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1. Introduction 

The equation 

,ds))s(x,s(h)s,t(k))t(x,t(f)t(g)t(x
1

0
  

with ]1,0[t  appears very often in a lot of 

applications to real world problems. For example, 
some problems considered in vehicular traffic theory, 
biology and queuing theory lead to the quadratic 
integral equations of this type (cf. [24]). Moreover, 
such integral equations are also applied in the theory 
of radiative transfer and the theory of neutron 
transport as well in the kinetic theory of gases (cf. 
[15], [21], [22], [25], [27], among others). 
In this paper, we are going to prove a theorem on the 
existence of at least one integrable solution for the 
quadratic functional integral equation 

)1(ds)))s((x,s(f)s,t(k)))t((x,t(f

ds)))s((x,s(f)s,t(k)))t((x,t(f)t(g)t(x
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1
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



 

The integral equation in question has rather 
general form and contains as particular cases a lot of 
functional equations and nonlinear integral equations 
of Fredholm type. The main tool used in our 
consideration is the technique of measures of 
noncompactness and the fixed point theorem of 
Darbo [3]. 

Many authors have studied the existence of 
solutions for several classes of nonlinear quadratic 
integral equations (see [12]-[14], [17]-[20], [26], 
[28], and the references therein). 

Some problems considered in the vehicular 
traffic theory, biology and queuing theory lead to the 
following nonlinear functional-integral equation (see 
[24]), 


1

0

,ds))s(x,s,t(g))t(x,t(f)t(x  

Banaś et al. [8] considered quadratic integral 
equation, 

.ds)s(x)s()s,t(k)t)(Tx(1)t(x
1

0
   

where ]1,0[t   and T  is an operator which 

maps )]1,0[(C continuously into itself and satisfies 

the Darbo condition. They proved that under certain 
assumptions it is solvable in the space )]1,0[(C .  

In this paper, we are going to study the 
solvability of a class of quadratic functional integral 
equations of Fredholm type (1). We prove the 
existence of at least one integrable solution 

]1,0[Lx 1  of the quadratic integral Equation (1) 

by using the technique of noncompactness which is 
frequently used in several branches of nonlinear 
analysis (see [2], [9], [10], [24]), where the functions 

2,1i)),t(x,t(fi   are 1L -Carathѐodory functions. 

 
2. Notation and auxiliary facts 

Let ]1,0[I),I(LL 11  denoted the space of 

Lebesgue integrable functions on I and the norm in 
)I(L1  is defined by 


1

0
L .td|)t(x|||x||

1
 

Assume that the function RRI:f  satisfies 

Carathѐodory condition i.e., it is measurable in t  for 
any x  and continuous in x  for almost all t . Then to 

every function )t(x being measurable on the interval 

I  we may assign the function  

.It,))t(x,t(f)t)(Fx(   

The operator F  defined in such a way is called 

the superposition operator. This operator is one of the 
simplest and most important operators investigated in 
nonlinear functional analysis. For this operator we 
have the following theorem due to Krasnosel'skii [4]. 
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Theorem 1: The superposition operator F  maps 
continuously the space 1L  into itself if and only if 

It  allfor |x|k)t(c|)x,t(f|   

and ,Rx  where )t(c  is a function from 1L  

and k  is a nonnegative constant. 
 
Now let E  be a Banach space with zero element 

  and let X  be a nonempty bounded subset of .E  

Moreover denote by )r,(BBr   the closed ball in 

E  centered at   and with radius .r  For X  being a 

nonempty subset of E  we denote by XConv,X  the 

closure and the convex closure of X , ( XConv  is 

defined as the smallest convex closed set containing 
X ), respectively. Further we denoted by EM  the 

family of nonempty and bounded subsets of E  and 

by EN  its sub family consisting of all relatively 

compact and nonempty subset of E . 
 

Definition 1: (See [3]) A function ),0[M: E   

is said to be a measure of noncompactness in the 
space E  if it satisfies the following conditions, 

1. the family 
0)X(:MXker E  is nonempty and 

;Nker E  

2. );Y()X(YX   

3. );X()XConv()X(   

4. ),Y()1()X()Y)1(X( 

for ];1,0[  

5. If nX is a sequence of closed sets 

from EM  such that ,XX n1n   for 

,...,3,2,1n   and if ,0)X(lim n
n




then 


  1n nXX is not empty. 

The family ker  described above is called the 

kernel of the measure of noncompactness .  

For further details concerning measures of 
noncompactness and their properties may be found in 
[3]. In the sequel we shall need some criteria for 
compactness in measure; the complete description of 
compactness in measure was given by Fre'chet [4], 
but the following sufficient condition will be more 
convenient for our purposes (see[4]). 

 
Theorem 2: Let X be a bounded subset 

of .L1 Assume that there is a family of 

subsets abc0c )(   of the interval )b,a( such that 

cmeas c   for every ],ab,0[c  and for every 

),t,t(),t(x)t(x,Xx c2c121  then the set 

X is compact in measure. 
 
