Life Science Journal 2013; 10(3) http://www.lifesciencesite.com

INTEGRATED SEMI GROUPS AND CAUCHY PROBLEM FOR SOME FRACTIONAL
ABSTRACT DIFFERENTIAL EQUATIONS

Mahmoud M. El-Borai® and Khairia El-Said El-Nadi®
®Department of Mathematics, faculty of science, Alexandria university, Alexandria

®Department of Mathematics, Faculty of science, Alexandria University, Alexandria
Email:m_m_elborai@yahoo.com; khairia_el_said@hotmail.com

Abstract: Let A be a linear closed operator defined on a dense set in a Banach space E to E. In this note it is

supposed that A is the generator of o — times integrated semi group, where a is a positive number. The abstract
Bu(c . . - .

Cauchy problem of the fractional differential equation: % == Au(t) + F(t), With the initial conditionu, € E, is

studied, where 0 < B < 1, and F is a given abstract function. An application is given.
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1. INTRODUCTION

The theory of integrated semi groups of
operators on a Banach space were introduced by Arendt
[1], [2]. Hieher [3] refined the theory by introducing
o — times integrated semi groups for positive numbers.

Integrated semi groups are a natural
extension of semi group theory to deal with operators
that have polinomially bounded resolvent in a half
plane. It is well known that the Schrodinger operator:

9? 0?
l[axf et axg]

Generates a co-semi group on LP (R™) if and
only if p = 2, (see Hormander [4,5 and 6]). But Hieber
[3] showed that the Schrodinger operator generates an

a — times integrated semi group on LP(R") fora >

1 1 . . . .
n |;— ;|, where R" is the n — dimensional Euclidean

space and LP (R™) is the set of all measurable functions

f such that the integral [, |f(x)|Pdx exists.
Denote by E a Banach space. Let L(E) =

L(E, E) be the space of bounded linear operators from E
to E. Let {S(t),t = 0} be a family of operators in L(E).
Suppose that A is a linear closed operator defined on a
dense set D(A) in E. The family {S(t),t = 0} is called
exponential bounded o — times integrated semi group
generated by A if the following conditions are satisfied:

Cy: {S(t),t = 0} is strongly continuous,

C,: There exists M > 0 and a real number c such
that

ISl < Me®, t=>0,

Cs: The interval (c,0) is contained in the
resolvent set p(A) of A and

C4_:
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00

AL —A)"1 =A% f e MS(t)dt,
0
For all A > c, where I is the identity operator
(see [7], [8].and [9]).
Under the conditions Cy, ..., C, we shall solve in
section 2 the following Caushy problem:

B
d dligt) —Au(), t>0, (1.1)
u(0) = uy € D(A), (1.2)

Where 0 < B < 1.
Recall the definition of fractional derivatives, one

B
of the definitions of the fractional derivative i—ﬁ is
given by

dPf(t) 1 1 (s)

ds +

dt® ~ I'(n—p) J (t— s)n-1+B

n
D KO g1 (0,
k=0 .
Where n—1ss<n,q>c(t)=%, t =

t°H(t), H(t) being the Heaviside function and I'(c) is
the gamma function (see [5], [6]).

2. REPRESENTATION OF THE SOLUTION
Let us solve the Cauchy problem
(1.1), (1.2) under the conditions Cy, ..., C4. It is suitable
to rewrite the Cauchy problem (1.1), (1.2) in the form:
t
1 Au(s) d
NOMGEDE
0

By a solution (2.1), we mean a function u such

u(t) =uy +

2.1)

that:
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1. u is continuous on J=1[0,T], uis an
element of D(A), for each t in ] and Au(t) is continuous
onJ.

2. u satisfies equation (2.1).

Theorem 2.1. If the conditions Cy, ...,C,4 are
satisfied and u, is a given element in D(A), then the
unique solution of (2. 1) is represented by:

u(t) = taBJEB(S)S(tBs)uOds (2.2)

Where &g (s) is a probability density function
defined on (0,0),0 <B<landn—1< a<n.

