
Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 979

Pheromone inspired Morphogenic Distributed Control for Self-Organization of Unmanned Aerial Vehicle
Swarm

Kiwon Yeom

Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA 94035-0001, USA

Abstract: Distributed formation of swarming with no coordinated agreement or positioning information is an
interesting research area because the global behaviors must emerge from many diverse local interactions. A central
issue in distributed formation of swarm is enabling agents with only a local view of their environment to take
actions that advance global system objectives (emergence of collective behavior). This paper describes a bio-
inspired control algorithm using pheromone for coordinating a swarm of identical flying agents to spatially self-
organize into arbitrary shapes using local communication maintaining a certain level of density. Different from
most existing distributed control, the proposed approach considers the topological structure of the organization,
supports dynamic reconfiguration and self-organization. This paper presents the experimental results on simulating
in the forming of arbitrary shape, and simulating wireless communicated swarm behavior forming communication
networks, self-repairing, and avoiding pitfalls in mission execution.
[Kiwon Yeom. Pheromone inspired Morphogenic Distributed Control for Self-Organization of Unmanned
Aerial Vehicle Swarm. Life Sci J 2013;10(3):979-991] (ISSN:1097-8135). http://www.lifesciencesite.com. 143

Keywords: Distributed formation, self-organization, intelligence, UAV, self-reconfiguration, modular flying agents,
federation of agents

1. Introduction

In the areas of robotics and distributed
systems, a lot of research effort has been developed
towards controlling autonomous agents with low
power requirements and simple sensor capabilities [1],
[2], [3]. We aim at investigating flying agents based
on minimal aerial swarm systems which have minimal
capabilities for sensing and communications, which can
be deployed in real-life scenarios. We believe that this
approach could be applicable in most environments in
a rapid, inexpensive, scalable and simple manner. This
research work is inspired by an application whereby
several flying agents have to self-organize
autonomously to establish an emergency
communication network to detect multiple users
located in disaster areas and relay their position
information [4], [5], [6].

As the cost of robotic hardware has come
down and availability has gone up, there has been
growing interest in robotic systems that are composed
of multiple simple robots rather than one highly-
capable robot. The technology enables new
applications, and large numbers of simple, self-
directed robots show high potential for use in sensor
grids, resource harvesting, and group transport [7].
This trade-off reduces the design and hardware
complexity of the robots and removes single point
failures, but adds complexity to the algorithm design.
There are strong challenges to control and coordinate
individual agents, or enable a swarm of agents with
minimal communication capability to perform a useful
task as a collective behavior.

Nature has shown that complex collective

behaviors can be made possible by very simple
interactions among large number of agents which are
relatively unintelligent [8]. For example, schools of
fish swim in unison, and are able to execute large
scale collective behaviors to avoid a predator. Termite
colonies can build very large and complex nests. Ants
collectively search a very large area and are capable of
returning food to the nest [9]. In these examples, there
is no central leader with all the information-making
decisions for each individual. This non-supervised
behavior is a central aspect of distributed systems.

Ultimately we would like to control global
or collective behavior in a distributed way using flying
agents that have limited communication ability and act
autonomously. Flying agents can fly over difficult
terrain such as flooded or debris areas [10]. Rather than
relying on positioning sensors which depend on the
environment and are costly, flying agents rely on
proprioceptive sensors and local communication with
neighbors (see Fig.1).

The two-dimensional formation task is the
starting point of this research, as it is simple to
describe swarm applications in terms of theory or
practice. For instance, given a set of flying agents and
a set of points, the problem to solve is to arrange the
agents on the points without being piled up on one
another (i.e., one to one correspondence). In real
world tasks, often flying agents can be involved to
form a particular shape in examples such as sensor
grids (or sensor networks) and group transport.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 980

Figure 1. Artistic view of the use of a swarm of UAVs
for establishing communication networks between
users located on ground

Keeping a specific formation of flying agents
is important for many real world tasks, especially
when individual agents have limited abilities or the
task requires global action. For example, flying agents
may aggregate for coordinated search of survivors in a
disaster area. Imagine a large group of small unmanned
autonomous aerial vehicles that can fly with the agility
of a flock of starlings in a city square or of a swarm of
donut-like shape avoiding many obstacles [11]. A
global shape, which is much larger than an individual
agent’s communication range, can be formed by
collective behavior. It enables a swarm of agents to
gather information from a wide area and transport it.

In this paper, we focus on a control
algorithm in which flying agents self-organize and
self-sustain arbitrary 2D formations. An approach to
form an arbitrary shape in two dimensional space
called the ’ShapeBugs’ is depicted by [12]. It only
requires agents to have the ability of local
communication, two approximate measures for
relative distance and motion, and a global compass.
The proposed algorithm proceeds by synchronizing
agents’ coordinate system and enables agents to form
an arbitrary shape. The algorithm is robust but the
global compass requires much computational
resources to synchronize local agents’ coordinate
system.

Our work is motivated to modify and
extend the ShapeBugs algorithm. We present a
modified and fast formation control approach by
substitute the global compass with continuous
calculation of the error in estimation of local agent’s
movement. In addition, we introduce pheromone based
density control mechanism to manage and keep the
overall shape as any failure in agents happens.

We propose a decentralized formation
algorithm, which can not only accomplish arbitrary

shapes by self-organization but also produces resulting
the formed global shapes that are highly robust to
varying numbers of agents from agent death. In
addition, it can compensate for practical hardware
limitations like sensor and movement error.

