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Abstract: Distributed formation of swarming with no coordinated agreement or positioning information is an 
interesting research area because the global behaviors must emerge from many diverse local interactions. A central 
issue in distributed formation of swarm is enabling agents with only a local view of their environment to take 
actions that advance global system objectives (emergence of collective behavior). This paper describes a bio-
inspired control algorithm using pheromone for coordinating a swarm of identical flying agents to spatially self-
organize into arbitrary shapes using local communication maintaining a certain level of density. Different from 
most existing distributed control, the proposed approach considers the topological structure of the organization, 
supports dynamic reconfiguration and self-organization. This paper presents the experimental results on simulating 
in the forming of arbitrary shape, and simulating wireless communicated swarm behavior forming communication 
networks, self-repairing, and avoiding pitfalls in mission execution. 
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1. Introduction 

In the areas of robotics and distributed 
systems, a lot of research effort has been developed 
towards controlling autonomous agents with low 
power requirements and simple sensor capabilities [1], 
[2], [3]. We aim at investigating flying agents based 
on minimal aerial swarm systems which have minimal 
capabilities for sensing and communications, which can 
be deployed in real-life scenarios. We believe that this 
approach could be applicable in most environments in 
a rapid, inexpensive, scalable and simple manner. This 
research work is inspired by an application whereby 
several flying agents have to self-organize 
autonomously to establish an emergency 
communication network to detect multiple users 
located in disaster areas and relay their position 
information [4], [5], [6]. 

As the cost of robotic hardware has come 
down and availability has gone up, there has been 
growing interest in robotic systems that are composed 
of multiple simple robots rather than one highly-
capable robot. The technology enables new 
applications, and large numbers of simple, self-
directed robots show high potential for use in sensor 
grids, resource harvesting, and group transport [7]. 
This trade-off reduces the design and hardware 
complexity of the robots and removes single point 
failures, but adds complexity to the algorithm design. 
There are strong challenges to control and coordinate 
individual agents, or enable a swarm of agents with 
minimal communication capability to perform a useful 
task as a collective behavior. 

Nature has shown that complex collective 

behaviors can be made possible by very simple 
interactions among large number of agents which are 
relatively unintelligent [8]. For example, schools of 
fish swim in unison, and are able to execute large 
scale collective behaviors to avoid a predator. Termite 
colonies can build very large and complex nests. Ants 
collectively search a very large area and are capable of 
returning food to the nest [9]. In these examples, there 
is no central leader with all the information-making 
decisions for each individual. This non-supervised 
behavior is a central aspect of distributed systems. 

Ultimately we would like to control global 
or collective behavior in a distributed way using flying 
agents that have limited communication ability and act 
autonomously. Flying agents can fly over difficult 
terrain such as flooded or debris areas [10]. Rather than 
relying on positioning sensors which depend on the 
environment and are costly, flying agents rely on 
proprioceptive sensors and local communication with 
neighbors (see Fig.1). 

The two-dimensional formation task is the 
starting point of this research, as it is simple to 
describe swarm applications in terms of theory or 
practice. For instance, given a set of flying agents and 
a set of points, the problem to solve is to arrange the 
agents on the points without being piled up on one 
another (i.e., one to one correspondence). In real 
world tasks, often flying agents can be involved to 
form a particular shape in examples such as sensor 
grids (or sensor networks) and group transport. 
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Figure 1. Artistic view of the use of a swarm of UAVs 
for establishing communication networks between 
users located on ground 
 

Keeping a specific formation of flying agents 
is important for many real world tasks, especially 
when individual agents have limited abilities or the 
task requires global action. For example, flying agents 
may aggregate for coordinated search of survivors in a 
disaster area. Imagine a large group of small unmanned 
autonomous aerial vehicles that can fly with the agility 
of a flock of starlings in a city square or of a swarm of 
donut-like shape avoiding many obstacles [11]. A 
global shape, which is much larger than an individual 
agent’s communication range, can be formed by 
collective behavior. It enables a swarm of agents to 
gather information from a wide area and transport it. 

In this paper, we focus on a control 
algorithm in which flying agents self-organize and 
self-sustain arbitrary 2D formations. An approach to 
form an arbitrary shape in two dimensional space 
called the ’ShapeBugs’ is depicted by [12]. It only 
requires agents to have the ability of local 
communication, two approximate measures for 
relative distance and motion, and a global compass. 
The proposed algorithm proceeds by synchronizing 
agents’ coordinate system and enables agents to form 
an arbitrary shape. The algorithm is robust but the 
global compass requires much computational 
resources to synchronize local agents’ coordinate 
system. 

