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1. Introduction
Many practical problems can be reduced to
system of linear equations
Ax=b, (1.1)
where A, b are known matrices and X is a vector of

unknowns. This type of equations play a prominent
role in finance, industry, economics, engineering,
physics, chemistry, computer science and other field of
pure and applied sciences. System of nonlinear
equations may be solved using system of linear
equations.

The systems of linear equations can be
solved using both direct and iterative methods. Young
[8] and Frankel [1] simultaneously suggested the SOR
method for solving system of linear equations. The
effective preconditioners can increase the rate of
convergence of stationary iterative methods by
reducing the condition number of the problem. It is
also possible that in some cases the original method
diverges but preconditioned method rapidly
converges to the solution. Hadjimos [2] proposed
accelerated over-relaxation (AOR) method to improve
the convergence of the relaxation methods.

In this paper, we suggest preconditioned SOR
method and preconditioned AOR method for solving
system of linear equations. We consider the
convergence of preconditioners iterative methods,
when 4 is an L-matrix. Several examples are given to
illustrate the implementation and efficiency of the
method. Comparison with other methods shows that
these new methods perform better.

The basic iterative method is

M =Nx* +b, k=0,1,2,L ,

where M is nonsingular. Thus (2) can be
written as

(1.2)

Xt =1 +¢, k=0,1,2,L
where
T=M"'N, c=M""b.
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Assuming A has unit diagonal entries and
letA=1—L—U, where [ is the identity matrix, L
and U are strictly lower and strictly upper triangular

parts of A , respectively. Transform the original
system (1) into the preconditioned form

PAx = Pb.
Then, we can define the basic iterative scheme:

M, x"" =N x" +Pb, k=0,1,2,L .
P=I+R+S

We consider the preconditioner
introduced by Niki et al. [5].
1 is the identity matrix of order .

PA=(I+R+S)(I-L-U)
=/-L-U+R-RU+S-SU-SL
as RL =0 . Consider
RU+SL=D +L +U",
where D’ is a diagonal matrix, L is strictly lower

triangular matrix and U " s strictly upper triangular
matrices.

0 00L 0
—a, 0 0L 0
R=|-a, 0 0 L 0
M MMM
l-a, 0 0 L 0
0 -2, 0 L 0 0
0 0 -a,, L 0 0
slM M ML M M
00 0 L 0 —-a,,,
0 0 o0 L 0 0

We define
Po=1-D, V=L+L -R U=U+U" -S+SU.
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We need the following results in the convergence of
preconditioned iterative methods.

Theorem 1.1 [7]. Let 4 > 0 be an irreducible matrix.
Then

(i) A has a positive eigenvalue equal to p(A4).

(i) A has an eigenvector x>0 corresponding
to p(A).

(iii) (A)is the simple eigenvalue of A.

Theorem 1.2 [7]. Let 4> 0 be a matrix. Then the
following hold.

@) If Ax>fx for a vector x>0 and
x#0, then p(A4) = p.
(i) If Ax < yx for a vector x >0, then
p(A) < y. Moreover, if A is irreducible and
if fx < Ax < yx, equality excluded, for a
vector x >0 and x # 0, then
Px < Ax < yx, and x> 0.

2. Preconditioned SOR Method

The iteration matrix of preconditioned SOR method is
f{? = (ﬁ“— a)z/ﬁ_l [(1 - a))ﬁ’+ a)l%] (2.1)

Let A = p(T,), where
T,=(1-oL) [(I-0)[+aU] @2

In the next result, we prove the convergence of
preconditioned SOR method when A is an L-matrix.

Lemma 2.1 [10]. Let A=(al.j)eR"X" be an L-

matrix and 7] and %’be defined by (2.2) and (2.3).
i=1,2,K ,n—-1.

If 0<w<]1, then T, and 7_10] are nonnegative and
irreducible.