In this work, we assume that our flying
agents are equipped with imperfect proprioceptive
sensors and a short-range wireless communication
device with which agents can exchange information
with only nearby neighbors. Briefly, our algorithm
works as follows: first, flying agents initially wander
with no information about their own coordinates or
their environment. However, they have a programmed
internal knowledge of the desired shape to be formed.
Next, a small seed group of agents are initially located
in a shape. As non-seeded agents move, they
continually perform local trilaterations to figure out
their location by continuous local communication. At
the same time, agents maintain a certain density level
among themselves using pheromones and flocking-
rule-based distance measurements [13]. This enables
flying agents to disperse within the specific shape and
fill it efficiently.

This approach has several salient
contributions. It only requires agents to have local
communication ability, an approximate measure of
relative distance, an approximate measure of relative
motion. Technically, our system can distribute agents
through a specified shape, not merely place them in
particular positions on the two dimensional plane.
Therefore, agents can easily aggregate into arbitrary
pre-defined shapes. The proposed algorithm enables
agents to form many arbitrarily connected formations
maintaining a certain density regardless of map size,
the number of agents, and obstacles.

We show through simulation experiments not
only that flying agents can easily aggregate into
arbitrary user-defined shapes but also that the formed
shape is robust to varying numbers of agents and
independent of the number of agents.

The rest of the paper is organized as follows:
we present related work in Section 2, and Section 3
describes our flying agent model followed by a detail
explanation of the self-organizing formation algorithm
in Section 4. We present simulation experiments that
investigate efficiency, robustness in Section 5, and
draw conclusions and discuss in Section 6.

2. Related Work

The theory and practice of the distributed
control of swarms of agents was introduced by
Reynolds [14]. The essence of his research work was
that coordinated collective behavior can be achieved
by a simple distributed interaction between neighbors.
Each agent must move according to a small set of
simple rules, which take into account the range

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 981

bearing, and preferably the orientation, of its
neighbors.

There are several literatures that can be
considered relevant to robotic self-assembly [15],
[16], [17], [18], [12]. These researches addressed the
problem of building arbitrary shapes by self-
assembling robot swarms. [19] investigated micro
aerial vehicles to establish a positionless
communication network. However, frequent
replacement of node MAVs in the network may drift
the swarm from original position.

The idea behind the aerial swarm had its
origins in the Beowulf Project [20]. The Beowulf
Project demonstrated the possibility of creating a
distributed parallel computer interconnecting through
an Ethernet network using a number of cheap Linux
boxes. [21] remarked that it should be possible to
configure a fleet of LinuxBots to operate across the
wireless LAN as a Beowulf cluster.

Several projects are aimed at getting UAVs
to fly in formation, usually under remote but high-level
control [22]. This type of project is therefore different
from the biologically-inspired flexibility and
responsiveness of flocking pursued within a swarm.
However many of the required technologies are
similar. The MinuteMan project at UCLA builds a
reconfigurable architecture for highly mobile multi-
agent systems [23]. The intention is that the
computationally capable autonomous vehicle would be
able to share information across a wireless fault
tolerant network. Study of formation-flying were
undertaken at MIT, within the Autonomous blimps
project [24]. The University of West England
developed the flying flock project slightly different
from previous work [25]. The work is conceived with
a minimalist approach.

Currently, UAVs are designed to achieve
tasks such as the surveillance of an area of interest or
searching for targets and subsequently destroying,
tracking or sensing them [10] [26] [13]. Other possible
applications include environmental monitoring and
more specifically toxic plume characterization or
forest fire detection, and the deployment of mobile
communication networks [27].

Several map-based UAV applications are
proposed in [28] and [29]. In map-based applications,
UAVs know their absolute position which can be
shared locally or globally within the swarm. Each
agent then decides where to navigate based on its
interpretation of the map. UAVs can deposit and sense
virtual pheromones, location information visited by
robots over time, or areas of interest in the
environment.

However, obtaining and maintaining
relative or global position information is challenging
for UAVs or mobile robot systems. A possible

advance is to adopt a global positioning system
(GPS). However, GPS is not reliable and rarely
possible in cluttered areas [30]. Alternatively, wireless
technologies can be used to estimate the range or
angle between agents of the swarm. In this case,
beacon agents can be used for a reference position to
other moving agents. However, depositing beacons is
generally not practical for swarm systems in unknown
environments [31]. Off-the-shelf sensors such as
cameras, laser range finders, radars, ultrasound and
infrared sensors are capable of providing relative
positioning, but this equipment is typically expensive
and heavy and hence incompatible with the scalable
nature of swarms composed of large numbers of simple
and inexpensive aerial robots.

Our system attempts to achieve connected
arbitrary formation using a decentralized local
coordinate system of agents with relative distance and
density model.

3. Flying Agent Model

We assume a simple aerial robot that moves
and turns in continuous space, which is motivated by
the pieces of capabilities of real autonomous UAVs.
Each robot has several simple equipment such as
distance and obstacle-detection sensors, a magnetic
compass, wireless communication, etc. (see Table I)

Table 1: Flying agent model
Distance sensor provides estimated distance of each neighbor
Detection sensor detects obstacles in direct proximity to robot
Wireless comm. allows agents to communicate with each other
Locomotion moves agents in the world but has error
Internal shape map is specified by user as a target shape

We assume that agents move in 2D

continuous space, all flying agents execute the same
program, and agents can interact only with other
nearby agents by measuring distance and message
exchange. We assume that the simulation world is
finite for simplifying the handling of agent
trajectories, and agents that wander off one side will
reappear on the other side. The agents’
communication architecture is based on a simple IR
ring architecture because we assume that agents can
interact only with nearby neighbors. The robots have
omnidirectional transmission, and directional
reception. This means that when a robot receives a
transmission, it knows roughly which direction the
transmission came from (see Fig.2). An example of
such communication hardware is described in [32] (see
Fig. 3).

