefore, 
the optimization problem boils down to the following 
constraints, 

maxmin
ppp KKK 

  
maxmin
iii KKK                                                      (4) 

maxmin
ddd KKK   

To search for the optimum values of the 
controller parameters, GA is applied to the above 
optimization problem. The proposed GA is given in 
next section. 
3. Proposed GA   

GA is a search algorithm that can optimize PID 
parameters based on the technicalities of natural 
selection and genetics. It combines solution evaluation 
with randomized, structured exchange of information 
between solutions to obtain optimality [23]. 
Preliminary with an initial population, the GA uses the 
information involved in the present population and 
discovers new individuals by generating offspring 
using the three genetic operators namely, 
reproduction, crossover and mutation, which can then 
replace the old generation members. After several 
generations, the algorithm converges to the best 
chromosome, which hopefully represents the optimum 
or near optimal solution. The details of the genetic 
operators used in the proposed GA are given in Table 
1. 
Reproduction 

According to their fitness functions, the 
individuals selected from the population; higher the 
fitness, more chances for an individual to be chosen 

for the next generation. Currently, there are three main 
types of selection methods: ranking method, fitness 
balanced selection, and contest or tournament 
selection. This work used tournament selection 
[1]where ‘n’ individuals are selected randomly from 
the population, and the best of the ‘n’ is inserted into 
the new population for additional genetic processing. 
This process is frequent until the mating pool is filled. 
Contests are often held between pairs of individuals, 
although larger contests can be used. 
Crossover operation 

The crossover operator is mostly responsible for 
global search property of the GA. Crossover combines 
substructures of two-parent chromosomes to produce 
new structures, with the selected probability typically 
in the range of 0.6–1.0. One interesting feature of 
crossover operators is the dependency of the created 
point depends on the location of both parents. If both 
parents are close to each other, the new point will also 
be close to the parents. On the other hand, if parents 
are far from each other, the search is more like a 
random search [1]. 
Mutation operation 

New genetic material insert into the population 
by the mutation operator. Mutation randomly changes 
a variable with a little likelihood. ‘Uniform mutation’ 
operator is used in this work. In consistent mutation, 
the variable is set to a consistent random number 
between the variable’s lower and upper limits. 
3.1 GA implementation for PID controller 
tuning  

while apply  GA to obtain the optimal PID 
controller parameters needs two major subjects to be 
addressed:  

 Symbol of the choice variables and  
  Arrangement of the fitness function. 

 Variable representation 
Candidate solutions for everyone in the genetic 

population are represented. For the PID controller-
tuning problem, the elements of the solution consist of 

integral gain, iK
, proportional gain pK

 and derivative 

gain dK
. Floating-point numbers are used to represent 

the variables in the proposed GA population. The 
computer space required to store the population is 
reduced by the direct representation of the solution 
variables. Moreover, there is no need to convert the 
solution variables to the binary string, which leads to 
increase the GA efficiency. The parameters values 
(0.6255, 0.2562, 0.1523) that obtained from direct 
tuning of GA to RBF identification program to 
optimal tuning of the PID controller parameters is 
necessary for thematic factory operation of automatic 
voltage regulator (AVR) system. 
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Fitness function 
The fitness is defined as the non-negative Figure 

of value to be maximized. It is used to evaluate the 
performance of everyone in the population. The 
fitness is associated in a straight line with the object 
function value. The problem using the parameter set 
by individual evaluation is accomplished by 
calculating the performance criteria given by equation 
(3). The consequence of the presentation criterion 
computation is used to compute the fitness value of 
the individual. The fitness function is the mutual of 

the presentation criterion 
),,K( d ip KKF

 given in 
equation (3). Hence, the minimization of performance 
criteria given by (3) is transformed to a fitness 
function to be maximized as, 

ITAEKKF

k
Fitness

ip *),,K( d



                            (5) 

Where k is constant. ITAE is an integral of time 
multiplied by absolute –error value. This is used to 
amplify (1/F) the value of which is usually small, so 
that, the chromosome fitness value will be in a wider 
range. 