Suppose 0 < a, ;,a,,,, <,

i+1,1

Theorem 2.1. Let 4= (al.j) e R™ be an L -matrix

and T, and Pobe defined by (2.2) and (2.3).
If0<w<1, and

0<a ,a.,,<L i=1,2,K,n—1, then
W pE)<p(T,) <1
i p(F0)=p(T,)=1
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iy (P> p(T,)>1

Proof: Consider
%’xflx (mwm [ mwlu/:lx Ax
( [1 wﬁhrwl% ( w%ﬂx
(%’ ol [ — P+ o L(ytlﬁ“rﬂwz/]x
(B oy’ [(1=2) o1 - D)+w(U+U‘7S+SU):lX
+ﬂ.w2/"
L[(1=2) -0l + 0D" + 0U + U - 0S
TS (1-2) -0l +w @ R
(B-ot | +@SU + 2ol
:(%7(02/‘),1>(1—A)Mw1+w(0'+u'+L’)+wU}C
_ﬂuL' —wS +@SU + Awlo
:(%70}%)4’(17%)mw1+wu+w(RU+SL)}
|-oL — oS +oSU + Ao
:(%70}2/3,1>(1—ﬂ.)mw1+wU+w(RU+SU)fw
| ~@S + wSL+ Aol
From (2.2), we have
ﬂ(l—a)L)x:[(l—a))l+a)U}x
a)Ux:[/l(l—a)L)—(l—a))l]x
o(RU +SU)x=[ AR+ S)(I-wL)—(R+S)(1-w)I ]x

wm

’
x (2.3)

Put in (2.3), we get

(1- AM(UIJrl([ oL)—(1-w)I1+A(R+S)—-Ao(R+S)L
A= ( ”'% ~(R+S)I +&(R+S)- oL — oS+ @SL+Aao(L+L —R)
A[(1=2) Be(1-2) I =R+ $)1-2) + 0R(1-2) ~ oL (1-2) +
:(ﬂLw% x
@SL(1- /1)

=(1-2)(b»

(o% [

Since (ﬁ’— a)Z/é is a non-negative lower triangular

1 (UR S-wL +(L)SL]L (2.4)

matrix, also D", R, S, SL and L are all non-
negative.
If A <1, then from (2.4), we have

Pox < Ax
for irreducible j}:? and x > 0, we have

p(Fe) <2
which is part (i). Similarly for A =1land A > 1, we
get (ii) and (iii) respectively.

3 Preconditioned AOR Method
The iteration matrix of preconditioned AOR method is

o, =(Bo-rty [(1-0) B (0~ Pl (1)
Let
A=p(T.,),
where
T,=(-rL) ' [(1-0)[+(o-r)L+aU]  (32)
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In the next result, we prove the convergence criteria of
preconditioned AOR method (3.1).

Theorem 3.1. Let A= (aij) € R™" be an irreducible

L-matrix. Suppose that 0<aua, <1,

i=1,2,K,n, T, and 70 defined by (3.2) and

r,o

3.1). IfOSrSa)Sl (w#0, r#1), then

M pde)<p(T,)<1
i pe)=p(T,,)=1
iy p(#,)> p(T,,)>1

Proof. Consider

%onf/”tx ( rz/g [1 o) M]‘F (0-r) z/‘lka)ly]x Ax
(1-w) 1%+a)l%+(a) r)z
e

— o+ o+ ol 119
-(B-rty { Abps 2t ?

%}wx —Ax

= (Bl
(Bt {—Amﬂrﬂﬂ’

(1_1)1%_60[1—L—U+R ]

B oo b ﬁz@ﬂ

~RU +5-SU - SL
—r(L+L —R)+ Akl

= (BB’

(1-2) D0l + U + 0L
= (D) | ~0(R+S)+ @SL+(RU +SU) |x (3.3)
—rL—rL +rR+ Arfo
From (3.2), we have

A(1-rL)x=[(1-@)I+(o-r)L+oU]x
®Ux = [ﬂl rL)—(1-w)I—(o- rL]x
o(RU +SU)x=[A(R+S)(1-rL)-(1-@)(R+S)I-
Put in (3.3), we have
(1=-2) B- oI + 0U + oL — w(R+S)
70,5~ Ax= (D | +@SL+ A(R+S)(1-rL) - (1-@)(R+5)1 |x
~(@-r)(R+S)L-rL—rL +rR+ Arto

(a)—r)(RJrS)L]x

(1-2) B~ ol + @U + oL+ A(R+S)— ArLS

. x (34)
~(R+S)I=rL—rL +7SL+rR+ Ar(L+L —R)

= (B-rty’

Now putting the value of @Ux from (3.2) in (3.4), we
have
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(1-2) PP @I + oL+ A(1-1L) - (1- @)!
7(507r)L+l(R+S)7(R+S)Ier7rL* X
—ArSL+ 1R+ ArL + ArL’ — ArR