In order to test the algorithm, we developed
a simulation environment based on Swarm (Swarm 2.2
http://www.swarm.org). The simulator models a
continuous world in which the robots and obstacles
exist and each object occupies some physical extent.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 982

The reason we chose this simulation environment is
that the swarm simulator provides a gridded world
environment so that the proposed algorithm can face
real-world problems.

Figure 2. Agent model inspired from capabilities of
real UAVs

(a)

(b)

Figure 3. (a) An example of UAVs hardware. (b) UAV
hardware architecture.

The agent’s dynamic model is implemented
using a first order flight model for simple and low-
cost airframe. We assume that our UAVs can fly at a
speed of approximately 0.5 m/s and are able to hover
or make sharp turns as an example in Figure 3. The
minimum turn radius of the UAVs is assumed to be as
small as possible with respect to the communication
range.

Having a realistic communication model is
essential for credibility because of the real-life
challenge brought on by highly dynamical systems,
signal propagation uncertainties and network
topologies that are prone to packet collisions.

Later we will consider wireless

communication based on the IEEE 802.11b
specification, allowing a communication range of
around 3 m. This medium might be enough for
realistic scenarios because in most potential networks,
ground users can use wireless communication devices
which are embedded on laptops, smart phones, PDAs
etc.

4. Self-Organizing Formation Algorithm

The decentralized control of UAVs has
some advantages. First it is highly scalable, i.e., there
is no difference between controlling 10 or 100 UAVs.
Secondly, no need of information with respect to
formation is required. Therefore higher flexibility and
higher capacity of manoeuvre can be guaranteed.
Thirdly, the swarm control mechanism itself is
intrinsically fault tolerant. The failure of an agent or a
small group of agents does not compromise the swarm
flocking.

In our self-organizing formation algorithm,
each flying agent has a shared map of the shape to be
constructed and this should be overlaid on the agent’s
learned coordinate system. Initially, flying agents are
randomly scattered into the simulation world without
any information about the environment. Then agents
begin to execute their programmed process to decide
their position using only data from their proximity
sensors (i.e., distance and density) and their wireless
communication link with nearby neighbors.

The programmed process consists of two
continuous and concurrent thread modules. One is for
defining the agent’s coordinate system. In this module,
each agent can adjust its learned coordinate system so
that it corresponds to another agent’s coordinate system.
This is can be accomplished by continuous trilateration
using distance. The other is for controlling the agent’s
movement. If an agent is within a shape, then it
plays a role as beacons with a density sensor.
Otherwise agents randomly move around in the world
until finding an appropriate position.

4.1. Agent Transition Cycle

Agents are simulated in an asynchronous
and autonomous manner with finite time required for
the calculation of both position and movement. In our
model, agents have a simple transition cycle model as
shown in Fig.4.

Figure 4. Agent’s process cycle

The second sense step is necessary because
agents should compare the data before and after

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 983

movement to determine distance and orientation from
positioning error. After each transition of agent, the
time until the next transition is set randomly from
[Tmin, Tmax), where Tmin is 0 to the time for
computation (see Fig. 4) and Tmax is approximately
the time of wait or move. Agent can move only one
unit or 0 unit during Move and Sense transition
process. Therefore, if agent does not move, the agent’s
Move does not have any time code.

In a more realistic scenario, agents would
move varying distances over time because of both
distance measurements and movement error. The
positioning process largely relies on the ability of
agents to estimate the magnitude of their motions.

Figure 5. An example of agent’s state machine. In
this work, the agent does not perform more steps to
keep residing inside when it is inside the shape.
However, if it cannot do trilateration with other three
neighbors, its state change into ’Lost’.

In this model, agents have three
computational states such as lost, out of shape, and
in shape (see Fig. 5 as describe in [12]. Although
[12] is robust, it does not provide any stable state
because there is no definition of simulation complete
state. Therefore, in our work, we define the
simulation iteration will be complete when all agents
make transition and are back to StanbyQueue state
queue.

Agent’s state will be set the StanbyQueue as
virtual final step if whole agents do not require any
more sense because they are inside the shape and has
at least three neighbor agents with coordinate system.
In addition, agents continuously broadcast their
estimated position (x, y), state, and local density. This
information therefore is always available for any other
agent which is in Sense step. While agent moves, the
position is generated in the step of Compute. Any
adjacent two agents have the relative distance as well
by acquiring its own position and other agent’s
position.

Although agent which is in the Lost state
does not have coordinate system, any agent in In
Shape or Out of Shape has a shared coordinate system.

