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Abotract: This note is devoted to the study of an inverse Cauchy problem in a Hilbert space H  for the abstract 

fractional differential equation of the form: ),( )(  )(  = 
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with the nonlocal initial condition: 
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1=

0 kk

p

k

tucuu  and the overdetermination condition: ),(=)),(( twvtu where (.,.) is the inner product in H , 

f  is a real unknown function w  is a given real function, 0u , v  are given elements in H , g  is a given 

abstract function with values in H , 1<0  , u  is unknown, and A  is a linear closed operator defined on a 

dense subset of H .It is supposed that A  generates a bounded semigroup. An application is given to study a 

nonlocal inverse problem in a suitable Sobolev space for general fractional parabolic partial differential equations 

with unknown source functions. 
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1. Introduction 

Several authors [1-7]considered the 

identification of an unknown state independent 

source term in the heat equation and some parabolic 

equations. In other words some inverse problems 

must be solved to find, on basis of the observations, 

the coefficients, free term and sometimes initial and 

boundary conditions. To solve some problems related 

to the theory of viscoelasticity, we need to study 

inverse and nonlocal Cauchy problem for suitable 

fractional partial differential equations, see[8-11]. 

The purpose of this paper is to study an inverse 

problem in a real Hilbert space H  for the abstract 

fractional differential equation of the form: 
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with the nonlocal initial condition 
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and the overdetermination condition:  

(1.3)),(=)),(( twvtu  

where (.,.) is the inner product in H , f  is a real 

unknown function, w  is a given real function, 0u , 

v  are given elements in H , g  is a given abstract 

function with values in H  , 

,<...<0 1 att p  pcc ,...,1  are real 

numbers, and A is a linear closed operator defined on 

a dense set S  in H  to H .  

It is supposed that A generates an analytic 

semigroup )(tQ  such that 

KtQ llll )(  for all ],[0,= aJt  Q(t) 

h S llllllll h
t

K
htAQ )(,  for every element h in 

H , and all ],(0,at  where ll ll.  is the norm in 

H , (see [12]). 

We shall consider the integral of operator - 

valued functions;  
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where   is a probability density function defined 

on )(0,  such that its Laplace transform is given 

by  
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where 1,<0   
x [12,13].,      0,> functiongammatheisand  

It is clear that   represents a uniformly 

continuous function of t  in the uniform topology 

(i.e., in the set of all linear bounded operators 

)(HB  defined on H ).  
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We shall assume the following conditions; 

1A : StgandSvu  )( ,,0
 for all Jt , 

2A : Jtgtg  ,|)(| 01
, where )),((=)(1 vtgtg  

and 0g  is a positive constant,  

3A : The abstract functions g  and Ag  

are continuous on J  with respect to the norm in 

H ,  

4A : )(JC
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, where )(JC  is the set 

of all continuous functions on J . 

It is suitable to rewrite the problem (1.1) , 

(1.2) in the form:  
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In section 2, the nonlocal inverse Cauchy 

problem (1.4)is studied under the overdetermination 

condition (1.3). In section 3 an application is given to 

the nonlocal inverse Cauchy problem (1.4) for partial 

differential equations of the form:  
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with the initial condition  
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multi-index, 
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RRGx ,  is the 

n -dimensional Euclidean space, G  is a bounded 
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It is assumed that equation (1.5) is 

fractional uniformly parabolic. In other words  
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 and c  is a 

positive constant. 

We suppose that )(2 GCa m

q  , for all 

mq 2||  , where )(GC
j  is the set of all continuous 

real-valued functions defined on G, which have 

continuous partial derivatives of order less than or 

equal to j . 

The functions vu ,0  and w  are given. 

The unknown functions u  and f  are determined 

in a suitable space. There are many applications of 

the theory of fractional calculus and non local 

Cauchy problem (see [4], [5], [6]). 

 

2. Representation of solutions 

      A pair of functions },{ fu  is said 

to be a strict solution of the nonlocal inverse problem 

(1.3)-(1.4) if  

H
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for each )(],(0, JCfTt   and the relations 

(1.3)-(1.4) are satisfied. In this case we say that the 

nonlocal inverse problem (1.3)-(1.4) is solvable. 

