
Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1959

Design and Implementation of an Efficient Programmable Floating Point Unit with Coarse-Grained FPGA

Arun. A 1, Dr. K. S. Srinivasan 2, Dr. M. Devaraju 3

1. Assistant Professor, Dept of ECE, Velammal Engineering College, Chennai
aruneswaran26@gmail.com

2. Turbo Machinery Institute of Technology and Science, Hyderabad
sshari_2003@yahoo.com

3. Professor, Dept.of ECE, RMK Engineering College, R.S.M.Nagar, Chennai
devarajum@yahoo.com

 Abstract: The novel method is to optimize coarse-grained floating point units (FPUs) in a hybrid FPGA by
employing common sub graph extraction to determine the number of floating point adders / subtracters (FAs),
multipliers (FMs) and word blocks (WBs) in the FPUs. Single precision FP adders / subtracters (FAs) and FP
multipliers (FMs), with normalization are generated using standard cell library design flow. This empirical method
is used to examine the speed and area of different coarse-grained FPUs. The common sub graph extraction method is
for floating point applications and tools, benchmarks and models that are used in hybrid FPGA. To explore the
design of a hybrid FPGA based on common sub graph extraction and synthesis, a set of floating point designs are
used as benchmark circuits. They are: (1) DSCG, a data path of digital sine-cosine generator (2) BFLY, the basic
computation of Fast Fourier Transform (3) FIR 4, a 4-tap finite impulse response filter (4) ODE, a circuit to solve
ordinary differential equations (5) MM 3, a 3x3 matrix multiplier (6) BGM, a circuit to compute Monte Carlo
simulations of interest rate model derivatives, (7) Syn2, a circuit contains 5 FAs and 4 FMs (8) Syn7, a circuit
contains 25 FAs and 25 FMs. syn2 and syn7 are two synthetic benchmark circuits generated by a synthetic
benchmark circuit generator. These 8 single precision floating point benchmark circuits are not efficiently
implemented in fine-grained FPGAs, since the floating point computation requires a great deal of fine-grained
resources. We synthesize different combinations of floating point adders / subtracters, multipliers and registers into
coarse grained blocks, which are embedded in a hybrid FPGA. Later the benchmark circuits with these coarse-
grained embedded blocks (EBs) are evaluated by the Altera Quartus II Chip planner tool for area and timing analysis.
[Arun. A, K. S. Srinivasan, M. Devaraju. Design and Implementation of an Efficient Programmable Floating
Point Unit with Coarse-Grained FPGA. Life Sci J 2013;10(3):1959-1966] (ISSN: 1097-8135).
http://www.lifesciencesite.com. 290

Keywords: floating point units (FPU), fine-grained architecture, coarse-grained architecture

1. Introduction

 FPGA technology has been widely adopted to
speed up computationally intensive applications. In
modern Field Programmable Gate Arrays (FPGAs),
coarse-grained elements such as processors,
memories and DSPs are embedded into the fine-
grained programmable fabric; these have been shown
to have severe area penalties compared with standard
cell ASICs [1]. In this work, we propose domain-
specific coarse-grained architectures which can have
advantages in speed, density and power over more
conventional heterogeneous FPGAs. One key issue
associated with such an approach is identifying the
correct amount of coarse-grained logic necessary to
enhance the performance of an application without
adversely affecting area and flexibility. For example,
an application that demands high performance
floating point computation can potentially achieve
better speed and density by introducing dedicated
embedded floating point units (FPUs). And the FPU
resources will be wasted for those applications, which
do not have any floating point computations. To

address this issue, we advocate domain-specific
FPGAs with flexible, parameterised architectures that
can be generated to address application sets that are
smaller than those targeted by conventional FPGAs.