Initially, agents are in the lost state because there is no
given coordinate system. An agent in Lost state will
randomly wander through the world until it senses
three nearby neighbors which have a coordinate
system (see Fig.8). When this condition is satisfied, the
lost state agent tries to trilaterate to calculate its
position by comparing the neighbor’s distance and the
relative position. Unlike [12], our model uses 8 IR
sensors to approximately sense the direction of the
referenced agent. As mentioned earlier, this enables for
agent to easily and fast approach towards inside the
target shape. Once agents acquire a shared coordinate
system, they begin to fill a formation shape by each
agent diffuses pheromone with repulse range Rrep (see
Fig. 10). The pheromone emission mechanism allows
the formation shape to be robust against agents’ death,
while agents evenly spread out throughout the shape.

4.2. Hybrid Agent Positioning Algorithm

In geometry, trilateration is the process of
determining absolute or relative locations by
measurement of distances using the geometry of
circles or triangles. Trilateration does have practical
applications in navigation including global positioning
systems (GPS).

In two-dimensional geometry, when it is
known that a point lies on two curves such as the
boundaries of two circles then the circle centers and
the two radii provide sufficient information to narrow
the possible locations down to two [33].

Trilateration allows an agent to find its
perceived position (xp, yp) on the connected coordinate
system (see Figure 5). It is also used subsequently to
adjust its position. In this work, the trilateration
process occurs only if there are at least three neighbors
that are not in the lost.

Figure 6: Agent’s trilateration

An agent uses its distance sensor to estimate
its distance to each neighbor agent and also to request
their own learned coordinate systems by wireless
communication.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 984

Let the positions of the three fixed anchors

be defined by the vectors x1, x2, and x3 ∈ 2. Further,

let xp ∈ 2 be the position vector to be determined.
Consider three circles, centered at each anchor, having
radii of di meters, equal to the distances between xp
and each anchor xi. These geometric constraints can be
expressed by the following system of equations:

Since, the above equations can be rewritten as follows:

by subtracting the second and third equations from the
first, results in the following two equations:

by solving the following linear system, the column
vector can be determined:

Generally, the best fit for xp can be regarded
as the point that minimizes the difference between the
estimated distance (ξ) and the calculated distance from
xp (xp, yp) to the neighbors reported coordinate system.
That is,

 (11)

From this information, we can learn that
this problem is closely related to the sum-
minimization problems that arise in least squares and
maximum-likelihood estimation. Therefore we suggest
simple way of search of local minima (see Eq.12
Eq.13). However, in this paper, we do not consider
finding any optimal or global solution but a local
minimum, because it requires a lot of computational
resources and it is not suitable for a small and

inexpensive device. For simplification, formula 11 can
be rewritten in the form of a sum as follows:

 (11)

where the parameter w is to be estimated and where
typically each summand function Qi() is associated
with the i-th observation in the data set. We perform
Eq.6 to minimize the above function:

(12)

where α is a step size. For easy understanding, we
draw the ictures in Fig.7.

We found the success of the above iteration
procedure pends on the initial starting position and
search step size. Positioning is usually an approximate
process and hence may have errors. Firstly, the
measurement of measurement of distance by distance
sensors has error. Secondly, the reported coordinate
system from neighbors may be inaccurate. Thus, the
agent can have a movement error after positioning.
This means that an agent has moved distance d in
some direction may actually move d + δ. As a result,
the consensus coordinate system accumulates errors
over time. Therefore we readjust the coordinate
system at certain intervals.

Figure 7. (a) Initial guessing for deciding direction to
find local minima. (b)(e) stepwise searching the local
minima.

4.3. Flocking Movement control
As described in the previous section, the

agent has three states such as Lost, Out of Shape, and In
Shape. Agents take different movement patterns
according to their states. If an agent is in the lost state,
it is assumed that the agent is located outside the shape
or is in the initial simulation starting status. If they are
outside the shape, they begin to wander randomly to
find their way into the shape. For simplification we
assume that agents can continuously walk in a random
zig-zag path (see Fig. 8).





n

i
i wQwwQww

1

)()(: 


n

i
i wQwQ)()(

|)(|
),(

minarg
2

 
i

pi xx
pp yx

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 985

Figure 8. Agent’s random walk in zig-zag path

When agents are inside the shape, they are

considered as part of the swarm that comprises it.
Once agents have acquired a coincident coordinate
system in the shape, they should not take any steps so
that place them outside of the shape. Then agents
attempt to fill a formation shape. In this work, we
achieve this control by modeling virtual pheromones
in a closed container. Agents react to different
densities of neighbors around them, moving away
from areas of high density towards those of low
density [34]. They finally settle into an equilibrium state
of constant density level throughout the shape over
time (see pseudo code in Fig. 9).

This mechanism is inspired by Reynold’s
flocking model and the pheromones of ants [35] and
[36]. When agents die, surrounding agents quickly
flood into the lower density area until equilibrium is
restored.

Figure 9. An example of agent’s behavior for
searching a target using pheromone.

However, based on our assumption, if the
number of agents is not enough to compensate for the
area, the agents cannot maintain the shape any more. In
other words, the swarm can respond to any loss as
long as there are enough agents left to maintain a
certain level of density equilibrium (see Fig.10).

Figure 10. Pheromone robot’s influence ranges

This is very a reasonable consideration
when we deploy real aerial vehicles to some points
because they have physical limitations in hardware
like a short range of wireless link. If new agents are
flooded somewhere into the swarm world, the density
level is quickly increased and the agents adjust their
position to maintain the density until they reach a
given level of equilibrium again.

Neighboring agents inside the shape with
distance < Repel (see Fig.8) will repulse each other,
leading to an average density of agents throughout the
shape. This mechanism allows the shapes to be robust
against agent death or addition while spreading agents
evenly throughout the shape.