 Figure 2.Block diagram of RBF neural network 
structure 
 
4. RBF Neural Network  

In a synchronous In a synchronous generator, an 
AVR is used to keep the terminal voltage constant at 
different levels. The AVR system comprised of four 
main components such as amplifier, exciter, generator 
and sensors. The outer loop is a self-tuning PID 
voltage controller based on the radial basis function 
neural network to provide the ability to adapt for 
uncertain load and system conditions. Moody et al. 
proposed a feed-forward two- layered RBF neural 
network with one single hidden layer  to mimic the 
systematic arrangement of restrictive readjustment in 
the human mind [18]. Whereas the RBF neural 
network produces the strongest response near the 
center of the Gaussian kernel function where each 
hidden node in the input data space can be regarded as 
a local detector [24-26] and the RBF neural network is 
deliberative as local estimation model for the 
controlled processes. Furthermore, the input samples 
for RBF neural network do not require a special 

distribution. In addition, RBF possess an on-line 
learning and quick converges. Consequently, the 
control field for implementing the real time 
manipulation concentrates on the neural network. The 
RBF  is exploited to achieve the best parameters of the 
controller to maintain the system error zero [27]. 

From general block diagram of radial-basis 
function neural network shown in Figure2, the inputs 

are n  denoted as 
T

nxxxX ],........,[ 21  in vector 

form. Here is a vector
T

nhhhH ],........,[ 21  with 

m elements in the hidden layer. The mh is named the 

radial-basis function, where the operator 
.

 represents 
a p-norm, also known as Euclidean 2- norm. From 

Gaussian, function form choosing   

mjeCXh j

jCX

jj ,.....,2,1,)(
2

2
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      (6) 
 

Where the vector 
T

jnjjJ cccC ],....,,[ 21
 is the 

node center of basis function and j
 its radius 

accordingly. This is known as Gaussian radial-basis 
function. The output layer is the manufactured 

output
_

y  . Therefore, the network output

_

y  can be 
written as follows: 
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                                         (7) 

Where real number 

parameters jw
,

mj ,.....,2,1
, are the weights. The 

error ))()((
_

kyky  between system output response 

)(ky
and RBF output 

)(
_

ky
 is used to regulate the 

network's parameters. Moreover, this neural network 
effectiveness is evaluated by a performance function 
defined as the squared estimation error: 

2
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                    (8) 
The gradient descent method is then applied with 

the updating algorithms to get output weight, node 
center and radius parameter stated as follows: 
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)]2()1([)1()(  kckcckckc jijijijiji 
   (13) 


is the momentum factor, and


 is the learning 

rate for the neural network. This updating algorithm 
includes the learning capability. The PID controller 

parameters dip KKK ,,
 are regulated by the RBF 

neural network. A short analysis of RBF-PID 
controller is given as follows; the system error 

)(ke
for the unit negative feedback control system 

can be written as 
)()()( kykrke                                       (14) 

where )(kr  is the reference command. 
Furthermore, the efficiency of this adaptive controller 
is estimated by a performance function defined as the 
squared error:  

)(
2

1
)( 2 kekE 

                             (15) 

The adaptive controller output 
)(ku

 can be 
represented in the updating algorithm as: 

)()1()( kukuku   
)(.)(.)(.)1( kekkekkekku ddiipp 

         (16) 

Where pK
 dK,

and iK
are proportional gain, 

derivative gain, and integral gain respectively. The 

)(kep  
)(, kei and 

)(ked  are defined as proportional 
error function, integral error function, and derivative 

error function respectively as follows:
)()( keke p 
 

(17) 
)1()1(2)()(  kekekeke d            (18) 

)2()1(2)()(  kekekeke i                (19) 
The gradient descent method is applied with the 

chain rule to infer the regulating rules for the pK
 

dK,
and iK  to minimize the performance index 

function 
)(kE

 as follows: 
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Where, u

y





is Jacobean matrix denoting the 

sensitivity relating system output
)(ky

 to controller 

output )(ku  and,


 is the learning rate for the 
adaptive PID algorithm. The inputs, output response 
are three inputs in the RBF algorithm, output 

response
)(1 kyx 

 delayed output 

response
)1(2  kyx

, and controller 

output
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. The manufactured output )(
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RBF will approach the system output
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 after on-

line learning. Therefore )(
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Thus, the updating algorithm for the adaptive 

PID based on RBF can be derived as: 
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The PID parameters pK
 dK,

and iK
 are 

automatically readjusted by on-line learning algorithm 

of RBF and (24)-(26) to keep the system error )(, ke  
zero 
5. Simulation results   
5.1 Performance of GA–PID controller 

