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 Abstract: The novel method is to optimize coarse-grained floating point units (FPUs) in a hybrid FPGA by 
employing common sub graph extraction to determine the number of floating point adders / subtracters (FAs), 
multipliers (FMs) and word blocks (WBs) in the FPUs. Single precision FP adders / subtracters (FAs) and FP 
multipliers (FMs), with normalization are generated using standard cell library design flow. This empirical method 
is used to examine the speed and area of different coarse-grained FPUs. The common sub graph extraction method is 
for floating point applications and tools, benchmarks and models that are used in hybrid FPGA. To explore the 
design of a hybrid FPGA based on common sub graph extraction and synthesis, a set of floating point designs are 
used as benchmark circuits. They are: (1) DSCG, a data path of digital sine-cosine generator (2) BFLY, the basic 
computation of Fast Fourier Transform (3) FIR 4, a 4-tap finite impulse response filter (4) ODE, a circuit to solve 
ordinary differential equations (5) MM 3, a 3x3 matrix multiplier (6) BGM, a circuit to compute Monte Carlo 
simulations of interest rate model derivatives, (7) Syn2, a circuit contains 5 FAs and 4 FMs (8) Syn7, a circuit 
contains 25 FAs and 25 FMs. syn2 and syn7 are two synthetic benchmark circuits generated by a synthetic 
benchmark circuit generator. These 8 single precision floating point benchmark circuits are not efficiently 
implemented in fine-grained FPGAs, since the floating point computation requires a great deal of fine-grained 
resources. We synthesize different combinations of floating point adders / subtracters, multipliers and registers into 
coarse grained blocks, which are embedded in a hybrid FPGA. Later the benchmark circuits with these coarse-
grained embedded blocks (EBs) are evaluated by the Altera Quartus II Chip planner tool for area and timing analysis. 
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1. Introduction 

 FPGA technology has been widely adopted to 
speed up computationally intensive applications. In 
modern Field Programmable Gate Arrays (FPGAs), 
coarse-grained elements such as processors, 
memories and DSPs are embedded into the fine-
grained programmable fabric; these have been shown 
to have severe area penalties compared with standard 
cell ASICs [1]. In this work, we propose domain-
specific coarse-grained architectures which can have 
advantages in speed, density and power over more 
conventional heterogeneous FPGAs. One key issue 
associated with such an approach is identifying the 
correct amount of coarse-grained logic necessary to 
enhance the performance of an application without 
adversely affecting area and flexibility. For example, 
an application that demands high performance 
floating point computation can potentially achieve 
better speed and density by introducing dedicated 
embedded floating point units (FPUs). And the FPU 
resources will be wasted for those applications, which 
do not have any floating point computations. To 

address this issue, we advocate domain-specific 
FPGAs with flexible, parameterised architectures that 
can be generated to address application sets that are 
smaller than those targeted by conventional FPGAs.  

 A hybrid FPGA consists of a combination of 
coarse-grained and fine-grained reconfigurable 
elements. It provides a high-throughput and cost 
effective platform for designers to develop 
applications. Coarse-grained units are more efficient 
than fine-grained programmable logic for 
implementing specific word-level operations. And 
these coarse grained units are less flexible and only 
specific applications that can make use of them. 
Given this limitation, optimization of coarse-grained 
elements becomes a critical issue. Modern 
commercial FPGAs consist of commonly used 
coarse-grained elements such as DSPs and memories. 
The computational speed of domain-specific 
applications can be further increased by additional 
embedded elements. For example, the high 
performance floating point computation can achieve 
better speed and density by incorporating embedded 
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floating point units (FPUs) [2]. Floating point 
adders/subtracters (FAs) and floating point 
multipliers (FMs) contain several basic functional 
elements such as barrel shifter, adders and 
multipliers. Word-blocks (WBs) are used for the 
bitwise operation of the floating point number such as 
comparison, shifting, latch and logical operation. 
Constructing hard circuit, which are composed of 
basic functional elements, results will be a more 
compact block with higher speed but less flexibility. 
Grouping together optimized WBs, FAs and FMs to 
be a floating point unit (FPU) can further improve the 
speed and area, since the interconnects between them 
use bus based connection . 
Specifically this paper offers: 

 A generic hybrid FPGA architecture that 
supports configurable resources with multiple 
granularity that will be customised for different 
applications. 