Let us consider the following equation:  
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and P  is a linear operator defined on )(JC  with 

values:  
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We shall prove now the equivalence between the 

inverse problem (1.1)-(1.3) and (2.1).  

Theorem 2.1. Suppose that the conditions 

)( 41 AA   are satisfied. Then the following 

assertions are valid : 

  (I) If the nonlocal inverse problem 

(1.1)-(1.3) is solvable, then equation (2.1) has a 

solution )(JCf  ,  

  (II) If equation (2.1) has a solution 

)(JCf   and the compatibility condition  

(2.3)(0),=)(0),( wvu  

holds, then the nonlocal inverse problem (1.1) - (1.3) 

is solvable.  

Proof. Assume that the inverse problem (1.1) 

- (1.3) is solvable. Multiplying both sides of (1.1) by 

v  scalarly in H , we obtain the relation  
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From (2.2) and (2.4), one gets  
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This means that f  solves equation (2.1). 

To prove assertion (II), we notice that by 

assumption, equation (2.1) has a solution 

)(JCf  . When inserting this function in (1.1), 

the resulting problem (1.1), (1.2) can be treated as a 
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direct nonlocal problem having a unique solution u. 

Using results from my papers [7],[11] this solution is 

given by  
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        Let us prove now that u  satisfies the 

overdetermination condition (1.3). In this case u  

and f  are known , consequently (2.1) will 

represent the following identity:  
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Subtracting equation (2.4) from (2.6), one gets  
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applying the fractional integral of order   and 

taking into account the compatibility condition (2.3), 

we find out that u satisfies the overdetermination 

condition (1.3) and that the pair },{ fu  is a strict 

solution of the inverse problem (1.1) - (1.3). This 

completes the proof of the theorem. 

Theorem 2.2. Let the conditions 

)( 41 AA   and the compatibility condition (2.3) 

hold, then there exists a unique strictly solution of the 

nonlocal inverse problem (1.1) - (1.3). 

Proof. Using (2.1), (2.2) and (2.5), one 

obtains (formally) the following Volterra integral 

equation:  
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and 
*A  is the adjoint of the operator A . 

Using similar techniques as in our papers 

[7] , [11-17], we can see that the functions )(
1

1 tg


, 

)(th  and the kernel ),( stK  are continuous 

functions of t , s  in J . Consequently the integral 

Volterra equation (2.7) has a unique continuous 

solution f  on J .According to theorem (2.1) this 

confirms that the considered nonlocal inverse 

problem is solvable. To prove the uniqueness, we 

assume to the contrary there were two different 

solutions },{ 11 fu  and },{ 22 fu  of the considered 

problem. We claim that in this case 21 ff   for all 

points of J . In fact if 1f  = 2f  on J , we would 

have 1u  = 2u . Since both pairs satisfy identity 

(2.4), the functions 1f  and 2f  give two different 

solutions of equation (2.7). But this contradicts the 

uniqueness of solutions of (2.7). This completes the 

proof of the theorem.  

 

3. Inverse nonlocal mixed problem 

 Let )(GW
m

 be the completion of the 

space )(GC
m

 with respect to the norm  
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Denote by )(0 GW m
 the completion of the space 

)(0 GC m
 with respect to the norm (3.1), (where 

))(0 GC m
 is the set of all functions )(GCf

m
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with compact supports in G . 

Let )(
2

GL  be the space of all square 

integrable functions on G . 

The inverse problem (1.4)-(1.6) can be 

written in the abstract form (1.1)-(1.3), where A  is 

the operator defined by 1= uAu , 
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The domain of definition of A  is given 

by  
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The considered set S  is dense in )(2 GL  

and the closed operator A  defined by (3.2) 

generates a bounded semigroup [14-16]. The adjoint 

operator 
*A  is given by 2
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= uuA , where  
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Applying theorems (2.1) and (2.2) we can see that the 

considered nonlocal inverse mixed problem is 

uniquely solvable,see [18,19].  
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