 A hybrid FPGA consists of a combination of
coarse-grained and fine-grained reconfigurable
elements. It provides a high-throughput and cost
effective platform for designers to develop
applications. Coarse-grained units are more efficient
than fine-grained programmable logic for
implementing specific word-level operations. And
these coarse grained units are less flexible and only
specific applications that can make use of them.
Given this limitation, optimization of coarse-grained
elements becomes a critical issue. Modern
commercial FPGAs consist of commonly used
coarse-grained elements such as DSPs and memories.
The computational speed of domain-specific
applications can be further increased by additional
embedded elements. For example, the high
performance floating point computation can achieve
better speed and density by incorporating embedded

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1960

floating point units (FPUs) [2]. Floating point
adders/subtracters (FAs) and floating point
multipliers (FMs) contain several basic functional
elements such as barrel shifter, adders and
multipliers. Word-blocks (WBs) are used for the
bitwise operation of the floating point number such as
comparison, shifting, latch and logical operation.
Constructing hard circuit, which are composed of
basic functional elements, results will be a more
compact block with higher speed but less flexibility.
Grouping together optimized WBs, FAs and FMs to
be a floating point unit (FPU) can further improve the
speed and area, since the interconnects between them
use bus based connection .
Specifically this paper offers:

 A generic hybrid FPGA architecture that
supports configurable resources with multiple
granularity that will be customised for different
applications.

 A domain-specific hybrid FPGA for various
floating point computations will be designed from
this architecture.

 A single configuration of a floating point
specific hybrid FPGA is able to achieve
improvements in both speed and area compared with
commercial and proposed reconfigurable devices on
selected floating point benchmarks.

2. Background
2.1. Related work

In the past decade, there has been much
research on optimizing conventional island-style fine-
grained FPGAs. The fine-grained elements consist of
one or more k-input lookup tables (k-LUTs) and fast
local interconnects. The studies include different
aspects of segmented routing architectures for
interconnect between fine-grained resources [3], and
the effect of LUT and cluster size of the fine-grained
elements [4]. The goal of these studies is to create a
fast and area-efficient general purpose FPGA
architecture.

Today, adding coarse-grained blocks within
fine-grained fabric to improve area and speed is a
common technique, since coarse-grained blocks
implement specific functions more efficiently than
fine-grained fabric. However, this hybrid FPGA
architecture is on average approximately 20 times
larger and 4 times slower than when implemented as
ASIC [5]. In order to reduce this gap, considerable
research has been focused on the architecture of
hybrid FPGA. Jamieson and Rose [6] propose
shadow clustering to minimize the overall area
penalty by sharing local routing resources of fine-
grained elements with embedded blocks. Also a
coarse-grained architecture with bus-based

interconnect has been shown to reduce area for data
path circuits [7].

In Hybrid FPGA common sub-circuits that
occur frequently in a variety of benchmark circuits.
This is known as common sub-graph extraction.
Fused-arithmetic units generated by these common
sub-circuits get up to 3.3 times in speed and 19.7
times in area for average improvement of particular
silicon cores. This paper employs this technique to
determine floating point common sub-graphs similar
to the fixed point approach. Instead of the
improvement of particular cores, we focus on the
system level tradeoff in hybrid FPGAs. A novel
domain-specific hybrid FPGA architecture which
embedded FPUs within fine-grained fabric has been
presented; this architecture has advantage of 18 times
area reduction when compared to a purely fine-
grained architecture for floating point applications.
However, these studies only accounted for the
particular FPU architecture; they do not evaluate the
combination of WBs, FAs and FMs according to
different applications. This paper examines this
relationship and investigates the effect of FPUs on a
selected set of applications by using common sub-
graph extraction and the hybrid FPGA exploration
tool Altera Quartus II Chip planner.
2.2. FPGA architectures

The heart of a FPGA is a reconfigurable fabric.
The fabric consists of arrays of fine-grained or
coarse-grained units. Normally a fine-grained unit
usually implements a single function and has a single
bit output. The most fine-grained unit is a K-input
lookup table (LUT), where K typically ranges from 4
to 6. The LUT can implement any boolean equation
of K inputs. This type of fabric is called a LUT-based
fabric. Several LUT-based cells can be joined to
make a cluster in a hardwired manner. These results
in little loss in flexibility but can reduce area and
routing resources within the fabric [8].

A coarse-grained unit is usually less flexible
and typically much larger than a fine-grained one, but
is often more efficient for implementing specific
functions. The coarse-grained unit is usually
programmable to some degree, by combining several
functions such as those in an arithmetic logic unit
(ALU) and outputs are often multi-bit. They can be
parameterised in terms of features such as bus-width
and functionality. We have also proposed a word-
based synthesisable architecture, and show that it has
large improvements in area over a similar fine-
grained approach [9].