 A domain-specific hybrid FPGA for various 
floating point computations will be designed from 
this architecture. 

 A single configuration of a floating point 
specific hybrid FPGA is able to achieve 
improvements in both speed and area compared with 
commercial and proposed reconfigurable devices on 
selected floating point benchmarks. 

 
2. Background 
2.1. Related work 

In the past decade, there has been much 
research on optimizing conventional island-style fine-
grained FPGAs. The fine-grained elements consist of 
one or more k-input lookup tables (k-LUTs) and fast 
local interconnects. The studies include different 
aspects of segmented routing architectures for 
interconnect between fine-grained resources [3], and 
the effect of LUT and cluster size of the fine-grained 
elements [4]. The goal of these studies is to create a 
fast and area-efficient general purpose FPGA 
architecture. 

Today, adding coarse-grained blocks within 
fine-grained fabric to improve area and speed is a 
common technique, since coarse-grained blocks 
implement specific functions more efficiently than 
fine-grained fabric. However, this hybrid FPGA 
architecture is on average approximately 20 times 
larger and 4 times slower than when implemented as 
ASIC [5]. In order to reduce this gap, considerable 
research has been focused on the architecture of 
hybrid FPGA. Jamieson and Rose [6] propose 
shadow clustering to minimize the overall area 
penalty by sharing local routing resources of fine-
grained elements with embedded blocks. Also a 
coarse-grained architecture with bus-based 

interconnect has been shown to reduce area for data 
path circuits [7]. 

In Hybrid FPGA common sub-circuits that 
occur frequently in a variety of benchmark circuits. 
This is known as common sub-graph extraction. 
Fused-arithmetic units generated by these common 
sub-circuits get up to 3.3 times in speed and 19.7 
times in area for average improvement of particular 
silicon cores. This paper employs this technique to 
determine floating point common sub-graphs similar 
to the fixed point approach. Instead of the 
improvement of particular cores, we focus on the 
system level tradeoff in hybrid FPGAs. A novel 
domain-specific hybrid FPGA architecture which 
embedded FPUs within fine-grained fabric has been 
presented; this architecture has advantage of 18 times 
area reduction when compared to a purely fine-
grained architecture for floating point applications. 
However, these studies only accounted for the 
particular FPU architecture; they do not evaluate the 
combination of WBs, FAs and FMs according to 
different applications. This paper examines this 
relationship and investigates the effect of FPUs on a 
selected set of applications by using common sub-
graph extraction and the hybrid FPGA exploration 
tool Altera Quartus II Chip planner. 
2.2. FPGA architectures 

The heart of a FPGA is a reconfigurable fabric. 
The fabric consists of arrays of fine-grained or 
coarse-grained units. Normally a fine-grained unit 
usually implements a single function and has a single 
bit output. The most fine-grained unit is a K-input 
lookup table (LUT), where K typically ranges from 4 
to 6. The LUT can implement any boolean equation 
of K inputs. This type of fabric is called a LUT-based 
fabric. Several LUT-based cells can be joined to 
make a cluster in a hardwired manner. These results 
in little loss in flexibility but can reduce area and 
routing resources within the fabric [8]. 

A coarse-grained unit is usually less flexible 
and typically much larger than a fine-grained one, but 
is often more efficient for implementing specific 
functions. The coarse-grained unit is usually 
programmable to some degree, by combining several 
functions such as those in an arithmetic logic unit 
(ALU) and outputs are often multi-bit. They can be 
parameterised in terms of features such as bus-width 
and functionality. We have also proposed a word-
based synthesisable architecture, and show that it has 
large improvements in area over a similar fine-
grained approach [9]. 