This goal is accomplished by giving each
agent a varying pheromone level which has a
maximum value at the center of the agent and
dwindles at a constant rate.

4.4. Pheromone Model for Density Control

Pheromone model is inspired by following
factors: (1) biological discoveries about how cells self-
organize into global patterns, and (2) distributed
control systems for self-reconfigurable agent [14],
[18]. Pheromone provides the common mechanism
that makes it possible for agents to communicate
without identifiers or addresses. The basic idea of
pheromone is that a swarm is a network of agents that
can dynamically communicate in the network. Agent
will react to pheromone according to their local
topology and state information. There is no guarantee
that every agent in the network will receive the same
copy of the original pheromone because a pheromone
may be modified and dissipated during its propagation.

Dynamic Network of Swarm Flying Agents
is specified as a network of N autonomous agents.
Each agent has a set of connectors through which the
agent can dynamically connect to other agents to
form a kind of edges for communication or physical
coupling. The connectors of agents are the channels it
can be used to communicate with others. A channel of

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 986

an agent has to be connected to the other channel of
another agent to communicate. Because connectors of
agents can be dynamically joined and disjoined,
agents can make a sort of dynamic and reconfigurable
communication network.

Let Agenti and NetEdgei denote the
number of agents and the number of netwoked
edges, respectively. Then the dynamic network
can be mathematically written as follows:

DN = (Agenti, NetEdgei) (14)

Note that both Agenti and NetEdgei can
be dynamically changed because agents can
autonomously join, leave, or be failed and died.

The diffusion and dissipation of
pheromone of a given agent is denoted by P(x, y),
where x and y are 2D space. We simply introduce
the mechanism of diffusion and dissipation of
pheromone as follows:

(

(15)

The first term on the right is for
diffusion, and α and β represent the rate of
diffusion in x and y directions, respectively. The
second term is for dissipation and the constant δ
is the rate of dissipation. Eg.15 can be considered
as a part of environment function which
responsible for the implementation of the
dynamic communication and other effects.

4.5. Density Control of Swarm

The density control is based on Payton
approach [34], but is also similar in nature to the
flocking rules proposed by Reynolds [14].

Our density control is to equalize overall
density of agents at any situation. To this end, as
shown Fig.10, the agent has three different influence
ranges. Each agent has a varying repellant (or
repulsive power) that has a maximum value near
center which is described as Collision area and a
minimum value around Range zone (see Fig.10)
regarding any adjacent agent. The repellant decreases
at a constant ratio from center and it becomes the
smallest value when it reaches a Range zone (black
dotted circle area). The agent’s movement vector is
weighted inversely by distance. Therefore, if any two
agents are close, they push away one another. This
allows agents to disperse evenly at any density.

4.6. Error Correction Method

In this work, our positioning method of
agent is approximate technique and might have error

for several reasons. First, distance (or proximity)
sensors have inherited sensing error by themselves.
Second, the gradient descent search algorithm, which
we adopted to find appropriate position, may get local
minima. Third, coordinates reported by neighbors may
be inaccurate. Finally sensing and movement errors of
robots are very common in real world.

Thus, it is suitable to take the averaged
coordinates from several trilaterations instead of
relying on a single trilateration [37]. In our work, if an
agent moves distance d in some direction, it may
actually move d ± δ. As a result, agent’s perceived
coordinate systems accumulate errors over time. Thus,
it should be recalculated and readjusted. To this end,
we accumulate previous trilaterations performed by
agents in memory and average them with the recent
coordinate at a certain interval of time steps (e.g.,
every 10 steps). We handle these issues as follows.
Each agent performs trilateration and gets a coordinate
at every time step. Agents keep some previous
trilateration information (m) and every 10 steps, they
average their recent coordinates with the last m
trilaterations.

5. Experimental Results

We show that the proposed formation
control algorithm can form any arbitrary shape while
autonomically compensating for various errors and
maintaining the shape against agent death. The system
is implemented in Java 1.5.2 based on the architecture
of SWARM2.2. The user specified shape maps are
represented by bitmap images. A group of 10 agents
which are in 25x25 pixels are seeded to trigger the
first round of trilaterations. Distance sensors have a
range of 10 units (around 20m in the real world) and
agents move a discrete 1 unit at every time step.

5.1. Experiments

The scenario consists of having a swarm of
UAVs form shapes while maintaining a wireless
connection and avoiding obstacles. This is based on a
real world situation. For example, when an earthquake
occurs and a lot of buildings are destroyed, it is very
difficult to approach some positions. In addition, there
may be a second danger like an additional building
collapse. Therefore avoiding obstacles is a very
important issue for gathering information in a disaster
area.

In this section we show several
experimental examples. Of course all experiments are
inspired by [38]. They described simple heuristic
algorithms for shape generation using barycenter, in
which each particle senses gradients propagated by all
other particles. However, as shown in their results,
they had to frequently change (adding or removing
something) to form arbitrary patterns. It means that

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 987

every time it requires the agents to be modified to
form a specific shape.

In contrast, our algorithm can form arbitrary
shapes without any human intervention or frequent
modification of agents, and achieves restoration of
formation from agent death or damage because each
agent forms (from any starting configuration) and holds
a swarm in a class of shapes. With centralized
information, the distributed self-organization is
possible while agents are sharing their connected
coordinate system using a wireless link.