The measure of weak noncompactness defined 

by De Blasi ([1] and [23]) is given by, 

).KYX such that E ofYsubset

compact  weakly a exists there:0r(inf)X(

r



The function )X( possesses several useful properties 

which may be found in [23]. 

The convenient formula for the function )X(  

in 1L  was given by Appel and De Pascale (see [1], 

[3]) 

),)]Dmeas

b],[a,D :dt|)t(x|[sup(sup(lim)X(
D

Xx
0



 
  

where the symbol Dmeas stands for Lebesgue 

measure of the set D . 
Next, we shall also use the notion of the 

Hausdorff measure of noncompactness   (see [4]) 

defined by 

).KYX such that 

E ofY subset finite a exists there:0r(inf)X(

r



 
In the case when the set X  is compact in 

measure, the Hausdoff and De Blasi measures of 
noncompactness will be identical. Namely we have 
(see [1] and [23]). 

 
Theorem 3: Let X be an arbitrary nonempty bounded 
subset of .L1  If X  is compact in measure then 

).X()X(   

Finally, we will recall the fixed point theorem 
due to 

Darbo [3]. 
 

Theorem 4: Let Q  be a nonempty, bounded, closed 

and convex subset of E and let QQ:H   be a 

continuous transformation which is a contraction 
with respect to the Hausdorff measure of 
noncompactness  , i.e., there exists a constant 

)1,0[ such that )X()XH(  for any 

nonempty subset X  of .Q  Then H  has at least one 

fixed point in the set .Q  

 
3. Existence of solutions 

Let the integral operator iH be defined as 

.2,1i,ds)))s((x,s(f)s,t(k)t()xH( ii

1

0
ii    

Then equation (1) may be written in operator 
form as: 
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,)t()xH(.)t()xF()t()xH(.)t()xF(g)t()Ax( 1221 

 
where .2,1i,ds)))s((x,s(f)t()xF( iii    

Consider the quadratic equation (1), under the 
following assumptions: 

(i) 1Lg   and is a.e. nondecreasing and 

positive on the interval ;I  

(ii)   RRI:fi satisfy Carathѐodory condition 

(i.e. measurable in t for all  Rx and continuous 

in x  for all )]1,0[t  and there exist two functions 

1i La  and two constants ,0bi  2,1i  such that 

.RI)x,t(|x|b)t(a)x,t(f iii   

Moreover, 2,1i,)x,t(f i  are a.e. nondecreasing 

with respect to each of both variables; 
(iii) II:i   is increasing, absolutely continuous 

on I  and there exists a constant 0Mi  such that 

ii M)t(   on I ; 

(iv) 2,1i,RII:ki    are continuous and 

)x,t(k i  is nondecreasing with respect to each 

variables t and ,x  separately. And there exist positive 

constants ,Ni  such that ii N)x,t(k  . 

(v) Let ,))NN(||a||||a||||g||(c2d 2121   

where 

,
MM

)NN()||a||Mb||a||Mb(
1d

21

21221112 
  

and .
MM

)NN(bb
c

21

2121 
  

Let r  be a positive root of the equation 

,0MM))NN(||a||||a||||g||(rdrc 212121
2   

and define the set 
 .r||x||:LxB 1r   

For the existence of at least one 1L positive 

solution of the quadratic integral equation (1) we 
have the following theorem. 
 
Theorem 5: Let the assumptions (i)-(v) are satisfied. 
If ;1cr   then the quadratic integral equation (1) has 

at least one solution 1Lx  which is positive and a.e. 

nondecreasing on I. 
Proof. Take an arbitrary 1Lx   then, we get 

ds)|))s((x|b

)s(a()s,t(k)|))t((x|b)t(a(|)t(g||)t)(Ax(|

22

2

1

0
2111





,ds)|))s((x|b

)s(a()s,t(k)|))t((x|b)t(a(

11

1

1

0
1222




 

which implies that 


1

0

dt|)t)(Ax(|||)t)(Ax(||
 

dtds)s(a|)s,t(k|)t(adt|)t(g| 2

1

0
2

1

0
1

1

0
  

dtds|)s((x||)s,t(k||))t((x|bb

dtds)s(a|)s,t(k||))t((x|b

dtds|))s((x||)s,t(k|)t(ab

2

1

0
2

1

0
121

2

1

0
2

1

0
11

1

0
22

1

0
12









 

 









 

,dtds|)s((x||)s,t(k||))t((x|bb

dtds)s(a|)s,t(k||))t((x|b

dtds|))s((x||)s,t(k|)t(ab

dtds)s(a|)s,t(k|)t(a

1

1

0
1

1

0
221

1

1

0
1

1

0
22

1

0
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1

0
21

1

1
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1

1

0
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



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


 

 









 



dtds|)s((x||))t((x|Nbb

dtds)s(a|))t((x|Nb

dtds|))s((x|)t(aNb

dtds)s(a)t(aN||g||

2

1

0

1

0
1221

1

0
2

1

0
121

1

0
2

1

0
122

1
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2

1

0
12
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 

 