 Heterogeneous functional blocks are found on 
commercial FPGA devices. For example, a Stratix III 
device has embedded fixed-function multipliers, 
embedded DSP units with multipliers and 
accumulators. The flexibility of these blocks is 
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limited and it is less common to build a digital system 
solely using these blocks. When the blocks are not 
used, they consume die area and contribute to 
increased delay without adding to functionality. As 
shown in the above examples, FPGA fabric can have 
different levels of granularity. In general, a unit with 
smaller granularity has more flexibility, but can be 
less effective in speed, area and power consumption. 
Fabrics with different granularity can coexist as 
evident in many commercial FPGA devices. Most 
importantly, the above examples illustrate that FPGA 
architectures are evolving to be more coarse-grained 
and application-specific. The proposed architecture in 
this paper follows this trend, focusing on floating 
point computations.  

 
3. Hybrid FPGA Architecture 
3.1 Introduction 

 Hybrid FPGA is nothing but, it is connected 
by routing tracks and combination of both coarse 
grained and fine grained components. Fine grained 
consists of combination of Configurable logic blocks 
(CLBs). Each Configurable logic block contains look 
up tables (LUTs) and flip-flops (FFs) which supports 
fast carry chains, internal multiplexers and XOR 
gates. The coarse-grained embedded blocks (EBs), 
where as embedded memories and multipliers, are 
surrounded by CLBs and Single precision floating 
point adders (FA), floating point subtracters (FS) and 
FP multipliers (FMs), and a word-block (WB) is a 
LUT and flip-flop based unit. It carries out shifting, 
comparison, latch and logical operations. 

 In existing systems, the coarse-grained and 
fined-grained elements in a hybrid FPGA for floating-
point applications are FPUs are in square, FPUs 
should be positioned tightly near the centre of the 
FPGA, the FPU pins should be arranged on four sides 
of the FPU. In fine-grained elements not much to 
support WBs, FAs, or FMs. In our system, we use a 
large amount of fine-grained elements to support 
WBs, FAs or FMs. if we use more WBs, FAs and 
FMs are inside a FPU greater area and speed 
improvement can be achieved, but the whole FPU is 
wasted if not used. First, we consider the performance 
of individual FPUs by connecting the elements using 
connection patterns. It is based on the different FPU 
architectures from common sub-graphs, so the 
performance of the hybrid FPGAs is defined by the 
density of FPU and flexibility of FPU. The common 
sub-graph extraction can potentially be implemented 
as a hard Embedded blocks (EBs) to speed up the 
computation and it represents the functionality shared 
across the benchmark circuits. The flattened net-list is 
then fed into the program maximum common sub-
graph (MCS) generation stage to extract the common 
sub-graphs in these benchmark circuits. We enhance 

this method for floating point application which 
supports FA, FM and WB extraction. The common 
sub-graphs cover FP operations with the connection 
information of WBs, FAs and FMs, the coarse-
grained FPU of common sub circuit in HDL file. 
Then synthesized by Altera Quartus II to obtain the 
area and delay of the FPU and use this information to 
evaluate the FPGA by place and route. 

 By place and route, this novel hybrid FPGA 
architecture will explore. The benchmark circuits 
described in a hardware description language (HDL) 
are synthesized to a map net-list in HDL format 
various units such as LUTs and registers are included 
in the library net-list. And place and route packs the 
clusters into fine-grained elements called 
configurable logic blocks (CLBs). Area, timing and 
position of the EBs are specified in a user constraint 
file. The architecture file contains the information of 
the architectural parameters of the fine-grained 
elements, such as delay of LUT and register. The 
placement and routing also timing analysis by using 
the packed benchmark net-lists, finally we estimate 
the area and delay for each benchmark circuit. 