Our work is motivated to modify and 
extend the ShapeBugs algorithm. We present a 
modified and fast formation control approach by 
substitute the global compass with continuous 
calculation of the error in estimation of local agent’s 
movement. In addition, we introduce pheromone based 
density control mechanism to manage and keep the 
overall shape as any failure in agents happens. 

We propose a decentralized formation 
algorithm, which can not only accomplish arbitrary 

shapes by self-organization but also produces resulting 
the formed global shapes that are highly robust to 
varying numbers of agents from agent death. In 
addition, it can compensate for practical hardware 
limitations like sensor and movement error. 

In this work, we assume that our flying 
agents are equipped with imperfect proprioceptive 
sensors and a short-range wireless communication 
device with which agents can exchange information 
with only nearby neighbors. Briefly, our algorithm 
works as follows: first, flying agents initially wander 
with no information about their own coordinates or 
their environment. However, they have a programmed 
internal knowledge of the desired shape to be formed. 
Next, a small seed group of agents are initially located 
in a shape. As non-seeded agents move, they 
continually perform local trilaterations to figure out 
their location by continuous local communication. At 
the same time, agents maintain a certain density level 
among themselves using pheromones and flocking-
rule-based distance measurements [13]. This enables 
flying agents to disperse within the specific shape and 
fill it efficiently. 

This approach has several salient 
contributions. It only requires agents to have local 
communication ability, an approximate measure of 
relative distance, an approximate measure of relative 
motion. Technically, our system can distribute agents 
through a specified shape, not merely place them in 
particular positions on the two dimensional plane. 
Therefore, agents can easily aggregate into arbitrary 
pre-defined shapes. The proposed algorithm enables 
agents to form many arbitrarily connected formations 
maintaining a certain density regardless of map size, 
the number of agents, and obstacles. 

We show through simulation experiments not 
only that flying agents can easily aggregate into 
arbitrary user-defined shapes but also that the formed 
shape is robust to varying numbers of agents and 
independent of the number of agents. 

The rest of the paper is organized as follows: 
we present related work in Section 2, and Section 3 
describes our flying agent model followed by a detail 
explanation of the self-organizing formation algorithm 
in Section 4. We present simulation experiments that 
investigate efficiency, robustness in Section 5, and 
draw conclusions and discuss in Section 6. 
 
2. Related Work 

The theory and practice of the distributed 
control of swarms of agents was introduced by 
Reynolds [14]. The essence of his research work was 
that coordinated collective behavior can be achieved 
by a simple distributed interaction between neighbors. 
Each agent must move according to a small set of 
simple rules, which take into account the range 
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bearing, and preferably the orientation, of its 
neighbors. 

There are several literatures that can be 
considered relevant to robotic self-assembly [15], 
[16], [17], [18], [12]. These researches addressed the 
problem of building arbitrary shapes by self-
assembling robot swarms. [19] investigated micro 
aerial vehicles to establish a positionless 
communication network. However, frequent 
replacement of node MAVs in the network may drift 
the swarm from original position. 

The idea behind the aerial swarm had its 
origins in the Beowulf Project [20]. The Beowulf 
Project demonstrated the possibility of creating a 
distributed parallel computer interconnecting through 
an Ethernet network using a number of cheap Linux 
boxes. [21] remarked that it should be possible to 
configure a fleet of LinuxBots to operate across the 
wireless LAN as a Beowulf cluster. 

Several projects are aimed at getting UAVs 
to fly in formation, usually under remote but high-level 
control [22]. This type of project is therefore different 
from the biologically-inspired flexibility and 
responsiveness of flocking pursued within a swarm. 
However many of the required technologies are 
similar. The MinuteMan project at UCLA builds a 
reconfigurable architecture for highly mobile multi-
agent systems [23]. The intention is that the 
computationally capable autonomous vehicle would be 
able to share information across a wireless fault 
tolerant network. Study of formation-flying were 
undertaken at MIT, within the Autonomous blimps 
project [24]. The University of West England 
developed the flying flock project slightly different 
from previous work [25]. The work is conceived with 
a minimalist approach. 

Currently, UAVs are designed to achieve 
tasks such as the surveillance of an area of interest or 
searching for targets and subsequently destroying, 
tracking or sensing them [10] [26] [13]. Other possible 
applications include environmental monitoring and 
more specifically toxic plume characterization or 
forest fire detection, and the deployment of mobile 
communication networks [27]. 

Several map-based UAV applications are 
proposed in [28] and [29]. In map-based applications, 
UAVs know their absolute position which can be 
shared locally or globally within the swarm. Each 
agent then decides where to navigate based on its 
interpretation of the map. UAVs can deposit and sense 
virtual pheromones, location information visited by 
robots over time, or areas of interest in the 
environment. 