Proof. Applying formally the Laplace
transform

v(p) = f e Ptu(dt, P>0
0
To (2.1) yields
v(P) = phrab-1 f e PPES(t)updt. (2.3)

0
Consider the one-sided stable probability
density function pg(t), whose Laplace transform is
given by

f pp(ePidt = e,
0
Consequently
h 1
f pB(t)e‘Peﬁdt =eP'0
0

Differentiating both sides of (2.4) with
respect to p, we get

1 1
fth(t)e—PGBtdt — Bel_ﬁpﬁ_le_}’se
0

(2.4)

(2.5)
From (2 3) and (2 5), one gets:

v(p)=p [ ™ [ E (e)S(tBe)uodel dt, (2.6)

Where
1 4.2 _1
(0 = 5t Ty (7).

Notice that &,(t) is a probability density
function defined on [0, ]. The Laplace transform of &
is given by

- (—p)
e P (dt= ) ————.
[ a0 2 T+
0 j=0
We have
o t

¢ +fs()A d
Ta+1)° S/ CS,
0

Forall t > 0 and uy € D(A),

S(Dup = (2.7)
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Since uy; € D(A"), n—1 < a < n, one gets
from (2.7)
d*s(v)
— Yo =0, att=0, k=01, (2.8)
Remembering the S|mple fact about the
Laplace transform of the fractional derivatives and

using (2.6), (2.8), one get

,nh—1

u(t) = taB f & (s)S(tPs)u,ds

Hence the required result.
Noticing that:

0

® e o _ T(a+1)
dtaBt B =T(aB + 1), Of@ EB(G)de—m
And using (2.2), (2.7), we get
o tho
u(t) = dt“ﬁ J- f &3S(s)Auydsde. (2.9

3. NON HOMOGENEOUS EQUATIONS

Let us consider the nonhomogeneous
equation
dPu(t
dlig ) = Au(t) + f(v), 3.1
With the initial condition
u(0) = u, € D(AM), 3.2)

Where fis a given abstract function defined
on J and with values in E.

Theorem 3.1.

If the conditions Cy,...,C, are satisfied,
uy € D(A"), n=1,2,...... and f(t) € D(A") for every
t€], n—1< a <n, then the solution of the Caushy
problem (3.1), (3.2) is given by:

u(t) = u*(t) + F(v),

Where u*(t) is given by formula (2.2) or

(2.9) and

0 dO(B
F(t) = Bff(je—aﬁeig(ﬂ)nﬁ_ls(n%)f(t—n)dedn.

00
Proof. If v and g are the Laplace transform of
u and f, respectively, then

v(p) = pP1(pP1—A) ug + (pP1— A) ' g(p),
So

v(p) = p*fph-1 j e tS(t)g(p)xdt
0

0

+p% | ePPts(Og(p)dt.
0
Using techniques similar to the techniques
which are used in theorem (1.1), we get
794 lifesciencej@gmail.com
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(xﬁoo

Lt [p f e_PBtS(t)dtl 4 f 0%, (0)S(t#0)xdd
dtO(B B 4
0 0
For every element x € D(A"™1), where L1 is

the inverse Laplace transform of L.
Thus

t © dﬂ(ﬁ

F(t) = BJ-J-dt—aBGEB(B)nB_IS(T]BG)f(t—n) dedn.
00

Hence required result, see [10-16].

4. APPLICATION
Letp>1,0<a spp%l,E =LP[0,1],
Define the operator A by

d
(a0 = - Ly,

Where D(A) is the set of all absolutely
continuous functions g defined on the interval [0,1]
with g(0) = 0 and£> € 1F[0,1].

The considered operator A generates the
integrated semitgroup S(t), where

[S(Heglx) = f x*(x — s)™*g(x — s)H(x — s)ds, (4.1)
0
x € [0,1], H is the Heaviside function, see [7],
notice that S(t) is not a semi group.
Consider now the following Cauchy problem
Pu(x,t) du(x,t) «
- ax + ;u(x, t), (4.2)
u(x,0) = ug(x), (4.3)
Where u,(x) € D(A).
Using formula (2.2),(3.1), we can solve the
Cauchy problem(4.2), (4.3) in D(A).
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