3.2 Requirements 
Before we introduce the floating point 

hybrid FPGA architecture, common characteristics of 
what we consider a reasonably large class of floating 
point applications which might be suitable for signal 
processing, linear algebra and simulation are first 
described. Although the following analysis is 
qualitative and it is possible to develop the hybrid 
model in a quantitative fashion by profiling application 
circuits in a specific domain. In general, FPGA based 
floating point application circuits can be divided into 
control and data path portions. The data path typically 
contains floating point operators such as adders, 
subtracters and multipliers, and occasionally square 
root and division operations. The data path often 
occupies most of the area in an implementation of the 
application. Existing FPGA devices are not optimized 
for floating point computations; floating point 
operators consume a significant amount of FPGA 
resources.  

The floating point precision is usually a 
constant within an application. The IEEE 754 standard 
is almost always used, especially the single precision 
format (32-bit) or double precision format (64-bit). 
The interconnection can be bus-oriented. The data path 
can often be pipelined and routing within the data path 
may be uni-directional in nature. Occasionally there is 
feedback in the data path for some operations such as 
accumulation. The control circuit is much simpler than 
the data path and therefore the area consumption is 
typically lower. Control is usually implemented as a 
finite state machine and most synthesis tools can 
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produce an efficient mapping from the boolean logic 
of the state machine into fine-grained FPGA resources. 
 

Table 1: Coarse-grained unit parameters 
 Symbol  Parameter description 

D 
 Number of blocks (Including FPUs, word 
blocks) 

N  Bit Width 
 M  Number of Input Buses 
R  Number of Output Buses 
 F  Number of Feedback Paths 

P 
 Number of Floating Point Adders and 
Multipliers 

 
From the above analysis, some basic 

requirements for floating point hybrid FPGA 
architectures will be done. 
 A number of coarse-grained floating point 

addition and multiplication blocks are necessary since 
most computations are based on these primitive 
operations. Floating point division and square root 
operators can be optional, depending on the domain-
specific requirement. 
 Coarse-grained interconnection, fabric and bus-

based operations are required to allow efficient 
implementation and connection between fixed-
function operators. 
 Dedicated output registers for storing floating 

point values are required to support pipelining.  
Fine-grained units and suitable interconnections are 

required to support implementation of state machines 
and bit-oriented operations. These fine-grained units 
should be accessible by the coarse-grained units and 
vice versa 
 
3.3 Architecture 

 Figure 1 shows a top-level block diagram of 
our hybrid FPGA architecture. It performs an island-
style fine-grained FPGA structure with dedicated 
columns for coarse-grained units. Both fine-grained 
and coarse-grained units are reconfigurable. The 
coarse-grained part contains embedded fixed-function 
floating point adders and multipliers. The top-level 
architecture is inspired by existing commercial 
FPGAs. However, the proportion of coarse-grained 
blocks can be customised to meet design requirements. 
The island style architecture with standard 
interconnect structures such as connection and switch 
boxes are used to implement the fine-grained fabric. 
Four input LUT-based fine-grained units, similar to 
Altera Stratix III slices are hence employed. However, 
the proposed FPGA hybrid modelling allows us to 
adopt other architectures such as the 6 input LUTs in 
Altera Stratix III. We believe the same trends would be 

seen as we migrate to smaller technologies and more 
modern FPGA architectures. 

The data path for the floating point units is 
implemented using coarse-grained logic. The coarse-
grained logic consists of a number of coarse-grained 
units embedded into the fine-grained fabric. The 
floating point multiplier block is a fixed-function 
block. The floating point adder block can be 
configured for either floating point addition or 
subtraction. This is achieved by XORing the sign bit 
with the configuration bit. Each FPU has a 
reconfigurable registered output and associated control 
input and status output signals. The control signal is a 
write enable signal that controls the output register. 
The status signals report the FPU’s status flags and 
include those defined in IEEE standard as well as a 
zero and sign flag. The fine-grained unit can monitor 
these flags as routing paths exist between them. 
 

 
Figure 1: Floating point hybrid FPGA architecture. 