However, obtaining and maintaining 
relative or global position information is challenging 
for UAVs or mobile robot systems. A possible 

advance is to adopt a global positioning system 
(GPS). However, GPS is not reliable and rarely 
possible in cluttered areas [30]. Alternatively, wireless 
technologies can be used to estimate the range or 
angle between agents of the swarm. In this case, 
beacon agents can be used for a reference position to 
other moving agents. However, depositing beacons is 
generally not practical for swarm systems in unknown 
environments [31]. Off-the-shelf sensors such as 
cameras, laser range finders, radars, ultrasound and 
infrared sensors are capable of providing relative 
positioning, but this equipment is typically expensive 
and heavy and hence incompatible with the scalable 
nature of swarms composed of large numbers of simple 
and inexpensive aerial robots. 

Our system attempts to achieve connected 
arbitrary formation using a decentralized local 
coordinate system of agents with relative distance and 
density model. 
 
3. Flying Agent Model 

We assume a simple aerial robot that moves 
and turns in continuous space, which is motivated by 
the pieces of capabilities of real autonomous UAVs. 
Each robot has several simple equipment such as 
distance and obstacle-detection sensors, a magnetic 
compass, wireless communication, etc. (see Table I) 

 
Table 1: Flying agent model 
Distance sensor provides estimated distance of each neighbor 
Detection sensor detects obstacles in direct proximity to robot 
Wireless comm. allows agents to communicate with each other 
Locomotion moves agents in the world but has error 
Internal shape map is specified by user as a target shape 

 
We assume that agents move in 2D 

continuous space, all flying agents execute the same 
program, and agents can interact only with other 
nearby agents by measuring distance and message 
exchange. We assume that the simulation world is 
finite for simplifying the handling of agent 
trajectories, and agents that wander off one side will 
reappear on the other side. The agents’ 
communication architecture is based on a simple IR 
ring architecture because we assume that agents can 
interact only with nearby neighbors. The robots have 
omnidirectional transmission, and directional 
reception. This means that when a robot receives a 
transmission, it knows roughly which direction the 
transmission came from (see Fig.2). An example of 
such communication hardware is described in [32] (see 
Fig. 3). 

In order to test the algorithm, we developed 
a simulation environment based on Swarm (Swarm 2.2 
http://www.swarm.org). The simulator models a 
continuous world in which the robots and obstacles 
exist and each object occupies some physical extent. 



Life Science Journal 2013;10(3)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com             lifesciencej@gmail.com 982

The reason we chose this simulation environment is 
that the swarm simulator provides a gridded world 
environment so that the proposed algorithm can face 
real-world problems. 

 
Figure 2. Agent model inspired from capabilities of 
real UAVs 

 
(a) 

 
(b) 

Figure 3. (a) An example of UAVs hardware. (b) UAV 
hardware architecture. 
 

The agent’s dynamic model is implemented 
using a first order flight model for simple and low-
cost airframe. We assume that our UAVs can fly at a 
speed of approximately 0.5 m/s and are able to hover 
or make sharp turns as an example in Figure 3. The 
minimum turn radius of the UAVs is assumed to be as 
small as possible with respect to the communication 
range. 

Having a realistic communication model is 
essential for credibility because of the real-life 
challenge brought on by highly dynamical systems, 
signal propagation uncertainties and network 
topologies that are prone to packet collisions. 

Later we will consider wireless 

communication based on the IEEE 802.11b 
specification, allowing a communication range of 
around 3 m. This medium might be enough for 
realistic scenarios because in most potential networks, 
ground users can use wireless communication devices 
which are embedded on laptops, smart phones, PDAs 
etc. 
 
4. Self-Organizing Formation Algorithm 

The decentralized control of UAVs has 
some advantages. First it is highly scalable, i.e., there 
is no difference between controlling 10 or 100 UAVs. 
Secondly, no need of information with respect to 
formation is required. Therefore higher flexibility and 
higher capacity of manoeuvre can be guaranteed. 
Thirdly, the swarm control mechanism itself is 
intrinsically fault tolerant. The failure of an agent or a 
small group of agents does not compromise the swarm 
flocking. 

In our self-organizing formation algorithm, 
each flying agent has a shared map of the shape to be 
constructed and this should be overlaid on the agent’s 
learned coordinate system. Initially, flying agents are 
randomly scattered into the simulation world without 
any information about the environment. Then agents 
begin to execute their programmed process to decide 
their position using only data from their proximity 
sensors (i.e., distance and density) and their wireless 
communication link with nearby neighbors. 