 Heterogeneous functional blocks are found on
commercial FPGA devices. For example, a Stratix III
device has embedded fixed-function multipliers,
embedded DSP units with multipliers and
accumulators. The flexibility of these blocks is

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1961

limited and it is less common to build a digital system
solely using these blocks. When the blocks are not
used, they consume die area and contribute to
increased delay without adding to functionality. As
shown in the above examples, FPGA fabric can have
different levels of granularity. In general, a unit with
smaller granularity has more flexibility, but can be
less effective in speed, area and power consumption.
Fabrics with different granularity can coexist as
evident in many commercial FPGA devices. Most
importantly, the above examples illustrate that FPGA
architectures are evolving to be more coarse-grained
and application-specific. The proposed architecture in
this paper follows this trend, focusing on floating
point computations.

3. Hybrid FPGA Architecture
3.1 Introduction

 Hybrid FPGA is nothing but, it is connected
by routing tracks and combination of both coarse
grained and fine grained components. Fine grained
consists of combination of Configurable logic blocks
(CLBs). Each Configurable logic block contains look
up tables (LUTs) and flip-flops (FFs) which supports
fast carry chains, internal multiplexers and XOR
gates. The coarse-grained embedded blocks (EBs),
where as embedded memories and multipliers, are
surrounded by CLBs and Single precision floating
point adders (FA), floating point subtracters (FS) and
FP multipliers (FMs), and a word-block (WB) is a
LUT and flip-flop based unit. It carries out shifting,
comparison, latch and logical operations.

 In existing systems, the coarse-grained and
fined-grained elements in a hybrid FPGA for floating-
point applications are FPUs are in square, FPUs
should be positioned tightly near the centre of the
FPGA, the FPU pins should be arranged on four sides
of the FPU. In fine-grained elements not much to
support WBs, FAs, or FMs. In our system, we use a
large amount of fine-grained elements to support
WBs, FAs or FMs. if we use more WBs, FAs and
FMs are inside a FPU greater area and speed
improvement can be achieved, but the whole FPU is
wasted if not used. First, we consider the performance
of individual FPUs by connecting the elements using
connection patterns. It is based on the different FPU
architectures from common sub-graphs, so the
performance of the hybrid FPGAs is defined by the
density of FPU and flexibility of FPU. The common
sub-graph extraction can potentially be implemented
as a hard Embedded blocks (EBs) to speed up the
computation and it represents the functionality shared
across the benchmark circuits. The flattened net-list is
then fed into the program maximum common sub-
graph (MCS) generation stage to extract the common
sub-graphs in these benchmark circuits. We enhance

this method for floating point application which
supports FA, FM and WB extraction. The common
sub-graphs cover FP operations with the connection
information of WBs, FAs and FMs, the coarse-
grained FPU of common sub circuit in HDL file.
Then synthesized by Altera Quartus II to obtain the
area and delay of the FPU and use this information to
evaluate the FPGA by place and route.

 By place and route, this novel hybrid FPGA
architecture will explore. The benchmark circuits
described in a hardware description language (HDL)
are synthesized to a map net-list in HDL format
various units such as LUTs and registers are included
in the library net-list. And place and route packs the
clusters into fine-grained elements called
configurable logic blocks (CLBs). Area, timing and
position of the EBs are specified in a user constraint
file. The architecture file contains the information of
the architectural parameters of the fine-grained
elements, such as delay of LUT and register. The
placement and routing also timing analysis by using
the packed benchmark net-lists, finally we estimate
the area and delay for each benchmark circuit.

3.2 Requirements
Before we introduce the floating point

hybrid FPGA architecture, common characteristics of
what we consider a reasonably large class of floating
point applications which might be suitable for signal
processing, linear algebra and simulation are first
described. Although the following analysis is
qualitative and it is possible to develop the hybrid
model in a quantitative fashion by profiling application
circuits in a specific domain. In general, FPGA based
floating point application circuits can be divided into
control and data path portions. The data path typically
contains floating point operators such as adders,
subtracters and multipliers, and occasionally square
root and division operations. The data path often
occupies most of the area in an implementation of the
application. Existing FPGA devices are not optimized
for floating point computations; floating point
operators consume a significant amount of FPGA
resources.