  
A word-block contains N identical bit-

blocks, and is similar to published designs [9]. A bit-
block contains two 4-input LUTs and a reconfigurable 
output register. The value of N depends on the size of 
the FPU. Bit-blocks within a word-block are all 
controlled by the same set of configuration bits, so all 
bit-blocks within a word-block perform the same 
function. A word-block can efficiently implement 
operations such as addition and multiplexing. Similar 
to FPUs, word-blocks generate status flags such as 
MSB, LSB carry out, overflow and zero which are 
connected to the fine-grained blocks. Apart from the 
control and status signals, there are M input buses and 
R output buses connected to the fine-grained units. The 
routing layout assumes that a block can only accept 
inputs from the left, simplifying the routing. To allow 
the flexibility, F feedback registers have been 
employed so that a block can accept the output from 
the right block through the feedback registers. For 
example, the first block can only accept input from 



Life Science Journal 2013;10(3)                                                        http://www.lifesciencesite.com 

1963 
 

input buses and feedback registers, while the second 
block can accept input from input buses, the feedback 
registers and the output of the first block. The 
feedback registers latch the output of a block and 
forward it to another block. Each floating point 
multiplier is logically located to the left of a floating 
point adder so that no feedback register is required to 
support multiply and add operations. The coarse-
grained units can support multiply accumulate 
functions by utilising the feedback registers. Switches 
in the coarse-grained unit are implemented using 
multiplexers and are bus-oriented. A single set of 
configuration bits is required to control these 
multiplexers, improving density compared to a fine-
grained fabric. For the same reason, the FPUs are 
embedded in the coarse-grained units rather than 
distributed over the FPGA, such that a FPU can exploit 
the bus-oriented routing resources in the coarse-
grained blocks. 

 The floating point multiplier block is a 
fixed-function block and the floating point adder block 
can be configured for either floating point addition or 
subtraction. This is achieved by XORing the sign bit 
with the configuration bit. Each FPU has a 
reconfigurable registered output and associated control 
input and status output signals. The control signal is a 
write enable signal that controls the output register. 
The status signals report the FPU’s status flags and 
include those defined in IEEE standard as well as a 
zero and sign flag. The fine-grained unit can monitor 
these flags as routing paths exist between them. 
 

 
Figure 2: Connecting WBs, FAs and FMs into 

different coarse-grained FPUs. 
 
3.4. Interface of Coarse-grained Blocks in Hybrid 
FPGA 

 The coarse-grained blocks are able to 
connect to fine-grained resources in various ways. The 
best interface between coarse-grained and fine-grained 
elements in a hybrid FPGA [10] for floating-point 
applications are: (1) FPUs are square (2) FPUs should 
be positioned tightly near the centre of the FPGA (3) 
The FPU pins should be arranged on four sides of the 
FPU. The interface between coarse-grained blocks and 

fine-grained blocks in this paper is assumed to follow 
the above configuration. 
4. Optimization Parameters 

 In this paper, we optimize the internal 
connection structure and the number of the WBs, FAs 
and FMs. If more WBs, FAs and FMs are inside a FPU 
(Fig 2), greater area and speed improvement can be 
achieved, but the whole FPU is wasted if not used of 
WBs, FAs and FMs is important. We consider the FPU 
in the following parameters: 
 
(a) Internal optimization of FPU: 

 The WBs, FAs and FMs in FPUs can be 
connected in different orders as shown in Figure 2. We 
consider the performance of individual FPUs by 
connecting such elements using commonly found 
connection patterns.  
 
(b) System level optimization: 

 Based on the different FPU architectures 
from common subgraph, we optimize the performance 
of the hybrid FPGAs by selecting the FPUs in the 
following ways: 

Density of FPU: The FPU consists of more 
computation an element achieves greater reduction 
since all elements can be closely packed. However, 
this may require more routing resources for the 
connection between the coarse-grained block and fine-
grained block. And the flexibility decreases, since it is 
difficult to reuse in another application. 
Flexibility of FPU: FPUs are wasted when not used. 
The FPUs can be reused across different applications. 
Therefore, embedding high flexibility can reduce the 
area waste for unused FPUs. 
 