  

,dtds|)s((x||))t((x|Nbb

dtds)s(a|))t((x|Nb

dtds|))s((x|)t(aNb

dtds)s(a)t(aN
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
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ds|)s((x|dt|))t((x|Nbb

ds)s(adt|))t((x|Nb

ds|))s((x|dt)t(aNb

ds)s(adt)t(aN||g||
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1
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1

0
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1

0
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1

0
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ds|))s((x|dt)t(aNb
1

0
1

1

0
211    

,ds|)s((x|dt|))t((x|Nbb

ds)s(adt|))t((x|Nb

1
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  
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 
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1
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1
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M
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

1

0
11

1

0
22

21
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1
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22
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1
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11
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211
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,ds)s(|)s((x|dt)t(|))t((x|
MM

Nbb

dt)t(|))t((x|
M

||a||Nb
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M

||a||Nb

||a||||a||N

du|)u(x|du|)u(x|
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du|)u(x|
M

||a||Nb
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M

||a||Nb
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












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du|)u(x|du|)u(x|
MM

Nbb

du|)u(x|
M

||a||Nb

du|)u(x|
M

||a||Nb

||a||||a||)NN(||g||

1

0

1

021

221

1

01

221

1
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2121
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du|)u(x|
M

||a||Nb 1

01

211
  

du|)u(x|
M

||a||Nb 1

02

112
  

du|)u(x|du|)u(x|
MM

Nbb 1

0

1

021

121
  

2

2

112

1

211
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221

2
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||x||c||x||
M
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M

||a||Nb

M
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M
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||a||||a||)NN(||g||
















 

.r||x||c

||x||
MM

)NN()||a||Mb||a||Mb(

||a||||a||)NN(||g||

2

21

21221112

2121


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



 

From this estimate we show that the operator A  maps 
the ball rB  into itself with 

.
c2

)||a||||a||)NN(||g||(c4dd
r 2121

2 
  

From assumption (v) we have 

,d)||a||||a||)NN(||g||(c4d0 2
2121

2   

which implies that 

.d)||a||||a||)NN(||g||(c4d0 2121
2   

 
Then d  is positive which implies that r is a positive 
constant. 

Now, let rQ denote the subset of 1r LB  consisting of 

all functions which are a.e. nondecreasing on .I  

The set rQ  is nonempty, bounded, convex and closed 

(see Banaś [4] pp. 780). Moreover this set is compact 
in measure (see Lemma 2 in [7] pp. 63). 
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From assumption (ii) we deduce that the operator A  
maps rQ  into itself. Since the operator 

))t(x,t(f)t()xF( ii  is continuous (Theorem 1 in 

section 2), then the operator iH  is continuous and 

hence the product ii HF is continuous. Thus the 

operator A  is continuous on .Qr  

Let X  be a nonempty subset of .Qr Fix 0 and 

take a measurable subset ID  such that 

.Dmeas   Then, for any Xx  using the same 

reasoning as in [4] and [7], we get 
 


D

)D(L dt|)t)(Ax(|||)t)(Ax(||
1
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


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dtds|)s((x||))t((x|Nbb

dtds)s(a|))t((x|Nb
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dtds)s(a)t(aN||g||
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this implies 
)2(),X(cr)XA( 

 
where  is the De Blasi measure of week 

noncompactness, and by Theorem 2 we can write (2) 
in the form 

),X(cr)XA(   

where   is the Hausedorff measure of 

noncompactness. Since ,1cr   then from Theorem 4 

it follows that A  is contraction with respect to the 
measure of noncompactness .  Thus A  has at least 

one fixed point in rQ  which is a solution of the 

quadratic integral equation (1). 
 

4. Quadratic equations with deviated argument  
Let the assumptions of Theorem 5 are 

satisfied: 

 (i) Let ),1,0(,t)t( iii   then equation (1) can 

be written as: 

ds))t(x,s(f)s,t(k))t(x,t(f
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

 

where II:t)t( ii   is increasing, absolutely 

continuous on I  with .1Mi  Then the quadratic 

integral equation has at least one solution 1Lx   

which is positive and a.e. nondecreasing on I. 
 

(ii) Let ),1,0(,t)t( ii
i    then equation (1) can 

be written as: 

ds))t(x,s(f)s,t(k))t(x,t(f

ds))t(x,s(f)s,t(k))t(x,t(f)t(g)t(x
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where ,II:t)t( i
i    is increasing, absolutely 

continuous on I  with .1Mi  Then the quadratic 

integral equation has at least one solution 1Lx   

which is positive and a.e. nondecreasing on I. 
 
4. Discussions 

 Necessary conditions for the existence of at 

least one solution 1Lx  for the quadratic functional 

integral equation Eq. (1) which is positive and a.e. 
nondecreasing are proposed in this paper by using the 
method of measure of noncompactness. As a special 
cases, the existence results for quadratic functional 
integral equation with deviated argument can be 

obtained by taking ,t)t( ii  ,t)t( i
i

 ).1,0(i   
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