The programmed process consists of two 
continuous and concurrent thread modules. One is for 
defining the agent’s coordinate system. In this module, 
each agent can adjust its learned coordinate system so 
that it corresponds to another agent’s coordinate system. 
This is can be accomplished by continuous trilateration 
using distance. The other is for controlling the agent’s 
movement. If an agent is within a shape, then it 
plays a role as beacons with a density sensor. 
Otherwise agents randomly move around in the world 
until finding an appropriate position. 
 
4.1. Agent Transition Cycle 

Agents are simulated in an asynchronous 
and autonomous manner with finite time required for 
the calculation of both position and movement. In our 
model, agents have a simple transition cycle model as 
shown in Fig.4. 

 
Figure 4. Agent’s process cycle 
 

The second sense step is necessary because 
agents should compare the data before and after 
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movement to determine distance and orientation from 
positioning error. After each transition of agent, the 
time until the next transition is set randomly from 
[Tmin, Tmax ), where Tmin is 0 to the time for 
computation (see Fig. 4) and Tmax is approximately 
the time of wait or move. Agent can move only one 
unit or 0 unit during Move and Sense transition 
process. Therefore, if agent does not move, the agent’s 
Move does not have any time code. 

In a more realistic scenario, agents would 
move varying distances over time because of both 
distance measurements and movement error. The 
positioning process largely relies on the ability of 
agents to estimate the magnitude of their motions. 
 

 
Figure 5. An example of agent’s state machine. In 
this work, the agent does not perform more steps to 
keep residing inside when it is inside the shape. 
However, if it cannot do trilateration with other three 
neighbors, its state change into ’Lost’. 
 

In this model, agents have three 
computational states such as lost, out of shape, and 
in shape (see Fig. 5 as describe in [12]. Although 
[12] is robust, it does not provide any stable state 
because there is no definition of simulation complete 
state. Therefore, in our work, we define the 
simulation iteration will be complete when all agents 
make transition and are back to StanbyQueue state 
queue.  

Agent’s state will be set the StanbyQueue as 
virtual final step if whole agents do not require any 
more sense because they are inside the shape and has 
at least three neighbor agents with coordinate system. 
In addition, agents continuously broadcast their 
estimated position (x, y), state, and local density. This 
information therefore is always available for any other 
agent which is in Sense step. While agent moves, the 
position is generated in the step of Compute. Any 
adjacent two agents have the relative distance as well 
by acquiring its own position and other agent’s 
position. 

Although agent which is in the Lost state 
does not have coordinate system, any agent in In 
Shape or Out of Shape has a shared coordinate system. 

Initially, agents are in the lost state because there is no 
given coordinate system. An agent in Lost state will 
randomly wander through the world until it senses 
three nearby neighbors which have a coordinate 
system (see Fig.8). When this condition is satisfied, the 
lost state agent tries to trilaterate to calculate its 
position by comparing the neighbor’s distance and the 
relative position. Unlike [12], our model uses 8 IR 
sensors to approximately sense the direction of the 
referenced agent. As mentioned earlier, this enables for 
agent to easily and fast approach towards inside the 
target shape. Once agents acquire a shared coordinate 
system, they begin to fill a formation shape by each 
agent diffuses pheromone with repulse range Rrep (see 
Fig. 10). The pheromone emission mechanism allows 
the formation shape to be robust against agents’ death, 
while agents evenly spread out throughout the shape. 
 
4.2. Hybrid Agent Positioning Algorithm 

In geometry, trilateration is the process of 
determining absolute or relative locations by 
measurement of distances using the geometry of 
circles or triangles. Trilateration does have practical 
applications in navigation including global positioning 
systems (GPS). 

In two-dimensional geometry, when it is 
known that a point lies on two curves such as the 
boundaries of two circles then the circle centers and 
the two radii provide sufficient information to narrow 
the possible locations down to two [33].  

Trilateration allows an agent to find its 
perceived position (xp, yp) on the connected coordinate 
system (see Figure 5). It is also used subsequently to 
adjust its position. In this work, the trilateration 
process occurs only if there are at least three neighbors 
that are not in the lost. 