5. Modelling of Hybrid FPGA 
5.1 Introduction 

 A method [9] is used to model floating point 
hybrid FPGAs with different architectural parameters 
and coarse-grained blocks. This approach is general 
and can be used to model any FPGA provided that a 
floor planner and a timing analysing tool are available 
for that device. In this method, an existing fine-grained 
commercial FPGA is used. Fine-grained blocks in our 
hybrid FPGA are directly mapped to the corresponding 
logic cells on the commercial FPGA. The area and 
delay for the embedded coarse-grained units are first 
estimated by synthesising the design using a standard 
cell flow. They are then modeled in a commercial 
FPGA by employing blocks of logic cells with similar 
delay and area. The corresponding vendor’s CAD tools 
are then used to estimate the delay and area of the 
hybrid FPGA. 

 We employ a parameterised synthesisable 
IEEE 754 compliant floating point library in our 
experiments. The library supports four rounding modes 
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and denormalised numbers. A floating point multiplier 
and floating point adder are generated and synthesised 
using a standard cell library design flow. The Altera 
Quartus II is used for synthesis. During synthesis, 
retiming optimisation is enabled to obtain better 
results. While a custom layout design for the coarse-
grained unit can achieve much higher density and 
better speed, it is time consuming to design a coarse-
grained unit for each set of architectural parameters. 
To determine suitable parameters for generation of 
coarse-grained units, we first decide on an initial set of 
parameters and try to map a set of benchmark circuits 
to the units. Two parameters determine whether the 
architecture is best-fit. The first is the number of 
coarse-grained units required to implement the circuit. 
The second is the percentage of blocks used in a unit. 
During the first step, we create a HDL description of 
the control logic part of the application circuit. We 
then add additional statements which instantiate the 
coarse-grained units as well as the signals between the 
fine-grained and coarse-grained units. The design is 
then synthesised on the target device and a device-
specific netlist is generated. The synthesis tool 
considers the coarse-grained unit as a black box. The 
area utilisation is computed by determining the number 
of slices in Stratix III required implementing the 
application. 

 The second step is to obtain the timing and 
area models for each instantiated coarse-grained unit 
as described earlier. With this information, netlist can 
be compiled by generating dummy cells with 
appropriate area and delay. Special consideration is 
given to the interface between fine-grained units and 
coarse-grained units to make sure that the 
corresponding netlist model has sufficient I/O pins to 
connect to the fine-grained routing resources. This can 
be verified by keeping track of the number of inputs 
and outputs which connect to the global routing 
resources in a slice. After generating the netlist for the 
targeted FPGA, a User Constraint File (UCF) which 
forces the netlist to be located in a particular column is 
created. The final area and timing results will be 
obtained from the Altera Quartus II Place and Route 
tool. This represents the characterisation of a circuit 
implemented on the hybrid floating point FPGA with 
fine-grained units and routing resources exactly the 
same as the targeted FPGA. After generating the netlist 
netlist for the targeted FPGA, a User Constraint File 
(UCF) which forces the netlist to be located in a 
particular column is created. We then use the vendor’s 
place and route tool to obtain the final area and timing 
results. This represents the characterisation of a circuit 
implemented on the hybrid floating point FPGA with 
fine-grained units and routing resources exactly the 
same as the targeted FPGA. Using commercial FPGA 
fine-grained units in this manner has several 

advantages and Altera Quartus II Synthesis, Place and 
Route tools can be used in the modelling of the hybrid 
FPGA and it can produce a realistic comparison to 
existing FPGA devices.  
 
5.2. Tool Flow 

 We adopt common subgraph extraction to 
detect the most frequently used arithmetic units in 
floating point benchmark circuits, such as floating 
point adders/subtracters, multipliers and registers. 
Then we synthesize different combinations of these 
units into coarse-grained blocks, which are embedded 
in a hybrid FPGA. After that, the benchmark circuits 
with these coarse-grained embedded blocks (EBs) are 
evaluated by the Altera Quartus II tool for area and 
timing analysis. 
 

