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1. Introduction 

 

   Our aim in this paper is to get the form of the 

solutions of some systems of the following rational 

difference equations 
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with a nonzero real numbers initial conditions and 

 ,,  integers numbers. 

   Difference equations appear naturally as discrete 

analogues and as numerical solutions of differential 

and delay differential equations having applications 

in biology, ecology, economy, physics, and so on. So, 

recently there has been an increasing interest in the 

study of qualitative analysis of rational difference 

equations and systems of difference equations. 

Although difference equations are very simple in 

form, it is extremely difficult to understand 

thoroughly the behaviors of their solutions. See [1]-

[15] and the references cited therein. 

   Periodic solutions of a difference equation have 

been investigated by many researchers, and various 

methods have been proposed for the existence and 

qualitative properties of the solution. 

   The periodicity of the positive solutions of the 

system of rational difference equations 
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was studied by Cinar in [5]. 

 

   Elabbasy et al. [6] has obtained the solution of 

particular cases of the following general system of 

difference equations  
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Elsayed [10] has obtained the solutions of the 

following system of the difference equations 
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In [11] Kurbanli et al. studied the behavior of 

positive solutions of the system of rational difference 

equations 
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Özban [21] has investigated the positive solutions of 

the system of rational difference equations  
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In [22] Yalçinkaya investigated the sufficient 

condition for the global asymptotic stability of the 

following system of difference equations  
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Also, Yalçinkaya [23] has obtained the sufficient 

conditions for the global asymptotic stability of the 

system of two nonlinear difference equations 
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Yang et al. [24] has investigated the positive 

solutions of the systems  
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Similar nonlinear systems of rational difference 

equations were investigated see [16]-[25]. 

 

Definition (Periodicity) 

     A sequence 


knnx =}{ is said to be periodic with 

period p  if  npn xx = for all .kn   

 

2.  On the Solution of System: 
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     In this section, we study the solutions of the 

system of two difference equations  
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            (1) 

with a nonzero real numbers initial conditions with 

1.,
2

1
1, 100101   yxyxyx  

 

Theorem 1 Suppose that },{ nn yx  are solutions of 

system (1). Also, assume that 

0101 ,, yandyxx  are arbitrary nonzero real 

numbers and let ByAybxax =,=,=,= 0101  . 

Then 
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     Proof: For 0=n  the result holds. Now suppose 

that 0>n  and that our assumption holds for 1n . 

That is; 
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Now, it follows from Eq.(1) that 
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Also, it follows from Eq.(1) that 
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Similarly one can prove the other relations. The proof 

is complete. 

 

Lemma 1. If Aba ,,  and B  arbitrary real numbers 

and let },{ nn yx  are solutions of system (1) then the 

following statements are true:- 

   (i) If 0,0,= Ba then we have 

.=,=0== 2441414 ByByandxx nnnn   

   (ii) If 0,0,= Ab then we have 

.=,=0== 1414244 AyAyandxx nnnn   

   (iii) If 0,0,= bA then we have 

.==0== 2441414 bxxandyy nnnn   

   (iv) If 0,0,= aB then we have 

.==0== 1414244 axxandyy nnnn   

 

Proof: The proof follows from the form of the 

solutions of system (1). 

 

3.  On the Solution of System: 
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In this section, we study the solutions of the system 

of two difference equations  
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with a nonzero real numbers initial conditions with 

1.1, 1001   yxyx  

 

Theorem 2 Suppose that },{ nn yx  are solutions of 

system (2). Also, assume that  

0101 ,, yandyxx  are arbitrary nonzero real 

numbers and let ByAybxax =,=,=,= 0101  . 

Then 
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Proof: For 0=n  the result holds. Now suppose that 

0>n  and that our assumption holds for 1n . That 

is; 
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Now, it follows from Eq.(2) that 
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Also, it follows from Eq.(2) that 
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The proof is complete. 

 

Lemma 2. Let },{ nn yx  be a positive solution of 

system (2), then }{ ny  is bounded and converges to 

zero. 

 

Proof: It follows from Eq.(2) that 
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Then the subsequences 


 0=12 }{ nny , 


0=2 }{ nny  are 

decreasing and so are bounded from above by 

},{max= 01 yyM  . 

 

Theorem 3 The system (2) has a periodic solutions 

of period four iff 2=2,= bAaB  and will be take 

the form  
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Lemma 3. Assume that 2.2,  bAaB Then 

the solutions of system (2) are unbounded solutions. 