 
Figure 6: Agent’s trilateration 
 

An agent uses its distance sensor to estimate 
its distance to each neighbor agent and also to request 
their own learned coordinate systems by wireless 
communication. 
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Let the positions of the three fixed anchors 

be defined by the vectors x1, x2, and x3 ∈ 2. Further, 

let xp ∈ 2 be the position vector to be determined. 
Consider three circles, centered at each anchor, having 
radii of di meters, equal to the distances between xp 
and each anchor xi. These geometric constraints can be 
expressed by the following system of equations: 
 

 

 
 
 

Since, the above equations can be rewritten as follows: 

by subtracting the second and third equations from the 
first, results in the following two equations: 
 
by solving the following linear system, the column 
vector can be determined: 
 

Generally, the best fit for xp can be regarded 
as the point that minimizes the difference between the 
estimated distance (ξ) and the calculated distance from 
xp (xp, yp) to the neighbors reported coordinate system. 
That is, 
 
     
 (11) 
 

From this information, we can learn that 
this problem is closely related to the sum-
minimization problems that arise in least squares and 
maximum-likelihood estimation. Therefore we suggest 
simple way of search of local minima (see Eq.12 
Eq.13). However, in this paper, we do not consider 
finding any optimal or global solution but a local 
minimum, because it requires a lot of computational 
resources and it is not suitable for a small and 

inexpensive device. For simplification, formula 11 can 
be rewritten in the form of a sum as follows: 
 
 (11) 
 
where the parameter w is to be estimated and where 
typically each summand function Qi() is associated 
with the i-th observation in the data set. We perform 
Eq.6 to minimize the above function: 
 
(12) 
 
where α is a step size. For easy understanding, we 
draw the ictures in Fig.7. 

We found the success of the above iteration 
procedure pends on the initial starting position and 
search step size. Positioning is usually an approximate 
process and hence may have errors. Firstly, the 
measurement of measurement of distance by distance 
sensors has error. Secondly, the reported coordinate 
system from neighbors may be inaccurate. Thus, the 
agent can have a movement error after positioning. 
This means that an agent has moved distance d in 
some direction may actually move d + δ. As a result, 
the consensus coordinate system accumulates errors 
over time. Therefore we readjust the coordinate 
system at certain intervals. 
 
Figure 7. (a) Initial guessing for deciding direction to 
find local minima. (b)(e) stepwise searching the local 
minima. 
 

4.3. Flocking Movement control 
As described in the previous section, the 

agent has three states such as Lost, Out of Shape, and In 
Shape. Agents take different movement patterns 
according to their states. If an agent is in the lost state, 
it is assumed that the agent is located outside the shape 
or is in the initial simulation starting status. If they are 
outside the shape, they begin to wander randomly to 
find their way into the shape. For simplification we 
assume that agents can continuously walk in a random 
zig-zag path (see Fig. 8). 
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Figure 8. Agent’s random walk in zig-zag path 

 
When agents are inside the shape, they are 

considered as part of the swarm that comprises it. 
Once agents have acquired a coincident coordinate 
system in the shape, they should not take any steps so 
that place them outside of the shape. Then agents 
attempt to fill a formation shape. In this work, we 
achieve this control by modeling virtual pheromones 
in a closed container. Agents react to different 
densities of neighbors around them, moving away 
from areas of high density towards those of low 
density [34]. They finally settle into an equilibrium state 
of constant density level throughout the shape over 
time (see pseudo code in Fig. 9). 

This mechanism is inspired by Reynold’s 
flocking model and the pheromones of ants [35] and 
[36]. When agents die, surrounding agents quickly 
flood into the lower density area until equilibrium is 
restored. 

 
 
Figure 9. An example of agent’s behavior for 
searching a target using pheromone. 
 

However, based on our assumption, if the 
number of agents is not enough to compensate for the 
area, the agents cannot maintain the shape any more. In 
other words, the swarm can respond to any loss as 
long as there are enough agents left to maintain a 
certain level of density equilibrium (see Fig.10). 

 
Figure 10. Pheromone robot’s influence ranges 
 

This is very a reasonable consideration 
when we deploy real aerial vehicles to some points 
because they have physical limitations in hardware 
like a short range of wireless link. If new agents are 
flooded somewhere into the swarm world, the density 
level is quickly increased and the agents adjust their 
position to maintain the density until they reach a 
given level of equilibrium again. 

Neighboring agents inside the shape with 
distance < Repel (see Fig.8) will repulse each other, 
leading to an average density of agents throughout the 
shape. This mechanism allows the shapes to be robust 
against agent death or addition while spreading agents 
evenly throughout the shape. 

This goal is accomplished by giving each 
agent a varying pheromone level which has a 
maximum value at the center of the agent and 
dwindles at a constant rate. 

 
4.4. Pheromone Model for Density Control 

Pheromone model is inspired by following 
factors: (1) biological discoveries about how cells self-
organize into global patterns, and (2) distributed 
control systems for self-reconfigurable agent [14], 
[18]. Pheromone provides the common mechanism 
that makes it possible for agents to communicate 
without identifiers or addresses. The basic idea of 
pheromone is that a swarm is a network of agents that 
can dynamically communicate in the network. Agent 
will react to pheromone according to their local 
topology and state information. There is no guarantee 
that every agent in the network will receive the same 
copy of the original pheromone because a pheromone 
may be modified and dissipated during its propagation. 