The floating point precision is usually a
constant within an application. The IEEE 754 standard
is almost always used, especially the single precision
format (32-bit) or double precision format (64-bit).
The interconnection can be bus-oriented. The data path
can often be pipelined and routing within the data path
may be uni-directional in nature. Occasionally there is
feedback in the data path for some operations such as
accumulation. The control circuit is much simpler than
the data path and therefore the area consumption is
typically lower. Control is usually implemented as a
finite state machine and most synthesis tools can

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1962

produce an efficient mapping from the boolean logic
of the state machine into fine-grained FPGA resources.

Table 1: Coarse-grained unit parameters
 Symbol Parameter description

D
 Number of blocks (Including FPUs, word
blocks)

N Bit Width
 M Number of Input Buses
R Number of Output Buses
 F Number of Feedback Paths

P
 Number of Floating Point Adders and
Multipliers

From the above analysis, some basic

requirements for floating point hybrid FPGA
architectures will be done.
 A number of coarse-grained floating point

addition and multiplication blocks are necessary since
most computations are based on these primitive
operations. Floating point division and square root
operators can be optional, depending on the domain-
specific requirement.
 Coarse-grained interconnection, fabric and bus-

based operations are required to allow efficient
implementation and connection between fixed-
function operators.
 Dedicated output registers for storing floating

point values are required to support pipelining.
Fine-grained units and suitable interconnections are

required to support implementation of state machines
and bit-oriented operations. These fine-grained units
should be accessible by the coarse-grained units and
vice versa

3.3 Architecture

 Figure 1 shows a top-level block diagram of
our hybrid FPGA architecture. It performs an island-
style fine-grained FPGA structure with dedicated
columns for coarse-grained units. Both fine-grained
and coarse-grained units are reconfigurable. The
coarse-grained part contains embedded fixed-function
floating point adders and multipliers. The top-level
architecture is inspired by existing commercial
FPGAs. However, the proportion of coarse-grained
blocks can be customised to meet design requirements.
The island style architecture with standard
interconnect structures such as connection and switch
boxes are used to implement the fine-grained fabric.
Four input LUT-based fine-grained units, similar to
Altera Stratix III slices are hence employed. However,
the proposed FPGA hybrid modelling allows us to
adopt other architectures such as the 6 input LUTs in
Altera Stratix III. We believe the same trends would be

seen as we migrate to smaller technologies and more
modern FPGA architectures.

The data path for the floating point units is
implemented using coarse-grained logic. The coarse-
grained logic consists of a number of coarse-grained
units embedded into the fine-grained fabric. The
floating point multiplier block is a fixed-function
block. The floating point adder block can be
configured for either floating point addition or
subtraction. This is achieved by XORing the sign bit
with the configuration bit. Each FPU has a
reconfigurable registered output and associated control
input and status output signals. The control signal is a
write enable signal that controls the output register.
The status signals report the FPU’s status flags and
include those defined in IEEE standard as well as a
zero and sign flag. The fine-grained unit can monitor
these flags as routing paths exist between them.

Figure 1: Floating point hybrid FPGA architecture.

A word-block contains N identical bit-

blocks, and is similar to published designs [9]. A bit-
block contains two 4-input LUTs and a reconfigurable
output register. The value of N depends on the size of
the FPU. Bit-blocks within a word-block are all
controlled by the same set of configuration bits, so all
bit-blocks within a word-block perform the same
function. A word-block can efficiently implement
operations such as addition and multiplexing. Similar
to FPUs, word-blocks generate status flags such as
MSB, LSB carry out, overflow and zero which are
connected to the fine-grained blocks. Apart from the
control and status signals, there are M input buses and
R output buses connected to the fine-grained units. The
routing layout assumes that a block can only accept
inputs from the left, simplifying the routing. To allow
the flexibility, F feedback registers have been
employed so that a block can accept the output from
the right block through the feedback registers. For
example, the first block can only accept input from

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1963

input buses and feedback registers, while the second
block can accept input from input buses, the feedback
registers and the output of the first block. The
feedback registers latch the output of a block and
forward it to another block. Each floating point
multiplier is logically located to the left of a floating
point adder so that no feedback register is required to
support multiply and add operations. The coarse-
grained units can support multiply accumulate
functions by utilising the feedback registers. Switches
in the coarse-grained unit are implemented using
multiplexers and are bus-oriented. A single set of
configuration bits is required to control these
multiplexers, improving density compared to a fine-
grained fabric. For the same reason, the FPUs are
embedded in the coarse-grained units rather than
distributed over the FPGA, such that a FPU can exploit
the bus-oriented routing resources in the coarse-
grained blocks.