Next, the proposed GA was applied to optimize 
PID controller  parameters. The software for the 
proposed GA was written in MATLAB and executed 
on a laptop Intel core(TM) 2 Duo CPU 
5550@1.83GHz and 3GB. Integral gain Ki 
Proportional gain Kp and derivative gain Kd  are the 
optimization variables. The primary population is 
produced randomly among the variable’s lower and 
upper restrictions. To evaluate the fitness value of 
each controller parameters set the fitness function 
given by (5) is used to evaluate the fitness value of 
each set of controller parameters. Simulation was 

conducted with different values of  . The GA 
performance for various values of crossover and 



 Life Science Journal 2013;10(4)       http://www.lifesciencesite.com 

 

2719 

mutation likelihood in the ranges 0.6–1.0 and 0.001–
0.1 respectively, was evaluated. The top consequences 
are obtained with the following control parameters. 
Generations’ number: 75, Population size: 30, 
Crossover probability: 0.6 ,Mutation probability: 
0.001.The GA took 33.72s to reach the optimal 
solution. The GA convergence characteristics are 
shown in Figure3. During this stage, the main focus of 
GA is to find feasible solutions of the problem. It can 
be noted that the value increases slowly and stabilizes 
near the optimum value that most individuals in the 
population trying to reach. The controller parameters 
optimal values obtained by using the proposed GA for 

different values of 


are given in Table 2. 
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Figure 3.Shows the convergence characteristics of GA 
algorithm 

 
Table 2.Optimal value the control parameter obtained 

using the proposed GA 
Kpidi Bestfi Best_J 

 
dK

 pK
 iK

 
0.2768 0.6877 0.1629 0.428 2.3366 0.5 
0.2968   0.5563 0.1629 0.4293 2.3291 1 
0.2801 0.6329 0.1785 0.4280 2.3366 1.5 

 
5.2 Performance of RBF–PID controller AVR 
tuning 

The proposed methodology for PID controller 
tuning was tested on an AVR system. The AVR 
system consists of generator, exciter, amplifier and 
sensor. The parameters of AVR system are selected as 
following: Ka=10, Ke=Kg=Ks=1.0, τa=0.1, τe=0.4, 
τs=0.01 and τg=1.0 only Kg and τg are load 
dependent. MATLAB Simulink was used to simulate 
the AVR system. The MATLAB-Simulink model of 
AVR system with PID controller is shown in Figure4. 
The first time  PID controller was tuned using GRBF-
NN   ( RBF-NN  tuning by GA),  second time PID 
controller was tuned using (RBF-NN tuning by 
RAG).A step reference voltage of 0.01 p.u is applied, 
and the step response of change in terminal voltage of 
AVR system in the presence of PID controller is 
shown in Figure5. From the Figure, it is observed that 
the AVR system response with RBF PID ( RBF-NN  
tuning by GA or RGA) controller increases in a steady 
state until reaches to reference voltage of 0.01 p.u 

with little  oscillatory mode and large settling time. 
During this stage, the main concentrates is to find 
feasible solutions for the problem. Then the value 
increases slowly and stabilizes near the optimum 
value with small swing dependent on tuning data to 
reach that point (GA or RGA with RBF-NN). 
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 Figure 4. MATLAB-Simulink model of AVR system 
along with PID controller 
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Figure 5. Shows characteristics of RBF PID controller 
tuning by GA and, RGA [1] 
 

Our simulation results are summarized in Table 
3, and the terminal voltage responses are also shown 
in Figure6. We find that the proposed RBF-NN tuning 
by RGA approach minimizes the rise time, reduces 
settling time and overshoots when compared with the 
results obtained using methods of LQR, RAG and 
binary-coded GA [1]. Conversely, GRBF-NN (RBF-
NN tuning by GA) results better minimum settling 
time, less rise time and overshoot in comparison to 
that obtained using methods of LQR and binary-coded 
GA [1]. Furthermore, the convergence time achieved 
by the proposed algorithm is shorter compare to 
RGA.Figure7 illustrated, the test system includes two 
completely regular areas connected jointly by two 230 
kV lines each of 220 km length. It is specially 
intended in to study low frequency electromechanical 
oscillations in big unified power systems [28, 29]. In 
spite of its little size, it mimics very well the typical 
systems performance in real process. Every area is 
equipped with two same performance generators rated 
20 kV/900 MVA. The synchronous machines have 
identical parameters [28, 29] such as H = 6.5 s in area 
1 and H = 6.175 s in area 2 [19]. 
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Thermal plants have the same speed regulators 
and AVR that contain RBF PID controller tuned using 
the RGA [1]and GA. To analyses performance of the 
AVR system under severe disturbances, a three phase 
fault is applied at the generator terminal and the 
response of the system was observed. Figure 8 show 
the system response for the above contingency with 
RBF PID controller tuned using the RGA [1]and GA. 
It can be observed that the controller ( GRBF-NN) is 
able to suppress the oscillations in the terminal voltage 
and provide good damping characteristics .  The red 
line represents area 1 response, while the black line 
represents area 2 responses. Meanwhile, we wanted 
from the above results that reached why the fuzzy PID 
controller is designed using the optimal PID gains 
obtained by a combined GA and RBF-NN for various 
operating conditions. This is further employed to 
develop the rule based of the Sugeno fuzzy system. 