Dynamic Network of Swarm Flying Agents 
is specified as a network of N autonomous agents. 
Each agent has a set of connectors through which the 
agent can dynamically connect to other agents to 
form a kind of edges for communication or physical 
coupling. The connectors of agents are the channels it 
can be used to communicate with others. A channel of 



Life Science Journal 2013;10(3)                                                          http://www.lifesciencesite.com 

http://www.lifesciencesite.com             lifesciencej@gmail.com 986

an agent has to be connected to the other channel of 
another agent to communicate. Because connectors of 
agents can be dynamically joined and disjoined, 
agents can make a sort of dynamic and reconfigurable 
communication network. 

Let Agenti and NetEdgei denote the 
number of agents and the number of netwoked 
edges, respectively. Then the dynamic network 
can be mathematically written as follows: 
 
DN = (Agenti, NetEdgei)  (14)  
 

Note that both Agenti and NetEdgei can 
be dynamically changed because agents can 
autonomously join, leave, or be failed and died. 

The diffusion and dissipation of 
pheromone of a given agent is denoted by P(x, y), 
where x and y are 2D space. We simply introduce 
the mechanism of diffusion and dissipation of 
pheromone as follows: 
  

  
(

(15) 
 

The first term on the right is for 
diffusion, and α and β represent the rate of 
diffusion in x and y directions, respectively. The 
second term is for dissipation and the constant δ 
is the rate of dissipation. Eg.15 can be considered 
as a part of environment function which 
responsible for the implementation of the 
dynamic communication and other effects. 
 
4.5. Density Control of Swarm 

The density control is based on Payton 
approach [34], but is also similar in nature to the 
flocking rules proposed by Reynolds [14].  

Our density control is to equalize overall 
density of agents at any situation. To this end, as 
shown Fig.10, the agent has three different influence 
ranges. Each agent has a varying repellant (or 
repulsive power) that has a maximum value near 
center which is described as Collision area and a 
minimum value around Range zone (see Fig.10) 
regarding any adjacent agent. The repellant decreases 
at a constant ratio from center and it becomes the 
smallest value when it reaches a Range zone (black 
dotted circle area). The agent’s movement vector is 
weighted inversely by distance. Therefore, if any two 
agents are close, they push away one another. This 
allows agents to disperse evenly at any density. 

 
4.6. Error Correction Method 

In this work, our positioning method of 
agent is approximate technique and might have error 

for several reasons. First, distance (or proximity) 
sensors have inherited sensing error by themselves. 
Second, the gradient descent search algorithm, which 
we adopted to find appropriate position, may get local 
minima. Third, coordinates reported by neighbors may 
be inaccurate. Finally sensing and movement errors of 
robots are very common in real world. 

Thus, it is suitable to take the averaged 
coordinates from several trilaterations instead of 
relying on a single trilateration [37]. In our work, if an 
agent moves distance d in some direction, it may 
actually move d ± δ. As a result, agent’s perceived 
coordinate systems accumulate errors over time. Thus, 
it should be recalculated and readjusted. To this end, 
we accumulate previous trilaterations performed by 
agents in memory and average them with the recent 
coordinate at a certain interval of time steps (e.g., 
every 10 steps). We handle these issues as follows. 
Each agent performs trilateration and gets a coordinate 
at every time step. Agents keep some previous 
trilateration information (m) and every 10 steps, they 
average their recent coordinates with the last m 
trilaterations. 
 
5. Experimental Results 

We show that the proposed formation 
control algorithm can form any arbitrary shape while 
autonomically compensating for various errors and 
maintaining the shape against agent death. The system 
is implemented in Java 1.5.2 based on the architecture 
of SWARM2.2. The user specified shape maps are 
represented by bitmap images. A group of 10 agents 
which are in 25x25 pixels are seeded to trigger the 
first round of trilaterations. Distance sensors have a 
range of 10 units (around 20m in the real world) and 
agents move a discrete 1 unit at every time step. 
 
5.1. Experiments 

The scenario consists of having a swarm of 
UAVs form shapes while maintaining a wireless 
connection and avoiding obstacles. This is based on a 
real world situation. For example, when an earthquake 
occurs and a lot of buildings are destroyed, it is very 
difficult to approach some positions. In addition, there 
may be a second danger like an additional building 
collapse. Therefore avoiding obstacles is a very 
important issue for gathering information in a disaster 
area. 

In this section we show several 
experimental examples. Of course all experiments are 
inspired by [38]. They described simple heuristic 
algorithms for shape generation using barycenter, in 
which each particle senses gradients propagated by all 
other particles. However, as shown in their results, 
they had to frequently change (adding or removing 
something) to form arbitrary patterns. It means that 
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every time it requires the agents to be modified to 
form a specific shape. 