 
Figure 3: Common subgraph extraction design flow 

 
(a) Common Subgraph Extraction: 

 Floating point applications have common 
characteristics for floating point computations. A 
common subgraph in these applications represents 
functionality shared across the benchmark circuits. The 
subgraph can potentially be implemented as a hard EB 
to speed up the computation. Efficiency can usually be 
improved by combining similar FP operations into the 
same core, by common subgraph extraction [11].  

 In the tool flow of common subgraph 
extraction as shown in Figure 3, floating point 
benchmark circuits are written in Verilog. Modelsim 
and Altera Quartus II are used to parse and flatten the 
Verilog benchmark circuits. The flattened netlist is 
then fed into the program Maximum Common 
Subgraph (MCS) generation stage to extract the 
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common subgraph in these benchmark circuits. With 
the connection information of WBs, FAs and FMs, we 
describe the coarse-grained FPU of common sub-
circuit in another Verilog file. The FPU, which 
consists of complex FA and FM circuits, is then 
synthesized by Altera Quartus II with 110 nm process. 
We obtain the area and delay of this FPU and use this 
information to evaluate the FPGA by Altera Quartus II 
Place and Route. After we have determined the FP 
coarse-grained blocks by common subgraph 
extraction, such blocks are interfaced to the fine-
grained FPGA. We use the Altera Quartus II tool to 
explore this novel hybrid FPGA architecture. 

 In the Altera Quartus II design flow in 
Figure 4, benchmark circuits described in a hardware 
description language (HDL) are synthesized to a 
mapped library netlist in VHDL format using Altera 
Quartus II. Various units such as LUTs and registers 
are included in the library netlist. Altera Quartus II 
netlist pack packs and clusters these simple units into 
fine-grained elements called configurable logic blocks 
(CLBs). Area, timing and position of the EBs are 
specified in a user constraint file.  

 
Figure 4: Design flow for common subgraph EBs 

using Altera Quartus II 
  

The architecture file contains the 
information of the architectural parameters of the fine-
grained elements, such as delay of LUT and register. 
The Altera Quartus II tool performs placement, routing 
and timing analysis using the packed benchmark 
netlist, constraint file and architecture file. The tool 
finally estimates the area and delay for each 
benchmark circuit. 
 
6. Result 

 A set of benchmark applications are mapped 
to the proposed floating point hybrid FPGA, and the 
results are compared to a Stratix III device. All FPGA 
results are obtained using the Altera Quartus II for 
synthesis and place and route. Six benchmark circuits 

are used in this study [6]. Five of them are 
computational kernels and one is a Monte Carlo 
simulation data path. We have chosen these with 
simple but are not very efficiently implemented on 
general-purpose FPGA devices and we expect these 
applications to yield better timing and density on a 
floating point hybrid FPGA. 

The bfly benchmark performs the 
computation z = y+x*w where the inputs and output 
are complex numbers; this is commonly used within a 
Fast Fourier Transform computation. The dscg circuit 
is the data path of a digital sine-cosine generator. The 
fir4 circuit is a 4-tap finite impulse response filter. The 
mm3 circuit performs a 3-by-3 matrix multiplication. 
The ode circuit solves an ordinary differential 
equation. The bgm circuit computes Monte Carlo 
simulations of interest rate model derivatives. The 
physical die area of a Stratix III device has been 
reported [13], and the normalisation of the area of 
coarse-grained unit is estimated in Table 2. We assume 
that 60% of the total die area is used for slices; the rest 
of the area is due to I/O pads, block memory, 
multipliers etc. This means that the assumed area of 
our Stratix III device is 8,192 μm2. This number is 
normalised against the feature size (0.15μm). A similar 
calculation is used for the coarse-grained units. The 
synthesis tool reports that the area of a double 
precision coarse-grained block is 1,051,011 μm2. We 
further assume 15% overhead after place and route 
based on our experience [9]. The area values are 
normalised against the feature size (0.12μm). The 
number of equivalent slices is obtained through the 
division of coarse-grained unit area by slice area. The 
values in the sixth and seventh columns represent the 
number of I/O required, while the values in brackets 
indicate the maximum number of I/O allowed for the 
area in slices. Although a Stratix III slice employs 
smaller transistors (0.11μm) than those used for 
building the coarse-grained unit (0.12μm), we do not 
scale the timing of the coarse-grained unit and 
therefore conservative timing results are reported. We 
use EP2S15 as the host FPGA for the floating point 
hybrid FPGA. We assume that 8 double precision 
coarse-grained blocks are embedded into this FPGA. 
The coarse-grained blocks constitute 15% of the total 
area in an EP2S15 device. Benchmark circuits are 
implemented on the same device and the results are 
shown in Table 3. The FPU values for the EP2S15 
device are estimated from the distribution of LUTs, 
which is reported by the Altera Quartus II synthesis 
tool. The logic area is obtained by subtracting the FPU 
area from the total area reported by the place and route 
tool. As expected, the FPU logic occupies most of the 
area, typically more than 80% of the user circuits. For 
example, the circuit bfly has 6 FPUs which consume 
78% of the total FPGA area. It can fit into 2 coarse-
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grained units, which constitute just 2.5% of the total 
FPGA area. The bgm circuit cannot fit in an EP2S15 
device but it can be tightly packed into 7 coarse-
grained units. Thus the circuit can fit in the hybrid 
FPGA in which the size is same as the EP2S15 device. 
Delay is reduced by 3.0 times on average. As the 
critical paths are in the FPU, improving the timing of 