5.2. Formation of Arbitrary Shapes

Figure 9 shows several formation examples
which are made by flying agents, and also shows that
the same shape can be formed with different density
levels that agents can accommodate. In this
experiment, we basically set the initial density level of
agents as 16 neighbors in target shapes. As shown in
Fig.11, at any density our virtual pheromone model
causes flying agents to disperse evenly throughout
user-specified shapes.

As shown in Figure 9, only connected
formations are possible due to using a consensus
coordinate system between agents in our formation
control algorithm, and shapes have a tendency to be
harder to form well (i.e., organic growth).

Figure 11. Examples of formations

The complete shape formation took about
1500 time steps, depending on the number of agents
and the density level.

5.3. Circular Shaping

In this example, flying agents run the
distributed algorithm to assume a circle shape. Several
seeded agents (bright colored) will serve as the circle
center. At each step, all the other agents sense their
positions and they move along the direction of the
circle shape. Eventually, agents outside the intended
circle radius will collapse toward it.

As shown in Fig.12, it runs like a random
walk (see Fig. 8). There is no thick part or high density
around the boundary. The result makes a rather regular
shape.

Figure 12. Different stages of the circle formation.
As several agents start propagating the circle gradient
as seed, other agents gradually collapse toward the
circle circumference.

5.4. Formation of Ring

We consider a formation similar to a ring
network architecture. In particular, we imagine a
difficult terrain with large obstacles so that agents can
make an emergency communication network between
multiple survivors located on the ground and a rescue
team (refer Fig.1). In this case, UAVs can fly over a
difficult area such as flooded or collapsed terrain, or
building debris and could replace damaged, nonexistent
or congested networks. Our endeavor is motivated by
this scenario. As shown in Fig.13, our algorithm is well
adapted to making ring architectures.

Figure 13. Ring formation. As the agents self-
recognize to be there, they start making a ring shape.

5.5. Connection to Outside Swarm

Similar to the previous section, we consider
a more complicate situation with a lot of obstructions.
In addition, during connection several sets of agents
are destroyed. The separate swarm groups should
connect to each other to share information about the
task area. The gray circle in Fig.14 shows the
disconnection to the inner circle. Agents try to
connect to the outside by the network bridge which we
assume they could find. During moving, several groups
died from some event and the other agents should
connect to each other to avoid the debris area. As

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 988

shown in Fig. 14, two agent groups are well connected
in spite of some damage. It is worth noting that we do
not apply self-repairing in this case.

Figure 14. Connection to outside swarm group.

5.6. Self-Repairing

Whatever the shape being formed, it is of
fundamental importance to preserve and maintain it.
In this section, we describe experiments aimed at
testing the ability to recover shape deformation from
damage such as regional death of agents. We show that
the connected coordinate system can be re-stabilized
and that the agents can successfully adapt to death
without any explicit detection or monitoring for
failures.
It is a challenge to maintain the overall shape that a
misinformed group of agents should stabilize into in
relation to the whole aggregate. For example, suppose
that the shape is correctly created and in a certain
zone some agents get destroyed by an impact, opening
a void space.

Figure 15. Self-repairing the shape. Red rectangle
part is destroyed but agents self-maintain the shape
without any modification.

To test this case, we first allowed agents to
stabilize into the aggregate shape. Then, we selected a
large region of agents and uniformly displaced their
coordinate systems. On the one hand, agents are able to
estimate their local density, and thus they can sense a
sudden drop in their neighborhood, revealing a change.

On the other hand, all the agents close to the space
previously occupied by the destroyed particles now
have the possibility to move.

Figure 16: Unrecovered shape because of the lack of
agents

Fig.15 shows experiments on the ring
architecture. Some of agents in the lower right corner
are destroyed and got rid of from the system. The
displaced agents start to move to the corresponding
region on the grid. As agents interact with their
neighbors from the original grid, they consequently
correct the error on the shape and the collapsed shape
can be reverted into the original shape. However, as
described in section 4.3, if there are not enough agents
to maintain the shape, the distorted shape may not be
restored from damage as shown in Fig.16.

6. Discussion

In the proposed approach, when an agent
moves, it should move to another place without
negatively affecting the stability of the coordinate
system for adjacent agents. To demonstrate that agent
movement does not negatively affect the stability, we
examined the following experiment.

First, we set 1000 agents in a given
100X100 world. After 150 steps, these agents are to
converge on a consistent coordinate system. Then, we
assign each agent a probability to move randomly with
a probability. After 220 steps, the agents are no longer
allowed to move. For every 10 steps, the consistency
is recorded. This experiment is repeated 5 times and
Fig.19. The consistency is sum of the difference of
the actual distance between the two agents and the
distance between their locations in the coordinate
system.

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 989

Figure 17. Percentage of agents in the shape with
different measurement of density

Figure 18. Percentage of agents in the shape with
different angle of sensors

Figure 19. Consistency error for 5 simulation runs.
Between time steps, 180 220, the agents were to move
with probability. Immediately after Agents’ movement
stops, the error of consistency drastically drops back
to the consistency levels of previous movement.

As shown in Fig.19, the instability of
consistency jumps at time step 180. It is because
when agents move, they still keep their old location
information until they complete relocalization. This
causes the instability during agent movement. However,
after 240 steps having no more movement of agents,
the consistency drops back to the level prior to

movement. This indicates the movement does not
negatively affect the coordinate system.