 The floating point multiplier block is a
fixed-function block and the floating point adder block
can be configured for either floating point addition or
subtraction. This is achieved by XORing the sign bit
with the configuration bit. Each FPU has a
reconfigurable registered output and associated control
input and status output signals. The control signal is a
write enable signal that controls the output register.
The status signals report the FPU’s status flags and
include those defined in IEEE standard as well as a
zero and sign flag. The fine-grained unit can monitor
these flags as routing paths exist between them.

Figure 2: Connecting WBs, FAs and FMs into

different coarse-grained FPUs.

3.4. Interface of Coarse-grained Blocks in Hybrid
FPGA

 The coarse-grained blocks are able to
connect to fine-grained resources in various ways. The
best interface between coarse-grained and fine-grained
elements in a hybrid FPGA [10] for floating-point
applications are: (1) FPUs are square (2) FPUs should
be positioned tightly near the centre of the FPGA (3)
The FPU pins should be arranged on four sides of the
FPU. The interface between coarse-grained blocks and

fine-grained blocks in this paper is assumed to follow
the above configuration.
4. Optimization Parameters

 In this paper, we optimize the internal
connection structure and the number of the WBs, FAs
and FMs. If more WBs, FAs and FMs are inside a FPU
(Fig 2), greater area and speed improvement can be
achieved, but the whole FPU is wasted if not used of
WBs, FAs and FMs is important. We consider the FPU
in the following parameters:

(a) Internal optimization of FPU:

 The WBs, FAs and FMs in FPUs can be
connected in different orders as shown in Figure 2. We
consider the performance of individual FPUs by
connecting such elements using commonly found
connection patterns.

(b) System level optimization:

 Based on the different FPU architectures
from common subgraph, we optimize the performance
of the hybrid FPGAs by selecting the FPUs in the
following ways:

Density of FPU: The FPU consists of more
computation an element achieves greater reduction
since all elements can be closely packed. However,
this may require more routing resources for the
connection between the coarse-grained block and fine-
grained block. And the flexibility decreases, since it is
difficult to reuse in another application.
Flexibility of FPU: FPUs are wasted when not used.
The FPUs can be reused across different applications.
Therefore, embedding high flexibility can reduce the
area waste for unused FPUs.

5. Modelling of Hybrid FPGA
5.1 Introduction

 A method [9] is used to model floating point
hybrid FPGAs with different architectural parameters
and coarse-grained blocks. This approach is general
and can be used to model any FPGA provided that a
floor planner and a timing analysing tool are available
for that device. In this method, an existing fine-grained
commercial FPGA is used. Fine-grained blocks in our
hybrid FPGA are directly mapped to the corresponding
logic cells on the commercial FPGA. The area and
delay for the embedded coarse-grained units are first
estimated by synthesising the design using a standard
cell flow. They are then modeled in a commercial
FPGA by employing blocks of logic cells with similar
delay and area. The corresponding vendor’s CAD tools
are then used to estimate the delay and area of the
hybrid FPGA.

 We employ a parameterised synthesisable
IEEE 754 compliant floating point library in our
experiments. The library supports four rounding modes

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1964

and denormalised numbers. A floating point multiplier
and floating point adder are generated and synthesised
using a standard cell library design flow. The Altera
Quartus II is used for synthesis. During synthesis,
retiming optimisation is enabled to obtain better
results. While a custom layout design for the coarse-
grained unit can achieve much higher density and
better speed, it is time consuming to design a coarse-
grained unit for each set of architectural parameters.
To determine suitable parameters for generation of
coarse-grained units, we first decide on an initial set of
parameters and try to map a set of benchmark circuits
to the units. Two parameters determine whether the
architecture is best-fit. The first is the number of
coarse-grained units required to implement the circuit.
The second is the percentage of blocks used in a unit.
During the first step, we create a HDL description of
the control logic part of the application circuit. We
then add additional statements which instantiate the
coarse-grained units as well as the signals between the
fine-grained and coarse-grained units. The design is
then synthesised on the target device and a device-
specific netlist is generated. The synthesis tool
considers the coarse-grained unit as a black box. The
area utilisation is computed by determining the number
of slices in Stratix III required implementing the
application.