 

Lemma 4. If CBAdcba ,,,,,,  and D  arbitrary 

real numbers and let },{ nn yx  are solutions of 

system (2) then the following statements are true:- 

 

   (i) If 0,0,= Ba then we have 

.=0= 212 Byandx nn  
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   (ii) If 0,0,= Ab then we have 

.=0= 122 Ayandx nn   

 

   (iii) If 0,0,= bA then we have 

.=0= 212 bxandy nn  
 

   (iv) If 0,0,= aB then we have 

.=0= 122 axandy nn   

 

The following systems can be proved similarly: 

 

4.  On the Solution of System: 

.
1

=,
1

=
1

1
1

1

1
1

nn

n
n

nn

n
n

xy

y
y

yx

x
x












 

 

     In this section, we study the solutions of the 

system of two difference equations  
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with a nonzero real numbers initial conditions with 
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Theorem 4 Suppose that },{ nn yx  are solutions of 

system (3). Also, assume that  

0101 ,, yandyxx  are arbitrary nonzero real 

numbers and let ByAybxax =,=,=,= 0101  . 

Then 
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Lemma 5. If CBAdcba ,,,,,,  and D  arbitrary 

real numbers and let },{ nn yx  are solutions of 

system (3) then the following statements are true:- 

   (i) If 0,0,= Ba then we have 

.=,=0== 2441414 ByByandxx nnnn   

 

   (ii) If 0,0,= Ab then we have 

.=,=0== 1414244 AyAyandxx nnnn   

 

   (iii) If 0,0,= bA then we have 

.==0== 2441414 bxxandyy nnnn   

 

   (iv) If 0,0,= aB then we have 

.==0== 1414244 axxandyy nnnn   

 

5.  On the Solution of System: 
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     In this section, we study the solutions of the 

system of two difference equations  
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with a nonzero real numbers initial conditions with 
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Theorem 5 Suppose that },{ nn yx  are solutions of 

system (4). Also, assume that  

0101 ,, yandyxx  are arbitrary nonzero real 

numbers and let ByAybxax =,=,=,= 0101  . 

Then 
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Lemma 6. Let },{ nn yx  be a positive solution of 

system (4), then }{ ny  is bounded and converges to 

zero. 

Lemma 7. If CBAdcba ,,,,,,  and D  arbitrary 

real numbers and let },{ nn yx  are solutions of 

system (4) then the following statements are true:- 

   (i) If 0,0,= Ba then we have 

.==0== 2441414 Byyandxx nnnn   

 

   (ii) If 0,0,= Ab then we have 

.==0== 1414244 Ayyandxx nnnn   

 

   (iii) If 0,0,= bA then we have 

.=,=0== 2441414 bxbxandyy nnnn   

 

   (iv) If 0,0,= aB then we have 

.=,=0== 1414244 axaxandyy nnnn   

 

6.  On the Solution of System: 
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     In this section, we study the solutions of the 

system of two difference equations  
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with a nonzero real numbers initial conditions. 

 

Theorem 6 Suppose that },{ nn yx  are solutions of 

system (5). Also, assume that 

0101 ,, yandyxx  are arbitrary nonzero real 

numbers and let ByAybxax =,=,=,= 0101  . 
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7.  Numerical Examples 

     In order to illustrate the results of the previous 

sections and to support our theoretical discussions, 

we consider several interesting numerical examples 

in this section. These examples represent different 

types of qualitative behavior of solutions to nonlinear 

difference equations. 

 

Example 1. Consider the difference system equation 

(1) with the initial conditions 

0.1.=0.24=0.5,=0.8,= 0101 yandyxx  (

See Fig. 1). 

 

 
                        Figure (1) 

  

Example 2. For the the initial conditions 

0.7=0.4=0.5,=0.2,= 0101 yandyxx   

when we take the system (2). (See Fig. 2). 

 

 
                                    Figure (2)  

  

Example 3. If we consider the difference equation 

system (3) with the initial conditions 

0.7.=0.4=0.5,=0.2,= 0101  yandyxx (

See Fig. 3). 
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                                    Figure (3) 

  

Example 4. See Figure 4, since we take the 

difference system equation (4) with the initial 

conditions 

0.3=0.4=0.5,=0.9,= 0101 yandyxx  . 

 

 
                                    Figure (4) 

  

Example 5. See Figure 5, since we take the 

difference system equation (5) with the initial 

conditions

0.1=0.5=0.3,=0.9,= 0101 yandyxx   . 

See Fig. 5. 

 

 
                                      Figure (5) 
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