%_’mx -Ax= (ﬂ),

ey
ey |

(1-2) B A(R+S)+ A1~ 1 - (R+S)1:lx
—rL +rR+ ArL — ArSL+rSL—ArR
(1-2)D-(1-2)1-(1-2)(R+S)1

1= AV + (1= A)rSL + (1 A)rR }C

= (1-2)(Bo-rBy [ Bo-1-(R+S)1-
—l)(ﬁ’—rf/‘)_l[

rL +rSL+ rR:. X

~D'=(1-r)R=S—rL +rSL]x  (3.5)

Since ( Po—w Z/a_l is a non-negative lower triangular

matrix, also D", R, S, L and SL are
all non-negative.
If A <1, then from (3.4), we have

%}mx < Ax,

for irreducible %’and x >0, we have
p(22,)<2

which is part (i). Similarly for A =1and 4 > 1, we
get (ii) and (iii) respectively.

In the next section, we compare our methods
numerically with different methods.

4. Numerical results
In this section, we consider several examples to
show the implementation of the proposed method. All
the experiments are performed with Intel(R) Core (TM)
2 x 2.1GHz, 1GB RAM, and the codes are written in
Matlab 7.

Example 4.1[3]. Let
(1 ¢ r s g¢q i
s 1 g r . gq
s 1 S
a=|1 N ,
r r
S q s q
s r q s 1

where ¢ =—p/n, r=—p/(n+1) and
s=—p/(n+2). For n=7and p =1 the

comparison among SOR, modified SOR method [3]
and preconditioned SOR method is given in Table 4.1.
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Table 4.1.
a) A

p(L) | p(T,) p(72)
1 0.5913 0.5403 0.4521
0.8 0.7173 0.6811 0.6332
04 0.8859 0.8703 0.8559
0.1 0.9749 0.9713 0.9669

In Table 4.1 p(T), p(fm) andp(%))denote spectral

radius of SOR, modified SOR method [3] and
preconditioned SOR method (2.1) respectively. The
comparison shows that preconditioned SOR method
perform better.

Example 4.2[7]. Consider a 4 X4 matrix A of the
form

1 0 0 -03
-03 1 -03 -03
A=
0 -03 1 -03
-03 0 -03 1
Spectral  radii of the iteration  matrices

p(T,), p(7,) and p(T,) of SOR method

preconditioned SOR method by [7] and preconditioned
SOR method given by (2.1), with various values of @
are given in the below table 4.2.

Table 4.2.
a) A

p(L) | p(T,) | ~(2)
0.95 0.3456 0.2391 0.1674
0.8 0.5081 0.4275 0.3669
0.6 0.6695 0.6141 0.5699
04 0.7984 0.7638 0.7349

Table 4.2 shows that our method is faster than both
SOR method and preconditioned SOR method [7].

In the next Table, we compare our method with AOR
method and precondition AOR method by Yun et al. [9]
considering example 4.2.

Spectral  radii  of the iteration  matrices
p(T,), p(fw) and p(Y_”w) of AOR method,
preconditioned AOR  method by [9] and

preconditioned AOR method given by (3.1), with
various values of @ are given in the below table 4.3.

5 Conclusion

In the paper, we proposed preconditioned iterative
methods for solving system of linear equations. The
convergence of preconditioned SOR method and
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preconditioned AOR method was considered under the
condition that A4 is L-matrix. We compared our
methods numerically with other preconditioned
methods. From comparison we found that
preconditioned iterative method defined by (2.1) and
(3.1) performed better.

Table 4.3

P = —
' o(1.0) | P(T.) | P(T.)
0911 0.3406 0.2321 0.1577
081 0.3852 0.2331 0.2083
0711 0.4202 0.3240 0.2480
0.7 0.8 | 0.5361 0.4592 0.3986
0.6 | 0.8 | 0.5593 0.4854 0.4232
0.5]0.8]0.5793 0.5079 0.4440
0.5] 0.6 | 0.6845 0.6309 0.5842
0.41 0.6 | 0.6976 0.6458 0.5978
03] 0.6 | 0.7093 0.6590 0.6159
0.3 ] 0.4 | 0.8062 0.7727 0.7419
0.2]04 ] 0.8133 0.7807 0.7514
0.1 0.4 0.8197 0.7879 0.7551
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