 The second step is to obtain the timing and
area models for each instantiated coarse-grained unit
as described earlier. With this information, netlist can
be compiled by generating dummy cells with
appropriate area and delay. Special consideration is
given to the interface between fine-grained units and
coarse-grained units to make sure that the
corresponding netlist model has sufficient I/O pins to
connect to the fine-grained routing resources. This can
be verified by keeping track of the number of inputs
and outputs which connect to the global routing
resources in a slice. After generating the netlist for the
targeted FPGA, a User Constraint File (UCF) which
forces the netlist to be located in a particular column is
created. The final area and timing results will be
obtained from the Altera Quartus II Place and Route
tool. This represents the characterisation of a circuit
implemented on the hybrid floating point FPGA with
fine-grained units and routing resources exactly the
same as the targeted FPGA. After generating the netlist
netlist for the targeted FPGA, a User Constraint File
(UCF) which forces the netlist to be located in a
particular column is created. We then use the vendor’s
place and route tool to obtain the final area and timing
results. This represents the characterisation of a circuit
implemented on the hybrid floating point FPGA with
fine-grained units and routing resources exactly the
same as the targeted FPGA. Using commercial FPGA
fine-grained units in this manner has several

advantages and Altera Quartus II Synthesis, Place and
Route tools can be used in the modelling of the hybrid
FPGA and it can produce a realistic comparison to
existing FPGA devices.

5.2. Tool Flow

 We adopt common subgraph extraction to
detect the most frequently used arithmetic units in
floating point benchmark circuits, such as floating
point adders/subtracters, multipliers and registers.
Then we synthesize different combinations of these
units into coarse-grained blocks, which are embedded
in a hybrid FPGA. After that, the benchmark circuits
with these coarse-grained embedded blocks (EBs) are
evaluated by the Altera Quartus II tool for area and
timing analysis.

Figure 3: Common subgraph extraction design flow

(a) Common Subgraph Extraction:

 Floating point applications have common
characteristics for floating point computations. A
common subgraph in these applications represents
functionality shared across the benchmark circuits. The
subgraph can potentially be implemented as a hard EB
to speed up the computation. Efficiency can usually be
improved by combining similar FP operations into the
same core, by common subgraph extraction [11].

 In the tool flow of common subgraph
extraction as shown in Figure 3, floating point
benchmark circuits are written in Verilog. Modelsim
and Altera Quartus II are used to parse and flatten the
Verilog benchmark circuits. The flattened netlist is
then fed into the program Maximum Common
Subgraph (MCS) generation stage to extract the

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1965

common subgraph in these benchmark circuits. With
the connection information of WBs, FAs and FMs, we
describe the coarse-grained FPU of common sub-
circuit in another Verilog file. The FPU, which
consists of complex FA and FM circuits, is then
synthesized by Altera Quartus II with 110 nm process.
We obtain the area and delay of this FPU and use this
information to evaluate the FPGA by Altera Quartus II
Place and Route. After we have determined the FP
coarse-grained blocks by common subgraph
extraction, such blocks are interfaced to the fine-
grained FPGA. We use the Altera Quartus II tool to
explore this novel hybrid FPGA architecture.

 In the Altera Quartus II design flow in
Figure 4, benchmark circuits described in a hardware
description language (HDL) are synthesized to a
mapped library netlist in VHDL format using Altera
Quartus II. Various units such as LUTs and registers
are included in the library netlist. Altera Quartus II
netlist pack packs and clusters these simple units into
fine-grained elements called configurable logic blocks
(CLBs). Area, timing and position of the EBs are
specified in a user constraint file.

Figure 4: Design flow for common subgraph EBs

using Altera Quartus II

The architecture file contains the
information of the architectural parameters of the fine-
grained elements, such as delay of LUT and register.
The Altera Quartus II tool performs placement, routing
and timing analysis using the packed benchmark
netlist, constraint file and architecture file. The tool
finally estimates the area and delay for each
benchmark circuit.