This algorithm searches for a high-quality solution 
effectively and improves the transient response of the 
AVR system as shown in the section below. 
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Table 3. Comparison of PID gains and transient response parameters for the different methods. 

Method PID parameters )(sTs  )(sTr  shO  )10( 5
ssE  

pK  iK  dK  
LQR[1] 1.01 0.5 0.1 2.3354  0.5004  0.3605  15.007 

Binary-coded GA[1] 0.5692 0.2484 0.1258 1.7019 0.8093 0.0586 8.2941 
RGA[1] 0.682 0.266 0.179 1.2682  1.0668  0.0004  4.3386 

RBF tuning by  GA(GRBF-NN) 0.657 0.2958 0.1952 1.3766   1.0024   0.00168 5.3275 
RBF tuning  binary-coded GA[1] 0.6003 0.2899 0.1626 1.4050 0.9405 0.00195 6.2490 

RBF tuning by  RGA[1] 0.7136 0.3004 0.2317 1.3849 0.9522 0.00167 5.8305 
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Figure 7. MATLAB-Simulink models test system 
includes two completely regular areas connected 
jointly by two 230 kV lines each of 220 km length. 
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Figure 8.(a), (b) 3 Phase fault response with RBF 
tuning by GA and RGA [1]  parameters 
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(a) 

 
(b) 

Figure 9.(a), (b) Are Rule and Surface viewer of 
Sugeno fuzzy PID controller (GRBFF-PID) 

 
5.3 Development of Sugeno fuzzy model for on 
line tuning to design PID controller 

The optimum PID parameters for real-time 
operation are obtained by developing Sugeno fuzzy 
logic model, where, Ke and τe  are the inputs and Kp, 
Kd and Ki are the outputs. Eight fuzzy sets for instance 
‘very low (VL)’,’low(L) ,‘medium low (ML)’, 
‘medium(M)’, ‘medium high (MH)’ ,‘high low (HL)’, 
‘high medium (HM)’  and ‘high (H)’ are defined for 
the variable Ke . 

Likewise, the fuzzy sets defined for the variable 
τe are ‘very low (VL)’, ‘low (L)’, ‘medium low (ML)’, 
‘medium high (MH)’, ‘high (H)’ and ‘very high 
(VH)’. They are linked with overlapping triangular 
membership functions. To formulate the table for 
fuzzy rule, the values of Ke are varied from 2.0 to 9.0 
in steps of 1.0 and   τe  are varied from 0.5 to 1 in 
steps of 0.1. For each combination of Ke and τe , the 
proposed RBF-NN tuning via GA is applied to obtain 
the optimal values of Kp, Kd and Ki. The fuzzy rule 
table formulated for Kp, Kd and Ki using the above 

approach is summarized in Table 4 as (a), (b) and (c), 
respectively. 

 
TABLE 4. THE FUZZY RULE TABLE FORMULATED FOR 

KP, KI AND KD USING THE ABOVE APPROACH 

e
 

Very 
low 

Low 
 

Medium 
Low 

Medium 
high 

Hi
gh 

Very 
high 

eK
 

0.5 0.6 0.7 0.8 0.9 1 

(a)For proportional gain pK
 

Very  
Low(2) 

0.2944 
 

0.6124 
 

0.5980 
 

0.4622 
 

0.4728 
 

0.6079 
 

Low (3) 0.4153 
 

0.3768 
 

0.4796 
 

0.5115 
 

0.4887 
 

0.3817 
 

Medium 
low (4) 