In our experiments, the average time
required to complete a stabilized shape formation is
about 300 time steps, depending on the number of
agents and agent density. Fig.17 shows the percentage
of agents in the given shape in a 150x150 world.

Most shapes are roughly formed in 100
time steps and converge after 300 time steps. In
addition, rate of shape formation increases as the
number of agents increases from 150. We also observe
that coordinate systems very quickly propagate
throughout agents when the agent density is high so
that the time to stabilization is reduced.

We simply tested how the agents are
affected by hardware limitations. As seen in Fig.18,
the degree of angle of a sensor affects the
performance of the agents. However, we did not
evaluate agents’ movement error or sensing error
because those are related closely to making a
consensus coordinate system among agents. Finally,
we evaluated the variance of the coordinate system
with respect to movement error and sensing error.

Fig.20 shows that the variance settles to a
stable value after about 300 time steps.

Figure 20. Average coordinate variance under
movement and sensing errors

Figure 21. Average convergence comparison of
global compass and without global compass

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 990

Fig.21 shows the difference between
global compass and without global compass usage. As
expected, the required time steps of without global
compass are less than with global compass. However,
it shows that when a global compass uses, it produces
more stable convergence. The modified algorithm
generally requests more agents to form a shape than
the algorithm of [12]. As mentioned before, because
our flocking model starts with random works to find
other three agents which have a shared coordinate
system, it shows erratic patterns until agents converge
after 300 We believe, however, that reducing the cost
of hardware has a benefit when the realistic UAVs are
deployed to any harsh environments. In our modified
algorithm

7. Conclusion and Future Works

This paper provides insight into the design
of unmanned flying agent-based swarms capable of
self-organizing using only local communication with
inexpensive hardware.

The formation and maintenance of a swarm
of UAVs for the creation of wireless communication
networks in disaster areas is demonstrated in a 2D
simulation with realistic scenarios. Because the
development of local interaction between neighbors
responsible for shape formation of a swarm is an
unsolved problem, the overall inspiration is taken from
the biological models of pheromones. When agents
form a shape, the swarm is capable of building an
efficient communication network between agents and
other ground survivors.

We show that agents can self-organize into
arbitrary userspecified shapes and maintain well the
formed architecture by continuous trilateration-based
on a consensus coordinate system and a virtual
pheromone-based density model. When a set of agents
is dead, destroyed, or displaced the resulting
construction of swarms can also self repair it.

We also provide several quantitative
evaluations to describe the effectiveness of the
proposed control algorithm in terms of percentage of
agents in shapes and the variance of learned
coordinate systems according to agents’ movement
sensor errors. Future developments can focus on
mitigating the effect of wind. In addition, agent’s
orientation control can also be investigated. Finally,
scalability can be a useful approach.

Corresponding Author:
Kiwon Yeom

Human Systems Integration Division, NASA Ames
Research Center,
Moffett Field, CA 94035-0001, USA

References
1. G. Prencipe, N. Santoro, Distributed algorithms for

autonomous mobile robots, in: Fourth IFIP
International Conference on Theoretical Computer
Science-TCS 2006, Springer, 2006, pp. 47–62.

2. G. Prencipe, Corda: Distributed coordination of a
set of autonomous mobile robots.

3. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer,
Gathering of asynchronous robots with limited
visibility, Theoretical Computer Science, 2005, 337
(1-3) 147–168.

4. M. Flint, M. Polycarpou, E. Fernandez-Gaucherand,
Cooperative control for multiple autonomous uav’s
searching for targets, in: Decision and Control,
2002, Proceedings of the 41st IEEE Conference,
IEEE, 2002, Vol. 3, pp. 2823–2828.

5. L. Merino, F. Caballero, J. Martı́nez-de Dios, J.
Ferruz, A. Ollero, A cooperative perception system
for multiple uavs: Application to automatic
detection of forest fires, Journal of Field Robotics
2006, 23 (3), 165–184.

6. D. Pack, G. York, Developing a control
architecture for multiple unmanned aerial vehicles
to search and localize rf time-varying mobile
targets: part i, in: Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE
International Conference, IEEE, 2005, pp. 3954–
3959.

7. F. Adler, D. Gordon, Information collection and
spread by networks of patrolling ants, The American
Naturalist, 1992, 140 (3) 373–400.

8. S. Camazine, Self-organization in biological
systems, Princeton Univ Pr, 2003.

9. T. Sharpe, B. Webb, Simulated and situated models
of chemical trail following in ants, in: From
animals to animats 5: Proceedings of the fifth
international conference on simulation of adaptive
behavior, pp. 195–204.

10. P. Basu, J. Redi, V. Shurbanov, Coordinated flocking
of uavs for improved connectivity of mobile ground
nodes, in: Military Communications Conference,
2004. MILCOM 2004. IEEE, Vol. 3, IEEE, 2004, pp.
1628–1634.

11. R. De Nardi, O. Holland, Ultraswarm: A further
step towards a flock of miniature helicopters,
Swarm Robotics, 2007, 116–128.

12. J. Cheng, W. Cheng, R. Nagpal, Robust and self-
repairing formation control for swarms of mobile
agents, in: Proceedings of the National Conference
on Artificial Intelligence, Vol. 20, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2005, p. 59.

13. J. Elston, E. Frew, Hierarchical distributed control
for search and tracking by heterogeneous aerial
robot networks, in: Robotics and Automation,
2008. ICRA 2008. IEEE International Conference
on, IEEE, 2008, pp. 170–175.