6. Result

 A set of benchmark applications are mapped
to the proposed floating point hybrid FPGA, and the
results are compared to a Stratix III device. All FPGA
results are obtained using the Altera Quartus II for
synthesis and place and route. Six benchmark circuits

are used in this study [6]. Five of them are
computational kernels and one is a Monte Carlo
simulation data path. We have chosen these with
simple but are not very efficiently implemented on
general-purpose FPGA devices and we expect these
applications to yield better timing and density on a
floating point hybrid FPGA.

The bfly benchmark performs the
computation z = y+x*w where the inputs and output
are complex numbers; this is commonly used within a
Fast Fourier Transform computation. The dscg circuit
is the data path of a digital sine-cosine generator. The
fir4 circuit is a 4-tap finite impulse response filter. The
mm3 circuit performs a 3-by-3 matrix multiplication.
The ode circuit solves an ordinary differential
equation. The bgm circuit computes Monte Carlo
simulations of interest rate model derivatives. The
physical die area of a Stratix III device has been
reported [13], and the normalisation of the area of
coarse-grained unit is estimated in Table 2. We assume
that 60% of the total die area is used for slices; the rest
of the area is due to I/O pads, block memory,
multipliers etc. This means that the assumed area of
our Stratix III device is 8,192 μm2. This number is
normalised against the feature size (0.15μm). A similar
calculation is used for the coarse-grained units. The
synthesis tool reports that the area of a double
precision coarse-grained block is 1,051,011 μm2. We
further assume 15% overhead after place and route
based on our experience [9]. The area values are
normalised against the feature size (0.12μm). The
number of equivalent slices is obtained through the
division of coarse-grained unit area by slice area. The
values in the sixth and seventh columns represent the
number of I/O required, while the values in brackets
indicate the maximum number of I/O allowed for the
area in slices. Although a Stratix III slice employs
smaller transistors (0.11μm) than those used for
building the coarse-grained unit (0.12μm), we do not
scale the timing of the coarse-grained unit and
therefore conservative timing results are reported. We
use EP2S15 as the host FPGA for the floating point
hybrid FPGA. We assume that 8 double precision
coarse-grained blocks are embedded into this FPGA.
The coarse-grained blocks constitute 15% of the total
area in an EP2S15 device. Benchmark circuits are
implemented on the same device and the results are
shown in Table 3. The FPU values for the EP2S15
device are estimated from the distribution of LUTs,
which is reported by the Altera Quartus II synthesis
tool. The logic area is obtained by subtracting the FPU
area from the total area reported by the place and route
tool. As expected, the FPU logic occupies most of the
area, typically more than 80% of the user circuits. For
example, the circuit bfly has 6 FPUs which consume
78% of the total FPGA area. It can fit into 2 coarse-

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

1966

grained units, which constitute just 2.5% of the total
FPGA area. The bgm circuit cannot fit in an EP2S15
device but it can be tightly packed into 7 coarse-
grained units. Thus the circuit can fit in the hybrid
FPGA in which the size is same as the EP2S15 device.
Delay is reduced by 3.0 times on average. As the
critical paths are in the FPU, improving the timing of

the FPU through full-custom design would further
increase the overall performance. The area reduction is
significant: the proposed architecture can reduce the
area by 21 times. The saving is achieved by (1)
embedded floating point operators, (2) efficient
directional routing and (3) sharing configuration bits.

 Table 2: Normalized area of the coarse-grained units against a Stratix III slice

Fabric Area(A) (μm2) Feature size (L)(μm) Normalised Area (A/m2) Area in slices Input pin Output pin
Stratix III slice 8.192 0.12 358,123 1 6(6) 2(2)
DP-CGU 1,051,01 0.11 78,506,546 158 215(1218) 186(312)

Table 3: Double precision floating point hybrid FPGA results

 Double precision floating point Hybrid FPGA EP2S15 Reduction

Circuit
Number
of CGU

CGU area
(Slices)

FGU area
(Slices)

Total area
(Slices)

Delay
(ns)

FPU area
(Slices)

Logic
area

(Slices)

Total area
(Slices)