0.2859 
 

0.3304 
 

0.3377 
 

0.3617 
 

0.3662 
 

0.3835 
 

Medium 
(5) 

0.1039 
 

0.2158 
 

0.1085 
 

0.3141 
 

0.3099 
 

0.3477 
 

Medium 
High 
(6) 

0.1878 
 

0.2422 0.2486 0.2615 0.2715 0.2037 

High 
low(7) 

0.1164 
 

0.1123 
 

0.2108 0.1747 0.0988 0.2570 

High 
medium  

(8) 

0.1780 
 

0.1071 
 

0.1967 
 

0.2068 
 

0.2127 
 

0.1705 
 

  High 
(9) 

0.1391 0.1355 
 

0.1257 
 

0.0880 
 

0.1823 
 

0.1625 

(b)For integral gain iK
 

Very  
Low(2) 

0.4201 0.4280 0.4276 0.4718 0.5110 0.5277 

Low (3) 0.2960  0.3060 0.3218 0.3372 0.3594 0.3739 
Medium 
low (4) 

0.2424 0.2427 0.2638 0.2671 0.2798 0.2946 

Medium 
(5) 

0.2193     
0.2112 

0.2370 0.2362 0.2397 0.2415 

Medium 
High 
(6) 

0.1902     
0.1947 

0.2005 0.2114 0.2190 0.2271 

High 
low(7) 

0.1749 0.1860 0.1840 0.1937 0.2035 0.1972 

High 
medium  

(8) 

0.1591 0.1650 0.1714 0.1713 0.1787 0.1916 

  High 
(9) 

0.1497 0.1559 0.1599 0.1731 0.1723 0.1795 

(c)For derivative  gain dK
 

Very  
Low(2) 

0.0241 
 

0.0378 0.0540 
 

0.2007 
 

0.1916 
 

0.2102 
 

Low (3) 0.1733 0.1436 0.1489 0.0285 0.0284 0.2074 
Medium 
low (4) 

0.0697 
 

0.0199 
 

0.0207 
 

0.1572 
 

0.0391 
 

0.0897 
 

Medium 
(5) 

0.0144 
 

0.1069 
 

0.0391 
 

0.0400 
 

0.0221 
 

0.0904 
 

Medium 
High 
(6) 

0.0877 
 

0.0160 
 

0.0388 
 

0.0170 
 

0.0175 
 

0.1035 
 

High 
low(7) 

0.0710 
 

0.0179 
 

0.0658 
 

 0.0776 
 

0.0191 
 

0.0168 
 

High 
medium  

(8) 

0.0131 
 

0.0669 
 

0.0661 
 

0.0321 
 

0.0146 
 

0.0632 
 

  High 
(9) 

0.0353 
 

0.0661 
 

0.0493 
 

0.0192 0.0136 
 

0.0398 
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During real-time operation, corresponding to the 
present operating conditions, the values of Ke and τe 

are found out. For this  values of Ke and τe   , the 
optimal value of Kp, Kd and Ki can be computed using 
the fuzzy rule table and the FIS editor Sugeno 
inference system explained in section 3.1. Depending 
on the initialization (FIS editor), the inputs of the 
fuzzy logic controller are Ke, τe   and the outputs are 
Kp, Kd and Ki. 

The system with three fuzzy logic controllers Kp, 
Kd and Ki with rule viewer are set in which each 
controller has two inputs Ke, τe and each input has 
fuzzy set associated with it. The output has 144 fuzzy 
set rules for Kp, Kd and Ki, and 48 rules for each one 
parameter as depicted in Figure 9 (a),(b) shown rule 
viewer and surface viewer of  novel GRBFF-PID 
controller. 

MATLAB programming is used for the proposed 
RBF-NN tuning via GA executed on a Intel core (TM) 
2 Duo CPU 5550@1.83GHz and 3GB RAM laptop. 
The optimal solution of combination is achieved in the 
duration of 23.79 sec. 