In contrast, our algorithm can form arbitrary 
shapes without any human intervention or frequent 
modification of agents, and achieves restoration of 
formation from agent death or damage because each 
agent forms (from any starting configuration) and holds 
a swarm in a class of shapes. With centralized 
information, the distributed self-organization is 
possible while agents are sharing their connected 
coordinate system using a wireless link. 
 
5.2. Formation of Arbitrary Shapes 

Figure 9 shows several formation examples 
which are made by flying agents, and also shows that 
the same shape can be formed with different density 
levels that agents can accommodate. In this 
experiment, we basically set the initial density level of 
agents as 16 neighbors in target shapes. As shown in 
Fig.11, at any density our virtual pheromone model 
causes flying agents to disperse evenly throughout 
user-specified shapes. 

As shown in Figure 9, only connected 
formations are possible due to using a consensus 
coordinate system between agents in our formation 
control algorithm, and shapes have a tendency to be 
harder to form well (i.e., organic growth). 
 

 
Figure 11. Examples of formations 
 

The complete shape formation took about 
1500 time steps, depending on the number of agents 
and the density level. 
 
5.3. Circular Shaping 

In this example, flying agents run the 
distributed algorithm to assume a circle shape. Several 
seeded agents (bright colored) will serve as the circle 
center. At each step, all the other agents sense their 
positions and they move along the direction of the 
circle shape. Eventually, agents outside the intended 
circle radius will collapse toward it. 

As shown in Fig.12, it runs like a random 
walk (see Fig. 8). There is no thick part or high density 
around the boundary. The result makes a rather regular 
shape. 

 
Figure 12. Different stages of the circle formation. 
As several agents start propagating the circle gradient 
as seed, other agents gradually collapse toward the 
circle circumference. 
 
5.4. Formation of Ring 

We consider a formation similar to a ring 
network architecture. In particular, we imagine a 
difficult terrain with large obstacles so that agents can 
make an emergency communication network between 
multiple survivors located on the ground and a rescue 
team (refer Fig.1). In this case, UAVs can fly over a 
difficult area such as flooded or collapsed terrain, or 
building debris and could replace damaged, nonexistent 
or congested networks. Our endeavor is motivated by 
this scenario. As shown in Fig.13, our algorithm is well 
adapted to making ring architectures. 

 
Figure 13. Ring formation. As the agents self-
recognize to be there, they start making a ring shape. 
 
5.5. Connection to Outside Swarm 

Similar to the previous section, we consider 
a more complicate situation with a lot of obstructions. 
In addition, during connection several sets of agents 
are destroyed. The separate swarm groups should 
connect to each other to share information about the 
task area. The gray circle in Fig.14 shows the 
disconnection to the inner circle. Agents try to 
connect to the outside by the network bridge which we 
assume they could find. During moving, several groups 
died from some event and the other agents should 
connect to each other to avoid the debris area. As 
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shown in Fig. 14, two agent groups are well connected 
in spite of some damage. It is worth noting that we do 
not apply self-repairing in this case. 
 

 
Figure 14. Connection to outside swarm group. 
 
5.6. Self-Repairing 

Whatever the shape being formed, it is of 
fundamental importance to preserve and maintain it. 
In this section, we describe experiments aimed at 
testing the ability to recover shape deformation from 
damage such as regional death of agents. We show that 
the connected coordinate system can be re-stabilized 
and that the agents can successfully adapt to death 
without any explicit detection or monitoring for 
failures. 
It is a challenge to maintain the overall shape that a 
misinformed group of agents should stabilize into in 
relation to the whole aggregate. For example, suppose 
that the shape is correctly created and in a certain 
zone some agents get destroyed by an impact, opening 
a void space. 

 
Figure 15. Self-repairing the shape. Red rectangle 
part is destroyed but agents self-maintain the shape 
without any modification. 
 

To test this case, we first allowed agents to 
stabilize into the aggregate shape. Then, we selected a 
large region of agents and uniformly displaced their 
coordinate systems. On the one hand, agents are able to 
estimate their local density, and thus they can sense a 
sudden drop in their neighborhood, revealing a change. 

On the other hand, all the agents close to the space 
previously occupied by the destroyed particles now 
have the possibility to move. 
 

 
Figure 16: Unrecovered shape because of the lack of 
agents 
 

Fig.15 shows experiments on the ring 
architecture. Some of agents in the lower right corner 
are destroyed and got rid of from the system. The 
displaced agents start to move to the corresponding 
region on the grid. As agents interact with their 
neighbors from the original grid, they consequently 
correct the error on the shape and the collapsed shape 
can be reverted into the original shape. However, as 
described in section 4.3, if there are not enough agents 
to maintain the shape, the distorted shape may not be 
restored from damage as shown in Fig.16. 