Delay
(ns)

Area
(times)

Delay
(times)

bfly 2 278(2.5%) 183(1.49%) 436(3.9%) 9.02 11,183(88%) 880(5%) 11377(91%) 21.57 21.4 2.18
dscg 2 278(2.5%) 289(2.16%) 566(4.6%) 11.11 8,887(62%) 289(2%) 9146(62%) 18.18 12.5 1.98
fir4 2 278(2.5%) 12(0.13%) 250(2.4%) 9.56 10,014(75%) 118(1%) 10299(72%) 20.68 28.8 2.16

mm3 2 278(2.5%) 290(2.02%) 524(4.59%) 7.9 7851(53%) 708(6%) 8089(58%) 20.18 13.9 2.16
cde 2 278(2.5%) 193(1.35%) 435(3.8%) 8.94 7339(51%) 215(2%) 7828(33%) 18.88 14.8 1.98

bgm* 6 1052(2.5%) 575(4.05%) 1180(8.8%) 9.10 21887(190%) 395(4%) 24887(180%) 24.14 16.6 2.03
Geometric mean 18 2.08

7. Conclusion
 We present a hybrid FPGA architecture
which involves a combination of reconfigurable fine-
grained and coarse-grained units dedicated to floating
point computations. We show that the proposed
floating point hybrid FPGA would be an improved
speed and density over a conventional FPGA for a
variety of applications. Current and future work
includes developing automated design tools supporting
facilities such as partitioning for coarse-grained units,
and exploring further architectural customisation for a
large number of domain-specific applications.

References

[1] I. Kuon and J. Rose, “Measuring the gap between
FPGAs and ASICs,” in Proc. FPGA. New York, NY,
USA: ACM Press, 2006, pp. 21–30.

[2] C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk and S.J.E.
Wilton. Domain-Specific Hybrid FPGA: Architecture
and Floating Point Applications,. in Proc. FPL, 2007,
pp. 196 . 201.

[3] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic
publishers, 1999.

[4] E. Ahmed and J. Rose. The Effect of LUT and Cluster
Size on Deep-Submicron FPGA Performance and
Density. IEEE Trans. VLSI, vol. 12, no. 3, pp.
288.298, March 2004.

[5] I. Kuon and J. Rose. Measuring the gap between FPGAs
and ASICs, in IEEE Trans. CAD, vol. 26, no. 2,
2007, pp.203.215.

[6] P. Jamieson and J. Rose, .Enhancing the Area-
Efficiency of FPGAs with Hard Circuits Using
Shadow Clusters, in Proc. ICFPT, 2006, pp. 1.8.

[7] A. Ye, J. Rose, and D. Lewis, .Architecture of Data
path-Oriented Coarse-Grain Logic and Routing for
FPGAs, in Proceedings of the IEEE Custom
Integrated Circuits Conference (CICC), 2003, pp.
61.64.

[8] E. Ahmed and J. Rose, “The Effect of LUT and Cluster
Size on Deep-Submicron FPGA Performance and
Density,” IEEE Trans. VLSI, vol. 12, no. 3, pp. 288–
298, March 2004.

[9] S.Wilton, C. Ho, P. Leong, W. Luk, and B. Quinton, “A
Synthesizable Data path-Oriented Embedded FPGA
Fabric,” in Proc. FPGA, 2007, pp. 33–41.

[10] C. W. Yu, Julien Lamoureux, S. J. E. Wilton, P. H. W.
Leong, and Wayne Luk, .The Coarse-Grained/Fine-
Grained Logic Interface with Embedded Floating-
Point Arithmetic Units,. in Proc. SPL, 2008, pp.
63.68.

[11] Alastair M. Smith, George A. Constantinides and Peter
Y.K. Cheung, .Fused-Arithmetic Unit Generation for
Reconfigurable Devices using Common Subgraph
Extraction,. In Proc. ICFPT, 2007, pp. 105.112.

[12] C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-
Buedo, “Virtual Embedded Blocks: A Methodology
for Evaluating Embedded Elements in FPGAs,” in
Proc. FCCM, 2006, pp. 35–44.

[13] Floating-Point-Compiler-Increasing-Performance-

With-Fewer-Resources.pdf http://www.altera.com.

5/20/2013