 
5.4 Implementation of Electrical Power 
Generation 

The MATLAB-Simulink model of Electrical 
Power Generation System along with along with 
Sugeno fuzzy PID controller (GRBFF-PID)  is shown 
in Figure 10 and the GRBFF-PID controller used with 
the excitation system is shown in Figure 11. A step 
reference voltage of 1.38 kV is applied. The GRBFF-
PID controller has the ability to hold back the 
oscillations in the terminal voltage and provide high-
quality damping characteristics. The test system 
includes a generator excitation system, as shown in 
the appendix, connected by 500 kV lines of 650 km 
length and a 300 MVA-500/230 kV transformer feeds 
a 230 kV-250 MW load. THE transmission line is split 
into two lines. The first line is 350 km length connects 
between buses B1, B4, and the second one is 300 km 
length connects between buses B4 and B5. The two 
circuit breakers of line 1 are CB1 and CB2 and 
discrete 3-Phase PLL block measures the frequency, 
whereas the PLL drives two measurement blocks 
considering the variable frequency. The first block 
computes the essential value of the positive-sequence 
load voltage while the second block computes the 
active load and reactive powers. 

 

 
 
Figure 10. The MATLAB-Simulink model of  
Electrical Power Generation System along with 
Sugeno fuzzy PID controller (GRBFF-PID) 
 
 

The terminal voltage response of excitation 
system with GRBFF-PID controller is found to be 
highly sensitive to a tiny change (time response 0.05 
and 2 sec) as shown in Figure 12 (a) and (b).This 
demonstrates the suitability of the proposed approach 
to obtain the optimal PID gains during system real-
time operation. Our proposed method renders better 
performance in the rise time, peak overshoot and the 
steady state error. The responses observed from the 
present controller have a slight overshoot, which can 
be improved considerably by increasing the rules 
number. We establish that the GRBFF-PID controller 
has better performance in comparison to other 
controllers. 
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PID) 
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Figure 12 (a),(b) Terminal voltage response of 
excitation system with GRBFF-PID controller 

 
5.5 Comparison with other similar method 

The proposed fuzzy PID controller is found to 
possess minimum time of settlement, less rise time 
and overshoot in comparison to that obtained by using 
the method of LQR,  RAG and binary-coded GA [1] 
as seen from Figure 13. 
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Figure 13.Seen comparison of overall  method of 
LQR,  RAG and binary-coded GA [1] with GRBFF-
PID controller response  

 
6. Conclusion 

We present a combined approach of GA, Sugeno 
fuzzy logic and RBF-NN to determine the optimal 
PID controller parameters in AVR system. The RBF-
NN is used to enhance the PID parameters obtained 
from GA to design Sugeno fuzzy PID controller tuned 

by excitation parameter (Ke, e ). The GRBFF-PID 
controller possess preferable features such as easy 
implementation, stable convergence characteristic, 
good computational efficiency and  high-quality 
solution that keeps the system error closer to zero. A 

novel combination can directly deals with the real 
variables have been applied to get the optimal 
parameter of PID fuzzy controller in AVR. 
Furthermore, the results for the numerical simulation 
offer a high sensitive response (~0.05 sec) of the AVR 
system compare to the RGA, LQR and GA, and the 
RBF. Interestingly, the novel GRBFF-PID controller 
tracks the set point with small oscillation due to the 
prime mover speed. The excellent features of our 
method suggest that the new technique automatically 
averts the over fitting problem, which is adverse for 
many optimizations and learning algorithms. 
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Appendix 

Generation parameters 

)(VAPn  1000E6 ][ Hzf n  50 Inertia 0.02 

)(VrmsVn  13800 Pairs of poles 2 Internal impedance R(ohm) 0.0204 

Damping factor 0 
Initial condition 

[dw,th(deg),ia,ib,ic(A),pha,phb,phc(deg)] 
[-99,0 0,0,0 

0,0,0] 
Sample time -1 

L(H) 
0.08104e-

3   
Regulator gain and time 

constant 
[ 300, 

0.001 ] 
Excitation System 

[vt0 (pu) vf0(pu) [1 0] Low_pass filter time constant 20e-3 [Kf() Tf(s)] 
[ 0.001, 0.1 

] 
Exciter [Ke() 

Te(s)] 
[1,0] Transient gain [Tb(s) Tc(s)] [0,0] [Efmin,Efmax(pu),Kp()] [ -2, 2, 0 ] 

Rotor  parameters 

)(VAPn  1100 ][Rs  0.435 ][ Hzf n  50 

)(VrmsVn  200 ][rR  0.816 ].[ 2mKgJ  0.089 

  0.78 ][ HrLl 
 2e-3 ]..[ smNF  0.005 

cos  0.8 ][ HLls  2e-3 p  2 

)..( mprN  3600 ][ HLm  69.31e-3   
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