 
6. Discussion 

In the proposed approach, when an agent 
moves, it should move to another place without 
negatively affecting the stability of the coordinate 
system for adjacent agents. To demonstrate that agent 
movement does not negatively affect the stability, we 
examined the following experiment. 

First, we set 1000 agents in a given 
100X100 world. After 150 steps, these agents are to 
converge on a consistent coordinate system. Then, we 
assign each agent a probability to move randomly with 
a probability. After 220 steps, the agents are no longer 
allowed to move. For every 10 steps, the consistency 
is recorded. This experiment is repeated 5 times and 
Fig.19. The consistency is sum of the difference of 
the actual distance between the two agents and the 
distance between their locations in the coordinate 
system.  
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Figure 17. Percentage of agents in the shape with 
different measurement of density 

 
Figure 18. Percentage of agents in the shape with 
different angle of sensors 
 
 

 
 
Figure 19. Consistency error for 5 simulation runs. 
Between time steps, 180 220, the agents were to move 
with probability. Immediately after Agents’ movement 
stops, the error of consistency drastically drops back 
to the consistency levels of previous movement. 
 

As shown in Fig.19, the instability of 
consistency jumps at time step 180. It is because 
when agents move, they still keep their old location 
information until they complete relocalization. This 
causes the instability during agent movement. However, 
after 240 steps having no more movement of agents, 
the consistency drops back to the level prior to 

movement. This indicates the movement does not 
negatively affect the coordinate system. 

In our experiments, the average time 
required to complete a stabilized shape formation is 
about 300 time steps, depending on the number of 
agents and agent density. Fig.17 shows the percentage 
of agents in the given shape in a 150x150 world. 

Most shapes are roughly formed in 100 
time steps and converge after 300 time steps. In 
addition, rate of shape formation increases as the 
number of agents increases from 150. We also observe 
that coordinate systems very quickly propagate 
throughout agents when the agent density is high so 
that the time to stabilization is reduced. 

We simply tested how the agents are 
affected by hardware limitations. As seen in Fig.18, 
the degree of angle of a sensor affects the 
performance of the agents. However, we did not 
evaluate agents’ movement error or sensing error 
because those are related closely to making a 
consensus coordinate system among agents. Finally, 
we evaluated the variance of the coordinate system 
with respect to movement error and sensing error.  

Fig.20 shows that the variance settles to a 
stable value after about 300 time steps. 

 
Figure 20. Average coordinate variance under 
movement and sensing errors 

 
Figure 21. Average convergence comparison of 
global compass and without global compass 
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Fig.21 shows the difference between 
global compass and without global compass usage. As 
expected, the required time steps of without global 
compass are less than with global compass. However, 
it shows that when a global compass uses, it produces 
more stable convergence. The modified algorithm 
generally requests more agents to form a shape than 
the algorithm of [12]. As mentioned before, because 
our flocking model starts with random works to find 
other three agents which have a shared coordinate 
system, it shows erratic patterns until agents converge 
after 300 We believe, however, that reducing the cost 
of hardware has a benefit when the realistic UAVs are 
deployed to any harsh environments. In our modified 
algorithm 
 
7. Conclusion and Future Works 

This paper provides insight into the design 
of unmanned flying agent-based swarms capable of 
self-organizing using only local communication with 
inexpensive hardware. 

The formation and maintenance of a swarm 
of UAVs for the creation of wireless communication 
networks in disaster areas is demonstrated in a 2D 
simulation with realistic scenarios. Because the 
development of local interaction between neighbors 
responsible for shape formation of a swarm is an 
unsolved problem, the overall inspiration is taken from 
the biological models of pheromones. When agents 
form a shape, the swarm is capable of building an 
efficient communication network between agents and 
other ground survivors. 

We show that agents can self-organize into 
arbitrary userspecified shapes and maintain well the 
formed architecture by continuous trilateration-based 
on a consensus coordinate system and a virtual 
pheromone-based density model. When a set of agents 
is dead, destroyed, or displaced the resulting 
construction of swarms can also self repair it. 

We also provide several quantitative 
evaluations to describe the effectiveness of the 
proposed control algorithm in terms of percentage of 
agents in shapes and the variance of learned 
coordinate systems according to agents’ movement 
sensor errors. Future developments can focus on 
mitigating the effect of wind. In addition, agent’s 
orientation control can also be investigated. Finally, 
scalability can be a useful approach. 
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