the FPU through full-custom design would further 
increase the overall performance. The area reduction is 
significant: the proposed architecture can reduce the 
area by 21 times. The saving is achieved by (1) 
embedded floating point operators, (2) efficient 
directional routing and (3) sharing configuration bits.

 
 Table 2: Normalized area of the coarse-grained units against a Stratix III slice 

Fabric Area(A) (μm2) Feature size (L)( μm) Normalised Area (A/m2) Area in slices Input pin Output pin 
Stratix III slice 8.192 0.12 358,123 1 6(6) 2(2) 
DP-CGU 1,051,01 0.11 78,506,546 158 215(1218) 186(312) 

 
Table 3: Double precision floating point hybrid FPGA results 

 Double precision floating point Hybrid FPGA EP2S15 Reduction 

Circuit 
Number 
of CGU 

CGU area 
(Slices) 

FGU area 
(Slices) 

Total area 
(Slices) 

Delay 
(ns) 

FPU area 
(Slices) 

Logic 
area 

(Slices) 

Total area 
(Slices) 

Delay 
(ns) 

Area 
(times) 

Delay 
(times) 

bfly 2 278(2.5%) 183(1.49%) 436(3.9%) 9.02 11,183(88%) 880(5%) 11377(91%) 21.57 21.4 2.18 
dscg 2 278(2.5%) 289(2.16%) 566(4.6%) 11.11 8,887(62%) 289(2%) 9146(62%) 18.18 12.5 1.98 
fir4 2 278(2.5%) 12(0.13%) 250(2.4%) 9.56 10,014(75%) 118(1%) 10299(72%) 20.68 28.8 2.16 

mm3 2 278(2.5%) 290(2.02%) 524(4.59%) 7.9 7851(53%) 708(6%) 8089(58%) 20.18 13.9 2.16 
cde 2 278(2.5%) 193(1.35%) 435(3.8%) 8.94 7339(51%) 215(2%) 7828(33%) 18.88 14.8 1.98 

bgm* 6 1052(2.5%) 575(4.05%) 1180(8.8%) 9.10 21887(190%) 395(4%) 24887(180%) 24.14 16.6 2.03 
Geometric mean 18 2.08 

 

7. Conclusion 
   We present a hybrid FPGA architecture 
which involves a combination of reconfigurable fine-
grained and coarse-grained units dedicated to floating 
point computations. We show that the proposed 
floating point hybrid FPGA would be an improved 
speed and density over a conventional FPGA for a 
variety of applications. Current and future work 
includes developing automated design tools supporting 
facilities such as partitioning for coarse-grained units, 
and exploring further architectural customisation for a 
large number of domain-specific applications. 
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