14. C. Reynolds, Flocks, herds and schools: A
distributed behavioral model, in: ACM SIGGRAPH

Life Science Journal 2013;10(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 991

Computer Graphics, Vol. 21, ACM, 1987, pp. 25–
34.

15. L. Barnes, M. Fields, K. Valavanis, Swarm
formation control utilizing elliptical surfaces and
limiting functions, Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 2009,
39 (6) 1434–1445.

16. A. Breitenmoser, M. Schwager, J. Metzger, R.
Siegwart, D. Rus, Voronoi coverage of non-convex
environments with a group of networked robots, in:
Robotics and Automation (ICRA), 2010 IEEE
International Conference on, IEEE, 2010, pp. 4982–
4989.

17. J. Cortes, S. Martinez, T. Karatas, F. Bullo,
Coverage control for mobile sensing networks,
Robotics and Automation, IEEE Transactions on,
2004, 20 (2), 243–255.

18. M. Rubenstein, W. Shen, A scalable and distributed
approach for selfassembly and self-healing of a
differentiated shape, in: Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, IEEE, 2008, pp. 1397–1402.

19. S. Hauert, L. Winkler, J. Zufferey, D. Floreano, Ant-
based swarming with positionless micro air vehicles
for communication relay, Swarm Intelligence, 2008,
2 (2) 167–188.

20. D. Becker, T. Sterling, D. Savarese, J. Dorband, U.
Ranawak, C. Packer, Beowulf: A parallel
workstation for scientific computation, in:
Proceedings, International Conference on Parallel
Processing, 1995Vol. 95.

21. R. Dawkins, O. Holland, A. Winfield, P. Greenway,
A. Stephens, An interacting multi-robot system and
smart environment for studying collective
behaviours, in: Advanced Robotics, 1997.
ICAR’97. Proceedings., 8th International
Conference on, IEEE, 1997, pp. 537–542.

22. K. Yeom, Distributed formation control for
communication relay with positionless flying
agents., in: FGIT-MulGraB (1), Vol. 262 of
Communications in Computer and Information
Science, Springer, 2011, pp. 18–27.

23. P. Yoxall, Minuteman project, gone in a minute or
here to stay-the origin, history and future of citizen
activism on the united states-mexico border, the U.
Miami Inter-Am. L. Rev. 37 2005, 517.

24. R. van de Burgt, H. Corporaal, Blimp positioning in
a wireless sensor network.

25. U. of West England, The flying flock. URL
http://www.ias.uwe.ac.uk/projects.htm

26. A. Campo, M. Dorigo, Efficient multi-foraging in
swarm robotics, in: Proceedings of the 9th
European conference on Advances in artificial life,
Springer, 2007, pp. 696–705.

27. P. Gaudiano, E. Bonabeau, B. Shargel, Evolving
behaviors for a swarm of unmanned air vehicles, in:
Swarm Intelligence Symposium, 2005. SIS, 2005.
Proceedings 2005 IEEE, IEEE, 2005, pp. 317–324.

28. B. Kadrovach, G. Lamont, Design and analysis of
swarm-based sensor systems, in: Circuits and
Systems, 2001. MWSCAS 2001. Proceedings of the
44th IEEE 2001 Midwest Symposium on, Vol. 1,
IEEE, 2001, pp.487–490.

29. M. Kovacina, D. Palmer, G. Yang, R.
Vaidyanathan, Multi-agent control algorithms for
chemical cloud detection and mapping using
unmanned air vehicles, in: Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference
on, Vol. 3, IEEE, 2002, pp. 2782–2788.

30. R. Siegwart, I. Nourbakhsh, Introduction to
autonomous mobile robots, The MIT Press, 2004.

31. L. Hu, D. Evans, Localization for mobile sensor
networks, in: Proceedings of the 10th annual
international conference on Mobile computing and
networking, ACM, 2004, pp. 45–57.

32. L. Panait, S. Luke, A pheromone-based utility
model for collaborative foraging, in: Proceedings of
the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-
Volume 1, IEEE Computer Society, 2004, pp. 36–
43.

33. N. Patwari, J. Ash, S. Kyperountas, A. Hero III, R.
Moses, N. Correal, Locating the nodes: cooperative
localization in wireless sensor networks, Signal
Processing Magazine, IEEE 2005, 22 (4), 54–69.

34. D. Payton, M. Daily, R. Estowski, M. Howard, C.
Lee, Pheromone robotics, Autonomous Robots, 2001,
11 (3), 319–324.

35. H. Van Dyke Parunak, S. Brueckner, J. Sauter,
Digital pheromones for coordination of unmanned
vehicles, Environments for Multi-Agent Systems,
2005, 246–263.

36. J. Sauter, R. Matthews, H. Van Dyke Parunak, S.
Brueckner, Performance of digital pheromones for
swarming vehicle control, in: Proceedings of the
fourth international joint conference on
Autonomous agents and multiagent systems, ACM,
2005, pp. 903–910.

37. R. Nagpal, H. Shrobe, J. Bachrach, Organizing a
global coordinate system from local information on
an ad hoc sensor network, in: Information
Processing in Sensor Networks, Springer, 2003, pp.
553–553.

38. M. Mamei, R. Menezes, R. Tolksdorf, F.
Zambonelli, Case studies for self-organization in
computer science, Journal of Systems Architecture,
2006, 52 (8-9), 443–460.

7/11/2013

